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ABSTRACT—Mechanical properties are the attributes of a metal to withstand several loads and ten-

sions. More accurately, ultimate tensile strength (UTS) is the force a material can resist until it 

breaks. The only way to examine this feature is the use of destructive inspections that render the 

casting invalid with the subsequent cost increment. In our previous researches we showed that the 

foundry process can be modelled as an expert knowledge cloud to anticipate the value of the UTS 

with outstanding results. Nevertheless, the data gathering phase for the training of machine learning 
classifiers is performed in a manual manner. In this paper, we present the use of Singular Value De-

composition (SVD) and Latent Semantic Analysis (LSA) with the aim of reducing the number of 

ambiguities and noise in the dataset. Furthermore, we have tested this approach comparing the re-
sults without this pre-processing step in order to illustrate the effectiveness of the proposed method. 
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1.  INTRODUCTION 

Foundry is one of the axes of current economy: thousands of castings are manufactured in foundries 

around the world to be part of more complex systems, say for instance, brake of a car, propeller of a boat, 

wing of an aircraft or the trigger in a weapon. As one may think, the tiniest error may have fatal conse-

quences and, therefore, if one of the pieces is found faulty, this fact may be detrimental to both individuals 

and for businesses activities. Moreover, current trends encourage the production of smaller and more accu-

rate components. It is really easy to produce castings and suddenly discover that every single one is faulty. 

Commonly, the techniques for the assurance of failure-free foundry processes are exhaustive production 

control and different simulation techniques [1]. 

Besides, a huge amount of production-process-related factors may influence, harm or diminishes the 

mechanical properties of an iron casting. Likewise, there are several defects that may appear within it. In 

this paper, we focus on the so-called ultimate tensile strength (UTS) that is the force a casting can with-

stand until it breaks or, in other words, it is the maximum stress any material can withstand when subjected 

to tension. Therefore, manufactured iron castings have to reach a certain value (e.g. threshold) of UTS in 

order to pass the strict quality tests. Unfortunately, the only way to examine the UTS breaks the piece and 

thus it incurs a cost increment. 

As shown in [2, 3], a machine-learning-based tool could help in this goal. Still, there were some irregu-

larities on the data that yield the result not as effective as it should. More accurately, the data we work with 

has several records that appear incorrect. The reason why these inconsistencies appear is because the data 

acquisition is performed in a manual fashion. One solution to this issue is to provide a more accurate data-

gathering system; still, the hard conditions of the foundry process itself yield this task as very difficult. In-

stead, we provide a method that is able to reduce noise in data. 

Thereby, Latent Semantic Analysis (LSA) has been used in document retrieval [4, 5] with successful 

results in reducing noise and ambiguities in the training dataset. Regarding pre-processing tasks for indus-

trial prediction, one of the most recent works is the one from Pham et al. [6], that uses a bee algorithm (i.e. 

similar to genetic algorithms) in order to perform a more comprehensive feature selection for support vec-

tor machine training. Nevertheless, the accuracy increment their approach achieves, a 10.93 of increment, is 

lower than ours, a 16.99 of increment. 

Against this background, this paper advances the state of the art in two main ways. First, we describe 

LSA as a data pre-processing step to the machine-learning-based UTS prediction system. Second, we eva-



luate this approach with real raw data obtained from a real foundry process in order to compare the accura-

cy and suitability of this method with the previous ones [2, 3]. 

2.  MECHANICAL PROPERTIES AND FOUNDRY PRODUCTION 

Several factors contribute to render the foundry process very complex, such as the extreme conditions 

in which it is developed. Thereby, this process has to go through numerous phases, however, when it refers 

to iron ductile castings, these phases can be simplified in the followings. First, the melting and pouring 

phase where the raw metals are melt, mixed and poured onto the sand shapes. Second, the moulding phase 

where the moulding machine forms and prepares the sand moulds. And finally, the cooling phase where the 

solidification of the castings is controlled in the cooling lines until this process is finished. 

In this way, after all phases, the obtained castings are subject to forces (loads). In that moment, engi-

neers calculate these forces and how the material behaves under several conditions. Specifically, the most 

important mechanical properties of foundry materials are the following ones [7]: strength (the UTS is a 

specific kind of strength), hardness, toughness, resilience, elasticity, plasticity, brittleness, ductility and 

malleability. 

Furthermore, there are several procedures for testing the value of mechanical properties of the materi-

als in a laboratory, like ASTM standards [8]. Unfortunately, the only way for discovering the level of these 

properties is the employment of destructive inspections. Moreover, the process requires suitable devices, 

specialised staff and quite a long time to analyse the materials. For example, in UTS testing process, a little 

part of the original casting, called specimen, is placed on a testing machine that pulls it measuring how is 

changing the tensile strength before breaking it. More accurately, the mechanical properties are related with 

several variables [9, 10] and, consequently, they allow us to predict these properties. Hence, we should take 

them into account in order to design our machine-learning models (in our case, we use 25 variables to carry 

out our experiments). 

3. LATENT SEMANTIC ANALYSIS 

As aforementioned, our foundry dataset suffers from noise in dataset instances. Latent Semantic 

Analysis overcomes this problem by using statistically-derived concepts instead of singular features for 

machine-learning. It uses truncated Singular Value Decomposition (SVD) [11] to transform a high dimen-

sional vector into a lower-dimensional semantic vector, by projecting the former into a semantic subspace. 

Thereby, suppose the rank of the dataset matrix A  is r , SVD decomposes A  into the product of three 

matrices. Firstly, matrix U  describes the original row entities as vectors of derived orthogonal factor val-

ues. Secondly, matrix V  describes the original column entities in the same way. Finally, a diagonal matrix 

  containing scaling values. When the three components are multiplied, the original matrix is recon-

structed ( )TA U V  , where 1 2( , ,..., ) t r

nU u u u R   , 1 2( , ,..., ) t r

ndiag R      . 
TV  is 

the transpose of V . i ’s are A ’s singular values, 1 2 ... r     . U  and V  are column-

orthonormal. Furthermore, the columns of U  and V  are the left and right singular vectors, respectively, 

corresponding to the monotically decreasing (e.g. in value) diagonal elements of   which are called the 

singular values of the matrix A . LSI approximates A  with a rank- k  matrix 
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by omitting all but the k  largest singular values, where 1 2( , ,..., )k nU u u u , 

1 2( , ,..., )k ndiag     , 1 2( , ,..., )k kV v v v . Row i  of 
t k

kU R   is the representation of feature 

i  in the k -dimensional semantic space. An instance vector 
1tq R   can be folded into the k -

dimensional semantic space applying equation 
T

k kq U q  or 
1 T

k k kq U q  . Their difference is whether 

to scale the vector by the inverse of the singular values. Regarding LSA, kA is the closest k -dimensional 

approximation to the original term-document space represented by the incidence matrix A . As stated pre-

viously, by reducing the dimensionality of A , much of the ―noise‖ that causes poor retrieval performance 

is thought to be eliminated. Therefore, despite a high dimensional representation seems to be required for a 



good retrieval performance, care must be taken not to reconstruct A . If A  is nearly reconstructed, the 

noise caused by variability of feature choice and features that span or nearly span the data collection will 

not be eliminated, resulting in poor performance. 

4. MACHINE-LEARNING CLASSIFIERS 

4.1 Artificial neural networks (ANN) 
ANN is a machine learning model that simulates the behaviour of neurons in the human brain [12]. 

Formally, a neuronal network consists on interconnected neurons. The activation of a neuron depends on its 

set of inputs, where iy  is the activation of the current neuron, if is the activation function, ,j iW  is the 

weight of the neuron and ja  is the activation of the input neuron: ,1
( )

n

i i j i jj
y f W a
  .  

More accurately, multilayer perceptron (MLP) is a kind of artificial neural network model of simple 

neurons called perceptrons that are structured in layers classified as input layers, hidden layers and output 

layer. We perform the training of the model using backpropagation algorithm [12] that calculates the 

weights ,j iW  of the activation function for each neuron. 

4.2 Bayesian Networks 
―Bayes' theorem‖ is the basis of the so-called Bayesian inference. In this way, this theorem adjusts the 

probabilities as new information on evidences appears. According to its classical formulation: 

 
( | ) ( )

( | )
( )
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  (2) 

given two events A  and B , the conditional probability ( | )P A B  that A  occurs if B  occurs can be ob-

tained if we know the probability that A  occurs, ( )P A , the probability that B  occurs, ( )P B , and the 

conditional probability of B  given A , ( | )P B A . 

Bayesian networks are probabilistic models for multivariate analysis. Formally, they are directed 

acyclic graphs associated to a probability distribution function [13]. Nodes in the graph represent variables, 

and the arcs represent conditional dependencies between such variables. Further, the probability function 

illustrates the strength of these relationships in the graph [13]. 

4.3 Decision Trees 
These classifiers [14] constitute a decision support tool represented as a tree-like graph. Their internal 

nodes (decision nodes and chance nodes) are tests regarding the problem's variables and their final nodes or 

leaves are the final decision of the algorithm. 

Moreover, there are several training algorithms that are typically used for learning the graph structure 

of these trees using a labelled dataset. In this work, we used random forest, which is an ensemble different 

randomly-built decision trees. Besides, we also used J48 (the Weka [15] implementation of the C4.5 algo-

rithm). 

4.4 K-Nearest Neighbours (KNN) 
This classifier is one of the simplest supervised machine-learning algorithms for classifying instances 

[16]. In its training phase, represents a set data instances 1 2, ,..., nS s s s  in a n-dimensional space where 

n is the amount of variables for each instance.  

On the other hand, the classification phase is developed by measuring the distance between the training 

instances and the unknown instance. In this way, the distance between two points can be calculated using 

any distance measure, in our case we used Euclidean distance 
2

1

( )
n

i i

i

X Y


 . Finally, one of the most 

used techniques is to classify the unknown instance as the most common class amongst the K-nearest 

neighbours. 



4.5 Support Vector Machine (SVM) 
SVM [17] consists on finding a hyperplane that divides the n-dimensional space of the data in two re-

gions. This hyperplane is the one that maximises the margin between those two regions. Specifically, this 

maximal margin is defined by the largest distance between the examples of the two classes. 

Supporting vectors are the instances that are situated near the hyperplane. Since sometimes the space 

cannot be divided with a hyperplane, a kernel function  is used. This function studies the relations within 

the data and creates complex divisions in the space. 

5. EXPERIMENTS 

We have collected data from a foundry specialised in safety and precision components for the automo-

tive industry, principally in disk-brake support with a production over 45000 tons a year. 

These experiments are focused exclusively in the UTS prediction. Note that, this experiment can be ex-

trapolated to the prediction of other mechanical properties. Furthermore, the only way to examine the me-

chanical properties is in a posteriori fashion and carrying out destructive inspections. Moreover, according 

to the very restrictive quality standards imposed by clients, pieces flawed with an invalid value of UTS 

must be rejected. 

In these experiments, the machine-learning models have been built with the aforementioned 25 vari-

ables. We have worked with 11 different references (i.e. type of pieces) and we have used as input data the 

results of the destructive inspection from 889 castings (note that each reference may involve several cast-

ings or pieces) performed in beforehand. To this extent, we have defined two risk levels: Risk 0 (more than 

370 MPa) and Risk 1 (less than 370 MPa). 

Specifically, we have followed the next configuration for the performed experiment: 

 Latent semantic analysis: We have built a dataset with the result of applying Latent Seman-

tic Analysis to the original dataset with the aim of comparing the results of the machine-

learning classifiers with and without this pre-processing step. 

 Cross validation: In order to obtain a proper representation of the data, K-fold cross valida-

tion is usually used in machine-learning evaluation [12]. In our experiments, we have per-

formed a K-fold cross validation with K=10. 

 Learning the model: For each fold, we have performed the learning phase of each algorithm 

with the corresponding training dataset, applying different parameters or learning algorithms 

depending on the model. More accurately, we have applied the following models: 

o Bayesian networks: For Bayesian networks we have used different structural learn-

ing algorithms: K2, Hill Climber, Tree Augmented Naïve (TAN) and Naïve Bayes 

Classifier. 

o Artificial neural networks: We have used a three-layer Multilayer Perceptron (MLP) 

learned with backpropagation algorithm. 

o Support Vector Machines: For SVM we have performed experiments with a polyno-

mial kernel, a normalised polynomial Kernel, Pearson VII function-based universal 

kernel and a radial basis function (RBF) based kernel. 

o K-nearest neighbour: For K-nearest neighbour we have performed experiments with 

, , ,  and . 

o Decision Trees: We have performed experiments with J48, the Weka implementation 

of the C4.5 algorithm, and Random Forest, an ensemble of randomly constructed de-

cision trees. 

 Testing the model: For each fold, we have evaluated the percent of correctly classified in-

stances and the area under the ROC curve that establishes the relation between false negatives 

and false positives.  

6. RESULTS 

Table I shows the results in terms of percent of correctly classified instances. In this way, we can no-

tice that from the 16 tested classifiers, 15 of them obtained a statistical significant improvement when ap-

plying Latent Semantic Analysis. In this way, Support Vector Machines with Pearson VII Function Based 

Universal Kernel outperformed the rest of the classifiers with an accuracy of 97.74%, which is a spectacu-



lar result increasing more than 16 points the achieved accuracy level. On the other hand, Radial Basis 

Function kernel for Support Vector Machines had a significant decrease of accuracy.  

Dataset Without Pre-processing Applying LSI  

SVM with Pearson VII Function based Universal Kernel 80.75 97.74  

SVM with Polynomial Kernel 82.07 97.72  

Multilayer Perceptron 82.19 97.24  

SVM with Normalised Polynomial Kernel 83.78 96.91  

Decision Tree: Random Forest  86.65 94.42  

Naïve Bayes 75.07 91.55  

Bayesian Network with TAN 79.57 89,74  

Decision Tree: J48 81.66 89.21  

Bayes Network with K2 77.20 88.86  

Bayes Network with Hill Climber 77.78 88.86  

KNN  82.64 88.63  

KNN  81.52 87.69  

KNN  81.15 87.06  

KNN  80.96 85.60  

KNN  78.84 84.36  

SVM with RBF Kernel 81.71 72.55  

, , - statistically significant improvement, degradation or not either statistically significant improvement or degradation 

Table I. Results in Terms of Accuracy 

Likewise, Table II shows the results in terms of area under the ROC curve. To this extent, from the 16 

classifiers that we have tested, 15 achieved a significant improvement after applying Latent Semantic 

Analysis. In the same way as in the accuracy results, Radial Basis Function kernel for support vector ma-

chines had a significant decrease of accuracy. This time, Artificial Neural Network and Random Forest 

outperformed the rest of the classifiers with more or less an area of 1. Anyway, the rest of classifiers 

achieve good results, they are between 0.97 and 0.87. 

Summarizing, the results validate our hypothesis that by applying Latent Semantic Analysis the system 

is capable of reducing the noise in the dataset. In this way, the excellent results we have obtained yield this 

approach to be deployed in the production process of a real foundry. 

Dataset Without Pre-processing Applying LSI  

Multilayer Perceptron 0.85 1.00  

Decision Tree: Random Forest  0.92 0.99  

Naïve Bayes 0.82 0.97  

SVM with Polynomial Kernel 0.74 0.96  

SVM with Pearson VII Function based Universal Kernel 0.66 0.96  

Bayesian Network with TAN 0.86 0.95  

Bayes Network with K2 0.84 0.95  

Bayes Network with Hill Climber 0.84 0.95  

SVM with Normalised Polynomial Kernel 0.75 0.95  

KNN  0.85 0.93  

KNN  0.85 0.93  

KNN  0.86 0.92  

KNN  0.84 0.91  

Decision Tree: J48 0.76 0.88  

KNN  0.79 0.86  

SVM with RBF Kernel 0.72 0.50  

, , - statistically significant improvement, degradation or not either statistically significant improvement or degradation 

Table II. Results in Terms of ROC Area 



7. CONCLUSIONS 

Foreseeing the mechanical properties in ductile iron castings is one of the hardest challenges in foun-

dry-related research. In addition, with these great results, we can provide some profits to high precision 

foundries like savings by the reduction in their fault rates. 

In this work, we focus on the pre-processing method used for noise reduction in the data in order to 

improve the current prediction of ultimate tensile strength. In this way, we have compared the results of this 

approach with the previous one, showing that this new approach provides better results and is able to han-

dle noise in the training dataset. 

The future development of this predictive tool is oriented in three main directions. First, we plan to ex-

tend our analysis to the prediction of other defects in order to develop a global network of incident analysis. 

Second, we will compare more supervised and semi-supervised machine learning algorithms in order to 

prove their effectiveness to predict foundry defects. Finally, we plan to integrate the best classifiers in a 

meta-classifier combining the partial results. 
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