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Abstract. Microshrinkages are known as probably the most difficult de-
fects to avoid in high-precision foundry. The presence of this failure ren-
ders the casting invalid, with the subsequent cost increment. Modelling
the foundry process as an expert knowledge cloud allows properly-trained
machine learning algorithms to foresee the value of a certain variable, in
this case the probability that a microshrinkage appears within a casting.
Extending previous research that presented outstanding results with a
Bayesian-network-based approach, we have adapted and tested an ar-
tificial neural network and the K-nearest neighbour algorithm for the
same objective. Finally, we compare the obtained results and show that
Bayesian networks are more suitable than the rest of the counterparts
for the prediction of microshrinkages.
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1 Introduction

Despite of being one of the axis of the world as we know it, foundry is still at
a development level lower than that of industries of similar importance. More
specifically, since foundry supplies for instance naval, aeronautic, weapon or au-
tomotive industries with key pieces, the foundry process is subject to a very
strict safety controls in order to ensure the quality of the products. Yet, the ex-
haustive production control and diverse simulation techniques [1] performed are
extremely expensive and usually entail the destruction of the piece examined.

As shown in [2], computer science can help in this goal. For instance, when
preventing what is known to be the most difficult flaw in ductile iron castings,
namely the microshrinkage. This imperfection, also called secondary contraction,
consists of tiny porosities that appear when the casting is cooling down, and
almost all process parameters interact on its apparition making it impossible to
avoid so far [3].The biggest problem associated to pieces with microshrinkages
is that they must be rejected since it becomes more fragile..

Moreover, triggered either by an increment on the amount of disposed castings
in the routine quality inspections (with random-picked pieces), or after a client’s
reclamation, security measures stipulate that all castings of that production
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series must be X-ray or ultrasound scanned in order to discover new possible
faulty pieces. This procedure entails the subsequent cost increment, which has
to be added to the cost of the discarded castings themselves (transport, energy
to melt again, new production process and still no guaranty that this time is
going to work).

Further, the problem of the microshrinkage apparition is very difficult to solve
due to the following reasons. First, many variables have an effect in the creation
of the secondary contraction. Second, the data-acquisition systems gather much
information but it is not prioritised or categorised in any way. Third, it is very
hard to establish cause-effect relationships between the variables of the system.
Finally, human problem knowledge used in this task inclines to be subjective,
incomplete and not subjected to any empirical test [3]. Hence, predicting the
apparition of microshrinkage demands surpassing all these obstacles.

In a previous work ,we presented a microshrinkage prediction system based
on a Bayesian network. After a training period, the Bayesian network learned
the behaviour of the model and, thereafter it was able to foresee its outcome
[2] (i.e. the formation or not of the microshrinkage). Further, we presented a
risk-level-based production methodology that helped finding a trade-off among
exploiting the full production capacity and acceptable faulty castings rate [4].

Still, there are several supervised machine learning algorithms that have been
applied in similar problem domains with remarkable results, principally artificial
neural networks [5] or the K-nearest neighbour algorithm [6]. In this way, success-
ful applications of artificial neural networks include for instance spam filtering
[7], intrusion detection [8] or industrial fault diagnosis [9]. Similarly, K-nearest
neighbour algorithm is applied for instance in visual category recognition [10],
automated transporter prediction [11] or image retrieval [12].

Against this background, this paper advances the state of the art in two main
ways. First, we describe a methodology to adapt machine learning classifiers to
the foundry production system and the way to train them. Second, we evaluate
them with data obtained from a real foundry process in order to compare the
accuracy and suitability of each method.

The remainder of the paper is organised as follows. Section 2 presents and
analyses related work. Section 3 details the casting production process in an
iron foundry. Section 4 describes the experiments performed and section 5 ex-
amines the obtained results and explains feasible enhancements. Finally, section
6 concludes and outlines the avenues of future work.

2 Related Work

There has been a hectic activity around the applications of neural networks to
several other problems of foundry process, for instance on the prediction of the
ferrite number in stainless steel arc welds [13]. Similarly, successful experiments
involving K-nearest neighbour algorithm include fault detection of semiconduc-
tor manufacturing processes [14].

In a verge closer to our view, neural networks have been used for optimising
casting parameters [15]. More accurately, they simulate a casting process with
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predicted values of the parameters; the simulation results and the predicted ones
were nearly the same (a difference of 4mm). In addition, K-nearest neighbour
algorithm and artificial neural networks have been applied for enhance quality of
steel [16] that achieves an overall root mean square error of 0.38. The excellent
results obtained for these works have encouraged us to tailor these approaches
into our concrete problem domain.

3 Casting Production in Foundry Processes

The foundry processes are known to be very complex starting from the extreme
conditions they are carried out. Microshrinkages appear during the cooling phase
of the metal but they cannot be noticed until the production is accomplished.
More accurately, this flaw consists of minuscule internal porosities or cavities.
Since metals are less dense as a liquid than as a solid, the density of the metal
increases while it solidifies and the volume decreases in parallel. In this process,
diminutive, microscopically undetectable interdendritic voids may appear lead-
ing to a reduction of the castings hardness and, in the cases faced here (where
the casting is a part of a very sensitive piece), rendering the piece useless [17].

Unfortunately, the only way to examine finished parts is the usage of non-
destructive inspections. In this way, the most common techniques are X-ray
and ultrasound emissions but both require suitable devices, specialised staff and
quite a long time to analyse all the produced parts. Therefore, post-production
inspection is not an economical alternative to the pre-production detection of
microshrinkages.

As aforementioned, the complexity of detecting secondary contractions arises
principally from the high number of variables that participate in production
process and, therefore, may have influence on the final design of a casting.

In this way, the main variables to control in order to predict the apparition
of microshrinkages are:

– Metal-related:
• Composition: Type of treatment, inoculation and charges.
• Nucleation potential and melt quality: Obtained by means of a thermal

analysis program [18].
• Pouring: Duration of the pouring process and temperature.

– Mould-related:
• Sand: Type of additives used, sand-specific features and carrying out of

previous test or not.
• Moulding: Machine used and moulding parameters

Commonly, the dimension and geometry of the casting play a very important
role in this practice and, thus, we also include several variables to control this
two features. In the same way, the system should take into account parameters
related to the configuration of each machine that works in the manufacturing
process [19].
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Furthermore, there are some variables that may influence the apparition of
second contraction during the foundry process, such as the composition [20],
the size of the casting, the cooling speed and thermal treatment [21] [22]. The
system must take into account all of them in order to issue a prediction on those
mechanical properties. In this way, the machine-learning classifiers used in our
experiments are composed of about 24 variables.

4 Experiments and Results

We have collected data from a foundry specialised in safety and precision com-
ponents for the automotive industry, principally in disk-brake support with a
production over 45000 tons a year.

The experiments are focused exclusively in the microshrinkage prediction.
Note that, as aforementioned, microshrinkages have subcutaneous presence, thus
the evaluation must be done according to non-destructive X-ray, first, and ul-
trasound testing techniques thenceforth to ensure that even the smallest mi-
croshrinkages are found [3].

Moreover, the acceptance/rejection criterion of the studied models resembles
the one applied by the final requirements of the customer (i.e, in the exam-
ined cases, the automotive industry). According to the very restrictive quality
standards imposed by these clients, pieces flawed with an invalid microshrinkage
must be rejected.

To this extent, following the methodology developed in [4], we have defined
risk levels as follows: Risk 0 (no microshrinkages foreseen), Risk 1 (low mi-
croshrinkage risk foreseen), Risk 2 (high microshrinkage risk foreseen), and Risk
3 (extreme microshrinkage risk foreseen).

In these experiments, the machine-learning classifiers has been built with the
aforementioned 24 variables. We have worked with two different references (i.e.
type of pieces) and, in order to test the accuracy of the predictions, with the
results of the non-destructive X-ray and ultrasound inspections from 951 castings
(note that each reference may involve several castings or pieces) performed in
beforehand.

Using the aforementioned dataset, we followed the next methodology in order
to properly evaluate the machine learning models we used:

– Cross validation: Despite the small dataset, we have to use as much of the
available information in order to obtain a proper representation of the data.
To this extent, K-fold cross validation is usually used in machine learning
experiments [23]. In our experiments, we have performed a K-fold cross vali-
dation with k = 10. In this way, our dataset is 10 times split into 10 different
sets of learning (66 % of the total dataset) and testing (34 % of the total
data).

– Learning the model: For each fold, we have performed the learning phase
of each algorithm with the corresponding training dataset, applying different
parameters or learning algorithms depending on the model. More accurately,
we have use the following models:
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• Bayesian networks: For Bayesian networks we have used different struc-
tural learning algorithms; K2 [24], Hill Climber [25] and Tree Augmented
Näıve (TAN) [26]. Moreover, we have also performed experiments with
a Näıve Bayes Classifier.

• K-nearest neighbour: For K-nearest neighbour we have performed ex-
periments with k = 1, k = 2, k = 3, k = 4, and k = 5.

• Artificial neural networks: We have used a three-layer Multilayer Per-
ceptron (MLP) learned with backpropagation algorithm. There are 24 X
3 units in the input layer, 15 units in the hidden layer, and 4 units in
the output layer.

– Testing the model: For each fold, we evaluated the error rate between
the predicted value set X and the real value set Y (both with the size of the
testing dataset m) with mean absolute error (MAE) (shown in equation 1).

MAE(X, Y ) =
m∑

i=1

|Xi − Yi|
m

(1)

Similarly, we have used root mean square error (RMSE) (shown in
equation 2)

RMSE(X, Y ) =
1
m

·
√√√√

m∑

i=1

(Xi − Yi)2 (2)

5 Results

Fig. 1 shows the obtained results in terms of prediction accuracy and fig. 2 shows
the error rate of the three classifiers (mean absolute error and root mean square
error). In this way, nearly every algorithm achieves good results, however both
artificial neural networks and Bayesian networks trained with Tree Augmented

Fig. 1. Accuracy of Evaluated Classifiers
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Fig. 2. Error Rate of Evaluated Classifiers

Näıve seem more suitable if we focus in the results. Still, Näıve Bayes classi-
fier behaves worse than other classifiers. Please note that Näıve Bayes is a type
of Bayesian network where the input variables are assumed to be linear inde-
pendent. In this way, it skips the causal dependency that may be within the
variables, therefore it cannot achieve as good results as the other classifiers.

Moreover, K-nearest neighbour algorithm, witch is a non-linear classifier,
achieves better results than one may think in beforehand. In this way, K-nearest
neighbour has no training phase itself (only a little data preprocessing), it only
focuses in the resemblance between the instances. Therefore, it behaves worse
than more robust methods such as ANN and Bayesian networks.

Actually, even the classifiers have not reached a 100% accuracy level, they
have interesting results for being used in a high-precision foundry. Remarkably,
the good results achieved by the ANN show that it can be used in a similar
way as we have used the Bayesian networks in previous works. In this way,
combining the better classifiers and using them for the defects that suit better,
we can reduce in a significative manner the cost and the duration of the actual
testing methods, apart from providing an effective ex-ante method.

6 Conclusions and Future Work

Predicting the apparition of microshrinkages in ductile iron castings is one of
the most hard challenges in foundry-related research. Our work in [2] pioneers
the application of Artificial Intelligence to the prediction of microshrinkages.
This time, we focus on the methods used for the prediction of the microshrink-
age. More accurately, we have adapted and evaluated three well-known machine
learning classifiers with a long tradition in similar problem domains.

In this way, we have compared the results of their experiments with real
foundry data in terms of prediction accuracy and error rate, showing that
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Bayesian networks and artificial neural networks perform better than lazy meth-
ods as K-nearest neighbour.

Hence, Bayesian networks and artificial neural networks seem to be the best
option to foresee microshrinkages, yet the K-nearest neighbour algorithm did
not perform as bad as one could think on beforehand. Furthermore, taking into
account the high computational cost of building an artificial neural network is
very high, we conclude that Bayesian networks trained with Tree Augmented
Näıve offers the best trade-off.

The future development of this predictive tool is oriented in three main direc-
tions. First, we plan to extend our analysis to the prediction of other defects in
order to develop a global network of incident analysis. Second, we will compare
more supervised and semi-supervised machine learning algorithms in order to
prove their effectiveness to predict foundry defects. Finally, we plan to integrate
the best classifiers in meta-classifier combining the partial results.
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20. Carrasquilla, J.F., Ŕıos, R.: A fracture mechanics study of nodular iron. Revista
de Metalurgia 35(5), 279–291 (1999)

21. Gonzaga-Cinco, R., Fernández-Carrasquilla, J.: Mecanical properties dependency
on chemical composition of spheroidal graphite cast iron. Revista de Metalurgia 42,
91–102 (2006)

22. Hecht, M., Condet, F.: Shape of graphite and usual tensile properties of sg cast
iron: Part 1. Fonderie, Fondeur d’aujourd’hui 212, 14–28 (2002)

23. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, Heidelberg (2006)

24. Cooper, G.F., Herskovits, E.: A bayesian method for constructing bayesian belief
networks from databases. In: Proceedings of the seventh conference on Uncertainty
in Artificial Intelligence, San Francisco, CA, USA, pp. 86–94 (1991)

25. Russell, S.J.: Norvig: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice
Hall, Englewood Cliffs (2003)

26. Geiger, D., Goldszmidt, M., Provan, G., Langley, P., Smyth, P.: Bayesian network
classifiers. Machine Learning, 131–163 (1997)


	Lecture Notes in Computer Science
	Introduction
	Related Work
	Casting Production in Foundry Processes
	Experiments and Results
	Results
	Conclusions and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


