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Abstract—Mechanical properties are the attributes of a metal
to withstand several forces and tensions. Specifically, ultimate
tensile strength is the force a material can resist until it breaks.
The only way to examine this mechanical property is the
employment of destructive inspections that renders the casting
invalid with the subsequent cost increment. In a previous work
we showed that modelling the foundry process as a probabilistic
constellation of interrelated variables allows Bayesian networks
to infer causal relationships. In other words, they may guess the
value of a variable (for instance, the value of ultimate tensile
strength). Against this background, we present here the first
ultimate tensile strength prediction system that, upon the basis of
a Bayesian network, is able to foresee the values of this property
in order to correct it before the casting is made. Further, we
have tested the accuracy and error rate of the system with data
of a real foundry.

I. INTRODUCTION

Foundry is considered to be one of the main driving forces

of modern economy. In this way, it supplies necessary pieces

to automotive, naval, aeronautic or weapon industries, for

instance. As one may think, high-precision is the key to

develop smaller, better, and more precise parts of crucial pieces

but such accuracy entails also other risks, since the tiniest error

may become fatal. Think, for instance, that high-precision

foundry casts components of car brakes, aeroplane turbines

or windmill propellers.

Therefore, there are very strict quality standards to assure

the exclusion of faulty pieces. Unfortunately, these controls are

all performed ex-post, when the production effort is already

done. In this sense, error prediction, on the one hand, allows

avoiding the production of defective items to fulfil quality

standards, and on the other, it also helps not to squander

resources on that activity (i.e. helps saving money).

In previous works [1] [2], we presented a research on the

prediction of a defect known as microshrinkage. Here we

focus on the prediction of the mechanical properties of the

casting metal, which allows to infer the so-called ultimate
tensile strength. Moreover, ultimate tensile strength is the

maximum stress any material can withstand when subjected

to tension; in other words, the strength a material is able to

resist until it breaks. Hence, assuring that all pieces manufac-

tured reach a certain ultimate tensile strength threshold is an

essential goal of the quality tests. As in our previous work,

we apply the inference ability of Bayesian Networks [3] in

order to achieve an effective prediction. Bayesian networks

are probabilistic models very helpful when facing problems

that require predicting the outcome of a system consisting of

a high number of interrelated variables. After a training period,

the Bayesian network learns the behaviour of the model and,

thereafter it is able to foresee its outcome. In this way, suc-

cessful applications of Bayesian networks include for instance

email classification for spam detection [4], failure detection in

industrial production lines [5] [6], weather forecasting [7] [8],

intrusion detection over IP networks [9] [10] or reconstruction

of traffic accidents [11] [12]. In all cases, the respective

target problem is modelled as a constellation of interconnected

variables whose output is always the result of the prediction

(e.g. spam found, failure detected, intrusion noticed and so

on). Similarly, the production process of a foundry is perfectly

suitable to be modelled as system of variables whose behaviour

may influence in one way or another the mechanical properties

of the obtained piece.

Against this background, this paper advances the state of the

art in two main ways. First, we present here, for the first time, a

Bayesian-network-based mechanical properties prediction sys-

tem that is especially designed to calculate before producing

it the ultimate tensile strength of the manufactured piece.

Second, we introduce here a methodology to test the accuracy

and error rate of a Bayesian network for the prediction of the

ultimate tensile strength in foundry processes.

The remainder of the paper is organised as follows. Section

II details mechanical properties of iron castings, focusing

on the ultimate tensile strength. Section III introduces in

deeper detail the concept of a Bayesian network and presents

the creation method of the one tailored to iron foundries.

Section IV describes the experiments performed and section V

examines the obtained results and explains feasible enhance-

ments. Section VI discusses related work. Finally, section VII

concludes and outlines the avenues of future work.

II. MECHANICAL PROPERTIES OF IRON CASTINGS

Several factors, for instance the extreme conditions in which

it is carried out, make the foundry process very complex.

Starting from the raw material to the manufactured item, this

procedure involves numerous stages, some of which may be

performed in parallel. More accurately, when it comes to iron

ductile castings, this process presents the following phases:
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• Melting and pouring: The raw metals are melt, mixed

and poured onto the sand shapes.

• Moulding: The moulding machine forms and prepares

the sand moulds.

• Cooling: The solidification of the castings is controlled

in the cooling lines until this process is finished.

Fig. 1 shows the moulding and cooling phases. Once the raw

material is melt, it is poured onto the moulds (made out of

sand mixed in the sand-mill) and shaped in (1). The cooling

lines (2) accelerate the natural cooling process of the castings

and, when they are properly solidified, the sand moulds are

detached from them and return to the sand-mill so the sand

can be reused to mould further castings.

Fig. 1. Moulding and cooling in the casting production

After these phases, foundry materials are subject to forces

(loads). Engineers calculate these forces and how the material

deforms or breaks as a function of applied load, time or other

conditions. Therefore, it is important to know how mechanical

properties affect to iron castings [13], since it directly affects

the quality of the final piece. Specifically, the most important

mechanical properties of foundry materials are the following

ones[14]:

• Strength: it is the property that enables a metal to resist

deformation under load. There are many kinds of strength

such as ultimate strength and ultimate tensile strength

(UTS).

• Hardness: it is the property to resist permanent indenta-

tion.

• Toughness: it is the property that enables a material to

withstand shock and to be deformed without rupturing.

This property is considered as a combination as strength

and plasticity.

• Resilience: it is the property of a material to absorb

energy when it is deformed elastically.

• Elasticity: it is the ability of a material to return to its

original shape after the load is removed.

• Plasticity: it is the ability of a material to deform

permanently without breaking or rupturing. This property

is the opposite of strength.

• Brittleness: it is the opposite of plasticity. A brittle metal

is one that breaks or shatters before it deforms. Generally,

brittle metals have a high value in compressive strength

but a low value in tensile strength.

• Ductility: it is the property that enables a material to

stretch, bend or twist without cracking or breaking.

• Malleability: in comparison with ductility, it is the pro-

perty that enables a material to deform by compressive

forces without developing defects. A malleable material

can be stamped, hammered, forged, pressed or rolled into

thin sheets.

In order to establish these mechanical properties, scientists

have to test the materials in a laboratory using common or

standard procedures (e.g. ASTM standards [15][16]). Unfor-

tunately, the only way to examine the mechanical properties

is the employment of destructive inspections. Moreover, the

process requires suitable devices, specialised staff and quite a

long time to analyse the materials.
Regarding the ultimate tensile strength, which we focus

here on, its testing method is conducted as follows. First, a

scientist prepares a testing specimen from the original casting

(see (1) in Fig. 2). Second, the specimen is placed on the

tensile testing machine (2). And, finally, this machine pulls

the sample from both ends and measures the force required to

break the specimen apart and how much the sample stretches

before breaking.

Fig. 2. Ultimate Tensile Strength Test

Furthermore, there are some variables that may influence

the mechanical properties of the metal during the foundry

process, such as the composition [17], the size of the casting,

the cooling speed and thermal treatment [13][18]. The system

must take into account all of them in order to issue a prediction

on those mechanical properties. In this way, as detailed in

section III, the Bayesian network used in our experiments is

composed of about 25 variables.

III. BAYESIAN-NETWORK-BASED UTS PREDICTION

The research on cause-consequence relationships was pio-

neered by Reverend Thomas Bayes [19], and his main work
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is known as the “Bayes theorem” in his honour. According

to its classical formulation, given two events A and B, the

conditional probability P (A|B) that A occurs if B occurs

can be obtained if we know the probability that A occurs,

P(A), the probability that B occurs, P (B), and the conditional

probability of B given A, P (B|A) (as shown in equation 1):

P (A|B) =
P (B|A) · P (A)

P (B)
(1)

Extending this model, Bayesian networks are probabilistic

models for multivariate analysis. We can represent a Bayesian

network as an acyclic directed graph and the probability

distribution function associated to that graph [20]. On the one

hand, the graphical model represents the set of probabilistic

relationships among the collection of variables modelling a

particular problem. On the other hand, the probability function

illustrates the strength of these relationships or edges in the

graph.
We use this kind of model for several activities, for ex-

ample, machine learning based on historical data, pattern

matching over ambiguous or incomplete data , data mining

for relationship discovery and inference of non-observable

variables given the rest of the set [21]. In particular, this

inference capability fits to our experiments. These capability

represents a semantical super-set of those expert systems based

on rule chaining, both for forward and backward style (in

fact, Bayesian models allow a third further kind of inference,

that is known as explanation or justification [20]). Moreover,

a Bayesian network can grow extending its knowledge base

with new evidences without reducing its performance level

[20] whilst adapts to the problem and maintain an updated

procedure.
To our experiment, the most important ability of Bayesian

networks is their capability of inferring the probability that

a certain hypothesis becomes true, out of the values that the

variables forming the Bayesian network take. In this way, we

have modelled the main factors that are relevant to mechanics

properties of metals as a Bayesian network and the value of

ultimate tensile strength as the hypothesis to validate. The

creation and setting-up of our Bayesian network comprises

the following phases:

1) Causal probability network obtaining: First of all, we

have to define the variable that is going to be the output

and the result. As already mentioned, for our experiment,

it is the probability of the range of values for the

ultimate tensile strength. Subsequently, we complete the

Bayesian network with the set of input variables (listed

in the section II). The Bayesian network associates a

probability table to each variable and calculates the

probability values taking into account interdependencies

of the variables. In this stage, the collaboration of a

human expert is mandatory and really important.

2) Training data selection: In order to obtain a signifi-

cant sample of real data, we have created a dynamic

database with the aforementioned input and output data

and recorded values during a year (see section IV for

a description of its training). From each controlled

production series, we select representative groups of

moulds, registering values of the variables. Moreover,

the database has the values of the ultimate tensile

strength, the real values which have been obtained with

destructive inspections.

3) Structural learning: After the Bayesian network de-

fined in stage 1 is trained as stage 2 shows, the initial

structure of the Bayesian network is ready. The goal of

the structural learning is the refinement of this model. In

particular, the PC-Algorithm [22] is used here to achieve

the structure of causal and/or correlative relationships

between given variables from the data. In other words,

the PC-Algorithm uses the traffic sample data to define

the Bayesian model, representing the whole set of depen-

dence and independence relationships among detection

parameters. If we know that some relationships between

the variables are required to be present in the graph, we

can apply the NPC-Algorithm [23]. The NPC-Algorithm

permits to define these initial relationships known as

necessary path conditions. Due to its high requirements

in terms of computational and temporal resources, this

phase is usually performed in an off-line manner.

4) Parametrical learning: Fed with new data, the

Bayesian network obtains the probabilities associated to

new samples and, subsequently, it recalculates the whole

probability table modifying in this way its knowledge

base in a continuous learning process. This phase allows

a further refinement of the structure obtained in phase

3 and generally simplifies the Bayesian network. It is

worth mentioning, in our experiments, we start with

25 variables that are related between and we do not

discard any of them. In this phase, we use Expectation

- Maximisation Algorithm (EM-Algorithm) [23].

5) Bayesian inference: Inference engines use Bayesian

evidence propagation to, based on an existing knowledge

model, calculate the value of a certain variable. In this

way, we use the Lauritzen and Spiegelhalter method

for conclusion inference over junction trees, since it

is slightly more efficient than any other in terms of

response time [20]. Thereby, already working in real

time, the input variables of future castings are analysed

by this method in order to define the later probability of

the value of the ultimate tensile strength.

Finally, we have developed an application that runs on top of

the Bayesian network: the so-called sensitivity module (SM).

The SM [24] studies the different values that each variable

adopts in order to trace the influence of such values in the

apparition of a range of the ultimate tensile strength. Note

that a variable may represent, for example, the use of one or

another product in a certain phase of the process, applying

one certain methodology or not, and so on. In this way, if

a variable shows the amount of magnesium used and there

are three choices, the sensitivity module will determine which

one is the most convenient one in terms of obtaining a certain
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Fig. 3. Life-process of the Bayesian network

value of the ultimate tensile strength. This is, the SM evaluates

the results obtained by the Bayesian network and calculates

the causal relationship between each amount of magnesium

and the probability that a range of ultimate tensile strength

appears. Hence, the SM can recommend using only the best

value to obtain a concrete range of ultimate tensile strength. In

conclusion, the sensitivity module helps tuning up the foundry

process by suggesting the most suited values of the variables.

IV. EXPERIMENTS

We have collected data from a foundry specialised in

safety and precision components for the automotive industry,

principally in disk-brake support with a production over 45000

tons a year. These experiments are focused exclusively in the

ultimate tensile strength prediction. Note that, as aforemen-

tioned, the only way to examine the mechanical properties

is the employment of destructive inspections, therefore, the

evaluation must be done after the production is done.

Moreover, the acceptance/rejection criterion of the studied

models resembles the one applied by the final requirements

of the customer (i.e, in the examined cases, the automotive

industry). According to the very restrictive quality standards

imposed by these clients, pieces flawed with an invalid ulti-

mate tensile strength must be rejected.

In these experiments, the Bayesian network has been built

with the aforementioned 25 variables. We have worked with 11

different references (i.e. type of pieces) and, in order to test the

accuracy of the predictions, with the results of the destructive

inspection from 889 castings (note that each reference may

involve several castings or pieces) performed in beforehand.

Still, the Bayesian network shows a different performance

depending on the quality of the training. Therefore, we have

examined it with datasets of diverse sizes (n). In this way,

we have carried out experiments with n = 100, n = 200,

n = 300, n = 400, n = 500, n = 600, n = 700,

n = 800, and with the full original dataset (n = 889). The

testing procedure was always the same: the Bayesian network

was trained with the 66% of the dataset (e.g. 66 castings

with n=100) and then, it issued it predictions on the rest

of the dataset (e.g. 34 castings with n=100). Moreover, we

followed the next methodology in order to evaluate properly

the Bayesian network:

• Cross validation: For each different n we have per-

formed a k-fold cross validation [25] with k = 10. In

this way, our dataset is 10 times split into 10 different

sets of learning (66% of the total dataset) and testing

(34% of the total data).

• Learning the model: For each fold, we have made

the learning phase with the PC-Algorithm [22] with each

training dataset.

• Testing the model: For each fold, we evaluated the error

rate between the predicted value set X and the real value

set Y (both with size of the testing dataset m) with mean

absolute error (MAE) (shown in equation 2).

MAE(X, Y ) =
m∑

i=1

|Xi − Yi|
m

(2)

Similarly, we have used root mean square error (RMSE)

(shown in equation 3)

RMSE(X, Y ) =
1
m

·
√√√√

m∑

i=1

(Xi − Yi)2 (3)

V. RESULTS

Fig. 4 shows the obtained results in terms of prediction

accuracy. In this way, with a size of 100 castings for the dataset
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the Bayesian network predicted correctly only the 75% of the

castings; this means that it was not able to build a proper

representation of the data with n = 100.

Fig. 4. Accuracy of Bayesian Networks

Doubling the size of the dataset improves the accuracy of

the model drastically, and from that on, all sizes perform good

results. Moreover, the experiments showed the best accuracy

results with a dataset size of 800 castings. Please note that the

data adquisition is made manually. Hence, errors may appear

causing noise. Further, Fig. 5 shows the mean absolute error

and the root mean square error. The experiments remarked that

the best results are also achieved with a size of 800 castings.

Fig. 5. Error of Bayesian Networks

Actually, even the system has not reached a 100% accu-

racy level, it has interesting results for being used in a

high-precision foundry (more or less 80%), similar to those

achieved with microshrinkage prediction in [1]. In this way,

we reduce in a significative manner the cost and the duration

of the actual testing methods, apart from providing an effective

ex-ante method.

Moreover, all tests were started from 0. This is, the Bayesian

network had to build its knowledge base all times from scratch,

which is an unusual situation. Indeed, the Bayesian network

is designed to work in a continuous fashion and, in this

way, it constantly extends and enhances its knowledge base,

improving its prediction. Still, this fact can also become a

problem if we introduce new references that not have been

handled before. The information about these new references

has too less significance if we compare to older samples,

and therefore, predictions about new references of castings

will not be as precise as they should be. There are two

techniques that contribute to minimise this phenomenon [1].

The first one consists of using fading factors that vanish the

importance of old information as new data arrives [26]. The

second one, known as Bayesian compression [27], interpolates

existing evidences reducing them, so new evidences easily gain

importance [28].

Finally, our experience shows that the behaviour of the

system can be outperformed in the following way: when the

system detects that the probability of a bad value of the

ultimate tensile strength to appear is very high, the operator

may change the factors to produce another reference (and,

thus, to skip the cost of having to re-manufacture it again)

and try it later.

VI. RELATED WORK

Lately, the problem of predicting mechanical properties has

been tackled by using machine learning methods [29] [30]

[31]. These works presented similar results to our experiments

but they are inefficient due to two main reasons.

First, they take into account variables that, according to

our results, are unimportant or, vice versa, do not include

important variables in their analysis. Still, using the afore-

mentioned capability of sorting the relevance of the variables

of the sensitivity module, we have built a Bayesian Network

that achieved the same results that the network built without

using it. Second, several of them use genetic algorithms that

had a high computational cost.

One of the most used methods is the application of Neural

Networks in several aspects, for instance, classifying foundry

pieces [32], optimising casting parameters [33], detection of

causes of casting defects [34] and in other problems [35].

Nevertheless, Bayesian networks are used as previous methods

in Bayesian Neural networks methodology (i.e. predicting

the ferrite number in stainless steel [36]). Despite these

experiments, to our knowledge there is no single published

research on the prediction of mechanical properties, specially

the ultimate tensile strength, with Bayesian networks. The

only similar research is the prediction of microshrinkages in

high-precision foundry ([1] and [2]), which obtained analogous

results to the work we present here.

VII. CONCLUSION

The ultimate tensile strength shows the capacity of a metal

to resist deformation under load. If a manufactured piece does

not exceed a certain threshold, it must be discarded in order

to avoid breaking afterwards. Predicting the level of ultimate

tensile strength is one of the most difficult issues in foundry,

since there are many different circumstances and variables

involved during the casting process that determine it.

In this paper, we present a new Bayesian-network-based tool

that allows to foresee this level of ultimate tensile strength.
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Moreover, this prediction system enables the integration of

the already existing microshrinkage prediction tool [1], [2].

We have tested this tool in terms of accuracy and error rate

using a dataset resultant of previous destructive inspections

of diverse castings. Further, we have used different sizes for

the aforementioned dataset in order to study how the system

behaves whilst increasing the training set size. Moreover, these

experiments showed us that the size of the training set must

be representative enough to build correct representation of the

problem we deal with. In this way, experiments have shown

that Bayesian Networks can predict the level of ultimate tensile

strength of the evaluated casting with an optimal accuracy of

82.88% for dataset size of n = 800, which is a better result

than with the full size of the original dataset (n = 889).

The future development of this predictive tool is oriented in

two main directions. First, we plan to extend our analysis to the

prediction of other mechanical properties (such as tensile elon-

gation and tensile modulus of elasticity) in order to develop

a global network of mechanical properties analysis. Second,

we plan to integrate this tool with the existing microshrinkage

prediction system.
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