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Abstract. Nano-technology is the study of matter behaviour on atomic
and molecular scale (i.e. nano-scale). In particular, carbon black is a
nano-material generally used for the reinforcement of rubber compounds.
Nevertheless, the exact reason behind its success in this concrete domain
remains unknown. Characterisation of rubber nano-aggregates aims to
answer this question. The morphology of the nano-aggregate takes an
important part in the final result of the compound. Several approaches
have been taken to classify them. In this paper we propose the first
automatic machine-learning-based nano-aggregate morphology categori-
sation system. This method extracts several geometric features in order
to train machine-learning classifiers, forming a constellation of expert
knowledge that enables us to foresee the exact morphology of a nano-
aggregate. Furthermore, we compare the obtained results and show that
Decision Trees outperform the rest of the counterparts for morphology
categorisation.
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1 Introduction

Matter behaviour on nano-scale is subject to quantum mechanics where mi-
croscopic and macroscopic theories are no longer applicable [1]. On this scale,
nano-technology is the science that studies the comportment of the matter. This
science has experienced a great development in the last years. In fact, they are
considered to be the basis for the next industrial revolution since they have been
applied to different areas such as energy, health care, chemical industry and
material production [2]. Therefore, these processes are leading material manu-
facturers to a new generation of nano-material based products [2].

In the particular case of rubber compounds, reinforced materials with nano-
particles, such as carbon black, are of great interest to the material industry.



Concretely, the latter modifies the mechanical and electrical properties of the
former [3]. Although this process has been used in industrial production of rubber
reinforced with carbon black [4] for the last years, the internal mechanisms that
make that happen are not completely known.

In this way, there have been several studies about the morphology and micro-
structure of carbonaceous particles, such as the ones produced by diesel combus-
tion [5]. This engine-emitted particles were studied with the purpose of assessing
their climate impact. Likewise, the waste-water treatment includes similar steps
to the ones needed for carbon black characterization: microscopic image process-
ing, object segmentation, morphological characterisation and fractal analysis [6].
Similarly, with CAT (Computerized Axial Tomography) scans the same proce-
dure has been applied to evaluate the rank of a tumour [7]. Still, these methods
are performed in a semi-automatic or manual way with the consequent time and
resource consumption.

Against this background, we present the first automatic machine-learning-
based nano-aggregate morphology categorisation method. This method, based
upon geometrical and fractal features is able to train several machine-learning
algorithms in order to correctly determine the morphology of these aggregates.
Specifically, we contribute to the state of the art in two main ways. Firstly, it
consists in automatically segmenting and characterising the carbon black aggre-
gates within an image. This technique makes the geometrical characterisation of
carbon black and other nano-particles easy and fast. Secondly, a machine learn-
ing based classifier sorts carbon black aggregates according to their morphology.

2 Carbon Black

As we mentioned before, one of the principal carbon black applications is the
reinforcement of rubber. This process creates a material with notably increased
tensile strength and better tear and abrasion resistance (i.e. the capacity of a
material to withstand different forces). These changes are conditioned by molec-
ular, chemical and rheological attributes of the elastomer, on the filler charac-
teristics and on the mixing process and technology [8]. In addition, carbon black
primary particles seem to be spherical, blended together forming aggregates[9].
Following the Van der Waals forces, aggregates connect forming agglomerates
[9]. Fig. 1 shows a graphic representation of the size of particles, aggregates and
agglomerates.

Furthermore, the structure of carbon black particles ranges from crystalline
to amorphous materials. Crystallite flat surfaces and amorphous carbon surfaces
are less energetic areas, whereas crystallite edges are the most energetic ones [10].

Commonly, the aggregates can be divided into four different types of mor-
phologies [11] (shown on Fig. 2). To this end, an estimation for discerning be-
tween the four categories is to calculate the aggregate length/width ratio and
aggregate irregularity, however, this method is not an exact classification and
includes a difficult value to measure: irregularity [11]:



Fig. 1. Carbon black: a)particles; b)aggregate; c)agglomerate

– Spheroidal: Aggregates with a L/W ratio lower than 1.5 can be classified
as spheroidal.

– Ellipsoidal: Aggregates with a L/W ratio between 2 and 3.5 can be classi-
fied as ellipsoidal.

– Linear: Linear ones have a L/W ratio greater than 3.5 and have low irreg-
ularity due to having elongated chains with few branches.

– Branched: Branched aggregates have also a L/W ratio greater than 3.5 but
are highly irregular as a result of having more branches.

Fig. 2. Morphological categories for carbon black aggregates

Moreover, fractal dimension can also describe the aggregate structure [12].
Specifically, a fractal is a morphology that can be split into small copies of the
whole [13]. To this end, Kaye [14] was the first one to apply fractal analysis
to carbon black aggregates. He determined a perimeter fractal based upon the
perimeter-area relationship of Mandelbrot [15] (shown on equation 1):

P ∼ ADp/2 (1)

where P is defined as the projected aggregate perimeter, A as the projected area
and Dp as the perimeter fractal. The greater the irregularity, the greater the Dp,



however, highly acicular particles with a smooth perimeter may also give a high
perimeter fractal [4].

Considering the scale of carbon black aggregates, electron microscopes are
needed to analyse them. There are several types of microscope techniques based
on the use of a particle beam of electrons such as Transmission Electron Mi-
croscopy (TEM) and Scanning Electron Microscopy (SEM).

3 Image Feature Extraction

Specifically, the aim of this treatment is to segment the aggregates and to ex-
tract several geometric features from them. Not only basic ones, such as area
or perimeter, are considered but also more complex ones like perimeter fractal.
Thereby, machine-learning classifiers will determine the morphology of unclas-
sified aggregates using these features. Our algorithm follows the operations re-
quired by the Standard Test Method for Carbon Black [16] for analysing images
captured by electron microscopes: background/noise elimination, thresholding,
erosion and dilation.

In order to conduct the binarization, we start applying a Gaussian smoother
[17], a 2-D convolution operator used to remove detail and noise. Second, we esti-
mate a threshold for aggregate-background discrimination using Otsu’s method
[18]. We adjust this threshold to be more adequate for SEM images. We generate
a binary image considering that pixels with value below the threshold correspond
to background and pixels above it are part of the aggregate area.

Although we accomplish a smoothing process for noise reduction in the bi-
narization phase, undesired elements may still be present in the image. These
elements can be easily confused with the desired aggregates, thus, it is mandatory
to eliminate them. To this end, we begin deleting minor areas and we continue
filling holes inside aggregates. Moreover we improve the edge quality by dilating
and eroding it with a disk shape morphological structuring element and we end
deleting incomplete aggregates touching the edge of the image. Besides, we iden-
tify aggregates segmenting from the image the regions that surpass an specified
area.

Based on the output image from the previous phase, we extract some geo-
metric features, the ones marked with an ‘*’ are the required ones according to
the Standard Test Method for Carbon Black [16]. These parameters are mea-
sured in nm and when necessary estimated using stereological principles (i.e.
the three-dimensional interpretation of two-dimensionally observed objects). To
start with, the common ones are: perimeter*, area*, area-perimeter ratio, equiv-
alent diameter, aggregate and particle volume, axis ratio, number of particles
per aggregate, occlusion factor, absorption and circularity. In the second place
are the parameters that require an explanation:

– Feret diameters*: A Feret diameter is defined as the distance between two
tangents on opposite sides of the particle profile that are parallel to some
fixed direction. So as to obtain valuable information related to the form of
the particle, we extract 16 Ferets [16] separated by 11.5 degrees choosing the



biggest (Major Feret), the smallest (Minor Feret) and the perpendicular one
to the biggest.

– Major and minor axis length: Scalars specifying the length of the major
and minor axis of the ellipse that have the same normalized second central
moments as the region.

– Centroid: The center of mass of the region. It is formed by 2 values (x and
y coordinates) normalized to the size of the bounding box, defined as the
smallest rectangle containing the region.

– Convex area: The area of the convex hull, which is the smallest convex
polygon that can contain the region.

– Eccentricity: The eccentricity is the ratio of the distance between the foci
of the ellipse (i.e. the two points from which the distance to every point of
the ellipse is constant) and its major axis length, taking values between 0
and 1.

– Length-width ratio: This ratio is computed with the maximum Feret and
with the perpendicular Feret to the latter. Thereby, this commonly used
parameter [11] is normalized.

– Maximum Feret - minimum Feret ratio: This ratio is similar to the
previous one. However, considering that length and width are always or-
thogonal, it gives some extra information.

– Area - convex area ratio: Relation between the real area of the aggre-
gate and the area of the convex hull. The smaller the ratio, the bigger the
irregularity of the aggregate.

– Extent: Defined as the real area divided by the area of the bounding box.
– Perimeter Fractal: Determined by P ∼ ADp/2 as explained in section 2.

– Aggregation factor: Defined by 13.092(P 2

A )−0.92 where P is the perimeter
and A is the area. If lower than 0.4 then it is equal to 0.4.

Finally, we generate a training vector v = (v1, v2, ..v13) per aggregate contain-
ing all these characteristics. Concretely, each position vn in the vector represents
a geometric feature and has up to 6 decimals. The collection of vectors forms
the corpus I, which provides the learning dataset for the classification system.

4 Experimental Evaluation

Initially, we obtained several images with three electron microscopes on different
magnification scales. Thirteen images with 2 SEM microscopes, Hitachi S-3400N
and Hitachi S4800, and eleven with a Transmission Electron Microscope, the
Philips EM208S. After performing a preliminary evaluation of the aggregate
segmenting process, we chose the second Scanning Electron Microscope (SEM).

In this way, we collected 102 images of carbon black aggregates with a Hitachi
S-4800 Scanning Electron Microscope. Images were captured at 30000x magni-
fication with an average of 3 aggregates per image resulting in 266 correctly
segmented aggregates that have formed the case of study.

We segmented all the aggregates from the images, then we labelled them
and finally, we generated a Comma-Separated Values (CSV) file with all the



characteristics and finally we performed machine learning studies to classify the
aggregates.

In these experiments, we extracted 26 variables from each aggregate. The
dataset was not balanced for the four existing classes due to scarce data. Specif-
ically, 9 aggregates were of type spheroidal, 86 ellipsoidal, 51 linear and 120
branched. To address both problems (scarce and unbalanced data) we applied
Synthetic Minority Over-sampling TEchnique (SMOTE) [19], which is a combi-
nation of over-sampling the less populated classes and under-sampling the more
populated ones. Nevertheless, the over-sampling is performed by creating syn-
thetic minority class examples. In this way, instances were still unique and classes
became more balanced.

More accurately, we conducted the next methodology in order to test the
suitability of each machine-learning algorithm:

– SMOTE: We built a dataset that contains the result of applying SMOTE to
the original dataset in order to compare the results of the machine-learning
classifiers with and without this technique.

– Cross validation: This method is generally applied in machine-learning
evaluation [20]. In our experiments, we performed a K-fold cross validation
with k = 10. In this way, our dataset is 10 times split into 10 different sets
of learning (90 % of the total dataset) and testing (10 % of the total data).

– Learning the model: For each fold, we accomplished the learning step of
each algorithm using different parameters or learning algorithms depending
on the specific model. In particular, we used the following models:

• Bayesian networks (BN): With regards to Bayesian networks we uti-
lize different structural learning algorithms: K2 [21], Hill Climber [22]
and Tree Augmented Näıve (TAN) [23]. Moreover, we also performed
experiments with a Näıve Bayes Classifier [20].

• Support Vector Machines (SVM): We performed experiments with a
polynomial kernel [24], a normalized polynomial Kernel [25] and Pearson
VII function-based universal kernel [26].

• K-nearest neighbour (KNN): We performed experiments with k = 1,
k = 5, k = 10, k = 15, k = 20 and k = 25.

• Decision Trees (DT): We performed experiments with J48(the Weka [27]
implementation of the C4.5 algorithm [28]) and Random Forest [29], an
ensemble of randomly constructed decision trees.

– Testing the model: We evaluated the percent of correctly classified in-
stances and the area under the ROC curve (AUC) that establishes the rela-
tion between false negatives and false positives [30].

Table 1 shows the obtained results in terms of accuracy percent. In this way,
regarding the results without the use of SMOTE, most of the classifiers obtained
only medium results, with the exception of Näıve Bayes method, which was the
worst, with results lower than 50 %. Otherwise, when SMOTE technique was
applied, every classifier improved its accuracy in a significant manner. Specially,
Näıve Bayes increased its accuracy in more than 20 %. Furthermore, Random



Table 1. Results of the machine-learning classifiers with regards to accuracy (%).

Machine-learning Model Original Dataset With SMOTE
DT: J48 69.04 79.77 X
DT: RandomForest with 1000 trees 73.40 83.61 X
SVM: Polynomial Kernel 68.21 78.27 X
SVM: Normalized Polynomial Kernel 67.30 75.68 X
SVM: Pearson VII universal kernel 68.48 80.24 X
KNN K=1 63.58 77.30 X
KNN K=5 66.13 78.23 X
KNN K=10 64.75 76.01 X
KNN K=15 66.52 76.57 X
KNN K=20 68.09 76.57 X
KNN K=25 68.39 75.92 X
Näıve Bayes 48.99 70.32 X
BN: K2 56.37 77.33 X
BN: Hill Climber 56.37 77.33 X
BN: TAN 68.60 79.03 X
X, x, − statistically significant improvement, degradation or non significant change

Table 2. Results of the machine-learning classifiers with regards to AUC.

Machine-learning Model Original Dataset With SMOTE
DT: J48 0.76 0.81 −
DT: RandomForest with 1000 trees 0.89 0.94 −
SVM: Polynomial Kernel 0.82 0.91 X
SVM: Normalized Polynomial Kernel 0.81 0.90 X
SVM: Pearson VII universal kernel 0.81 0.90 X
KNN K=1 0.70 0.71 −
KNN K=5 0.82 0.88 −
KNN K=10 0.83 0.90 −
KNN K=15 0.85 0.92 X
KNN K=20 0.86 0.93 X
KNN K=25 0.86 0.93 X
Näıve Bayes 0.81 0.90 X
BN: K2 0.85 0.92 X
BN: Hill Climber 0.85 0.92 X
BN: TAN 0.84 0.91 X
X, x, − statistically significant improvement, degradation or non significant change

Forest, a type of Decision Tree, outperformed the rest of the classifiers with an
accuracy of 83.61 %.

Nevertheless, focusing only on accuracy may be misleading and, therefore,
we performed an analysis of the AUC. To this extent, Table 2 shows the results
in terms of AUC. As occurred with accuracy, when SMOTE is omitted from the
methodology the results are quite modest. Näıve Bayes was also the worst this
time with an AUC of 0.81. Notwithstanding, we observed the same improvement
using SMOTE, increasing the AUC of every classifier. Random Forest was also
the best classifier in terms of AUC with a value of 0.94.

Summarizing, by means of machine learning algorithms we were able to ac-
complish aggregate morphology classification. Besides, with the help of synthetic
re-sampling more data was produced and the four classes became more balanced.
Thereby, we overcame the imbalance problem without merging the dataset, an
inappropriate option due to the size of our dataset.



5 Conclusions and Future Work

Since nano-particles are able to modify the mechanical and electrical proper-
ties of materials [3], manufacturers have been led to a new generation of nano
material-based production. Moreover, depending on the aggregate type [11] and
the mixing process the obtained product varies [8].

In this paper, we have proposed the first automatic machine-learning-based
nano-aggregate morphology categorisation method. This technique correctly de-
termined the morphology of nano-aggregates, based on the use of geometrical
and fractal characteristics as features for the training of several machine-learning
classifiers. Furthermore, the empirical validation showed that this method is ca-
pable of classifying the morphology of aggregates with an accuracy of over 80%.

Future work will compare results based on original samples with the present
results obtained with SMOTE re-sampling [19]. To this end, we will acquire more
SEM images in order to generate a larger training dataset. In addition, we are
planning to improve the image-processing algorithm so as to work with TEM
images. On the other hand, we will focus on developing a 3-dimensional tool in
order to accomplish skeletonization and 3D modelling of the aggregates.
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