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Chapter 9
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1. Introduction

Foundry has evolved from the ancient magic-surrounded activity it used to be, to become a
key industry that maintains the world as we know it. Thereby, it supplies major pieces to
another industries such as, automotive, naval, aeronautic, weapon and so on. As one may
think, many of these pieces play key roles in the final product as in the case of brakes, aero-
plane components or wind energy castings and this reason imposes high-quality standards:
the tiniest defect may become fatal.

Therefore, there are very strict quality standards to assure the exclusion of faulty pieces.
Unfortunately, these controls are all performed in an ex-post manner, when the production
effort is already done. In this sense, error prediction, firstly, allows avoiding the production
of defective items to fulfil quality standards, and secondly, it also helps not to squander
resources on that activity.

Nowadays, the most used techniques for the assurance of failure-free foundry processes
are exhaustive production control and diverse simulation techniques [1] but they are ex-
tremely expensive and only achieve good results in an a posteriori fashion.

On one hand, microshrinkage, also called secondary contraction, consists of tiny porosi-
ties that appear when the casting is cooling down, and almost all process parameters interact
on its apparition making it impossible to avoid so far [2,3]. The biggest problem associ-
ated to microshrinkages is that pieces flawed with this defect must be discarded. Moreover,
caused either by an increment on the amount of disposed castings in the routine quality
inspections (with random-picked pieces) or after a client’s reclamation, security measures
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stipulate that all castings of that production series must be X-ray-scanned in order to dis-
cover new possible faulty pieces. This procedure entails the subsequent cost increment
which has to be added to the cost of the discarded castings themselves (transport, energy to
remelt, new production process and still no guaranty that this time is going to work).

On the other hand, mechanical properties are the ability of the material of a piece to
take several forces and tensions. In this chapter we focus on the so-called ultimate tensile
strength that is the force that a casting can withstand until it breaks. Therefore, the foundry
castings that are manufactured have to reach a certain value or threshold of ultimate tensile
strength in order to pass the strict quality tests. More accurately, current standard proce-
dures to determine that value are the employment of destructive inspections. Unfortunately,
these procedures make the piece useless after the inspection and thus, as happens with mi-
croshrinkages, they also incur a cost increment.

Hence, providing effective ex-ante methods can help to increase the quality standards
and to save resources in the process (i.e. saving money). To this extent, machine-learning
classifiers have been applied in domains alike with outstanding results, for instance, neural
networks [4], Bayesian networks [5] or the K-nearest neighbour algorithm [6]. In this way,
successful applications of artificial neural networks include for instance spam filtering [7],
intrusion detection [8], or industrial fault diagnosis [9]. Moreover, successful applications
of Bayesian networks include for instance email classification for spam detection [10], fail-
ure detection in industrial production lines [11] [12], weather forecasting [13] [14], intru-
sion detection over IP networks [15] [16] or reconstruction of traffic accidents [17] [18].
Similarly, K-nearest neighbour algorithm, despite its simplicity, has been applied for in-
stance to visual category recognition [19], weather forecasting [20], malware detection [21]
or image retrieval [22].

Against this background, this chapter advances the state of the art in two main ways.
First, we propose a methodology to adapt machine learning classifiers to the prediction of
microshrinkages or ultimate tensile strength and we describe the method for training them.
Second, we evaluate the classifiers with a historical dataset from a real foundry process in
order to compare the accuracy and suitability of each method.

The remainder of this chapter is organised as follows. Section 2. discusses related work.
Section 3. details the foundry process of iron castings. Section 5. introduces and describes
the machine-learning algorithms we tailor to iron foundries. Section 6. describes the exper-
iments performed and examines the obtained results and explains feasible enhancements.
Finally, section 7. concludes and outlines the avenues of future work.

2. Related Work

There has been a hectic activity around the applications of neural networks to several other
problems of foundry process, for instance on the prediction of the ferrite number in stain-
less steel arc welds [23]. Similarly, successful experiments involving K-nearest neighbour
algorithm include fault detection of semiconductor manufacturing processes [24].

In a verge closer to our view, neural networks have been used in several works, for
instance, classifying foundry pieces [25], optimising casting parameters [26], detection of
causes of casting defects [27] and in other problems [28]. Nevertheless, Bayesian networks
are used as previous methods in Bayesian neural networks methodology (i.e. predicting
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the ferrite number in stainless steel [29]). In addition, K-nearest neighbour algorithm and
artificial neural networks have been applied for enhance quality of steel [30] that achieves
an overall root mean square error of 0.38 (a comparison between their results and ours can
be further analysed in section 6.).

The good results obtained for these works have encouraged us to tailor these approaches
into our concrete problem domain.

Figure 1. Moulding and cooling in the casting production

3. Foundry Process

There are several factors that make foundry production a very complex process, such as,
the extreme conditions in which it is performed. In this way, starting from the raw material
to the manufactured item, this procedure involves numerous phases, some of which may be
performed in parallel. More accurately, when it refers to iron ductile castings, this process
presents the following phases:

e Melting and pouring: The raw metals are melt, mixed and poured onto the sand
shapes.

e Moulding: The moulding machine forms and prepares the sand moulds.

e Cooling: The solidification of the castings is controlled in the cooling lines until this
process is finished.
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Figure 1 shows the moulding and cooling phases. Once the raw material is melt, it
is poured onto the moulds (made out of sand mixed in the sand-mill) and shaped in (1).
The cooling lines (2) accelerate the natural cooling process of the castings. When they are
properly solidified, the sand moulds are detached from them and return to the sand-mill, so
the sand can be reused to mould further castings.

4. Defects on Foundry Processes

4.1. Microshinkages

Microshrinkages appear during the cooling process of the metal but are only visible once
the production is accomplished. More accurately, this flaw consists of minuscule internal
porosities or cavities. Since metals are less dense as a liquid than as a solid, the density of
the metal increases while it solidifies and the volume decreases in parallel. In this process,
diminutive, microscopically undetectable interdendritic voids may appear leading to a re-
duction of the casting’s hardness and, in the cases faced here (where the casting is a part
of a very sensitive piece), rendering the piece useless [3,31]. Unfortunately, the only way
to examine finished parts is the employment of non-destructive inspections. In this way,
the most usual techniques are X-ray and ultrasound emissions but both require suitable de-
vices, specialised staff and quite a long time to analyse all the produced parts. Therefore,
postproduction inspection is not an economical alternative to the pre-production detection
of microshrinkages.

Figure 2. Computer simulation of microshrinkage formation in a double-cylinder break
calliper.

Figure 2 shows one of the castings examined here, the calliper of a front double-cylinder
brake that, as exposed in section IV, tends to present microshrinkages. Figure 3 illustrates
the gradual formation of a microshrinkage as the piece is cooling down. This computer
simulation shows a transversal cut of the casting and the risk that the defect appears (the
closer to red, the higher the risk). The first two images illustrate the solidification process
and the last one shows the final presence of the microshrinkage.

As aforementioned, the complexity of detecting secondary contractions arises princi-
pally from the high number of variables that participate in production process and, there-
fore, may have influence on the final design of a casting. In this way, the main variables to
control in order to predict the apparition of microshrinkages are:

e Metal-related:
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Figure 3. Formation of the microshinkage in the double-cylinder break calliper.

— Composition: Type of treatment, inoculation and charges.

— Nucleation potential and melt quality: Obtained by means of a thermal analysis
program [32].

— Pouring: Duration of the pouring process and temperature.
e Mould-related:

— Sand: Type of additives used, sand-specific features and carrying out of previ-
ous test or not.

— Moulding: Machine used and moulding parameters

Commonly, the dimension and geometry of the casting play a very important role in
this practice and, thus, we also include several variables to control this two features. In the
same way, the system should take into account parameters related to the configuration of
each machine that works in the manufacturing process [33].

Furthermore, there are some variables that may influence the apparition of second con-
traction during the foundry process, such as the composition [34], the size of the casting,
the cooling speed and thermal treatment [35] [36]. The system must take into account all
of them in order to issue a prediction on those mechanical properties. In this way, the
machine-learning classifiers used in our experiments are composed of about 24 variables.

4.2. Mechanical Propierties

Once the phases shown in section 3. have been completed, the resultant casting is subject
to forces (loads). Engineers have to calculate the value of these forces and how the material
deforms or breaks as a function of applied load, time or other conditions. Hence, it is a very
important theme knowing how mechanical properties affect to iron castings [35], since they
directly affect the quality of the final piece. More accurately, the most important mechanical
properties of foundry materials are the following ones [37]:
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e Strength: it is the property that enables a metal to resist deformation under load.
There are many kinds of strength such as ultimate strength and ultimate tensile
strength.

e Hardness: it is the property to resist permanent indentation.

e Toughness: it is the property that enables a material to withstand shock and to be
deformed without rupturing. This property is considered as a combination as strength
and plasticity.

e Resilience: it is the property of a material to absorb energy when it is deformed
elastically.

o Elasticity: it is the ability of a material to return to its original shape after the load is
removed.

e Plasticity: it is the ability of a material to deform permanently without breaking or
rupturing. This property is the opposite of strength.

e Brittleness: it is the opposite of plasticity. A brittle metal is one that breaks or
shatters before it deforms. Generally, brittle metals have a high value in compressive
strength but a low value in tensile strength.

e Ductility: it is the property that enables a material to stretch, bend or twist without
cracking or breaking.

e Malleability: in comparison with ductility, it is the property that enables a material
to deform by compressive forces without developing defects. A malleable material
can be stamped, hammered, forged, pressed or rolled into thin sheets.

Furthermore, there are common or standard procedures (i.e. ASTM standards [38, 39])
for testing the value of mechanical properties of the materials in a laboratory. Unfortu-
nately, they need to use destructive inspections and they are ex-post (i.e. performed after
production). Moreover, the process demand appropriate instruments, specialised staff and
time resources in order to inspect the materials.

Regarding the ultimate tensile strength, which we focus here on, its testing method is
conducted as follows. First, a scientist prepares a testing specimen from the original casting
(see (1) in Figure 4). Second, the specimen is placed on the tensile testing machine (2).
And, finally, this machine pulls the sample from both ends and measures the force required
to break the specimen apart and how much the sample stretches before breaking.

Moreover, there are some variables that may influence the mechanical properties of the
metal during the foundry process, such as the composition [34], the size of the casting,
the cooling speed and thermal treatment [35,36]. The system must take into account all
of them in order to issue a prediction on those mechanical properties. In this way, the
machine-learning models used in our experiments are composed of about 25 variables.
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Figure 4. Ultimate Tensile Strength Test

5. Machine-learning Classifiers

5.1. Bayesian Networks

The research on cause-consequence relationships was pioneered by Reverend Thomas
Bayes [40], and his main work is known as the “Bayes theorem” in his honour. According
to its classical formulation, given two events A and B, the conditional probability P(A|B)
that A occurs if B occurs can be obtained if we know the probability that A occurs, P(A),
the probability that B occurs, P(B), and the conditional probability of B given A, P(B|A) (as
shown in equation 1):

PA|B) = —F——— (D

Extending this model, Bayesian networks are probabilistic models for multivariate anal-
ysis. We can represent a Bayesian network as an acyclic directed graph and the probability
distribution function associated to that graph [41]. On the one hand, the graphical model
represents the set of probabilistic relationships among the collection of variables modelling
a particular problem. On the other hand, the probability function illustrates the strength of
these relationships or edges in the graph.

We use this kind of model for several activities, for example, machine learning based on
historical data, pattern matching over ambiguous or incomplete data , data mining for rela-
tionship discovery and inference of non-observable variables given the rest of the set [42].
In particular, this inference capability fits to our experiments. These capability represents a
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semantical super-set of those expert systems based on rule chaining, both for forward and
backward style (in fact, Bayesian models allow a third further kind of inference, that is
known as explanation or justification [41]). Moreover, a Bayesian network can grow ex-
tending its knowledge base with new evidences without reducing its performance level [41]
whilst adapts to the problem and maintain an updated procedure.

To our needs, the most important ability of Bayesian networks is their capability of
inferring the probability that a certain hypothesis becomes true (i.e. the probability of mi-
croshrinkage apparition).

Besides, the sensitive module [43] (SM), that we used for both microshrinakages and
mechanical properties [44], provided a decision support system for the operators in the
foundry rely on Bayesian theory. Specifically, SM studies the different values that each
variable adopts in order to trace the influence of such values in the apparition of a range of
the ultimate tensile strength. Note that a variable may represent, for example, the use of one
or another product in a certain phase of the process, applying one certain methodology or
not, and so on. This is, the SM evaluates the results obtained by the Bayesian network and
calculates the causal relationship between each amount of magnesium and the probability
that a range of ultimate tensile strength appears.

5.2. K-Nearest Neighbours

The K- nearest neighbour [6] algorithm is one of the simplest supervised machine learning
algorithms for classifying instances. This algorithm is based on the class of the most nearest
instances of an unknown instance.

Specifically, the training phase of this algorithm comprises representing a set of training
data instances S = 51,52, .., S,y in a n — dimensional space where n is the amount of variables
for each instance (i.e. in our case the variables of the casting production).

Furthermore, the classification phase of an unknown instance (whose class is not
known) is performed by measuring the distance between the training instances and the
unknown instance. In this way, establishing the distance between two points X and Y in a
n—dimensional space, can be achieved by using any distance measure, in our case we used
Euclidean distance (shown in equation 2).

n

Y (X —Y;)? )

i=0

Finally, there are several ways to choose the class of the unknown instance, the most
used technique is to classify the unknown instance as the most common class amongst the
K-nearest neighbours.

5.3. Artificial Neural Networks

Artificial Neural Networks (ANN) is a machine learning model that simulates the behaviour
of neurons in the human brain [4]. Formally, a neuronal network consists on interconected
neurons. In this way, the activation of a neuron depends on its set of inputs, where y; is the
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activation of the current neuron, f; is the activation function, W; ; is the weight of the neuron
and a; is the activation of the input neuron (shown in equation 3).

yi=fi ( Wj,i'aj> 3)
=0

More accurately, Multi-Layer Perceptron (MLP) is a kind of artificial neural network
model of simple neurons called perceptrons that are structured in layers. The layers can be
classified as input layers, hidden layers and output layer. We perform the training of the
model using backpropagation algorithm [45] that calculates the weights W; of the activation
function for each neuron.

6. Experiments and Results

6.1. General Methodology

We have collected data from a foundry specialised in safety and precision components for
the automotive industry, principally in disk-brake support with a production over 45000
tons a year. These experiments are focused on prediction of microshrinkages and ultimate
tensile strength. Note that, as aforementioned, microshrinkages are detected by the employ-
ment of X-Ray inspections, and, in a similar vein, the only way to examine the mechanical
properties is the employment of destructive inspections. Therefore, the evaluation must be
performed after the production is done

Moreover, the acceptance/rejection criterion of the studied models resembles the one
applied by the final requirements of the customer (i.e, in the examined cases, the automotive
industry). According to the very restrictive quality standards imposed by these clients,
pieces flawed with microshrinkages or an invalid ultimate tensile strength must be rejected.

Specifically, we conducted the next methodology in order to evaluate properly the
machine-learning classifiers:

e Cross validation: We have performed a k-fold cross validation [46] with k = 10. In
this way, our dataset is 10 times split into 10 different sets of learning (66% of the
total dataset) and testing (34% of the total data).

e Learning the model: For each fold, we have made the learning phase of each algo-
rithm with each training dataset, applying different parameters or learning algorithms
depending on the model. More accurately, we have use this three different models:

— Bayesian networks: In order to train Bayesian networks we have used different
structural learning algorithms; K2 [47], Hill Climber [48] and Tree Augmented
Naive (TAN) [49]. Moreover, we have also performed experiments with a Naive
Bayes Classifier.

— K-nearest Neighbour: For knn we have performed experiments with k = 1,
k=2,k=3,k=4,and k=5.

— Artificial neural networks: ~ We have used a Multilayer Perceptron (MLP)
learned with backpropagation algorithm.
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e Testing the model: For each fold, we evaluated the error rate between the predicted
value set X and the real value set Y (both with size of the testing dataset m) with mean
absolute error (MAE) (shown in equation 4).

mX; Y
MAE(X,Y)=Y [Xi— i
i=1

“)

m

Similarly, we have used root mean square error (RMSE) (shown in equation 5)

RMSE(X,¥) =\ [} (X~ 12 5)

6.2. Microshrinkage Experiments

(agE

I
—_

Figure 5 shows the obtained results in terms of prediction accuracy and Figure 6 shows the
error rate of the three classifiers (mean absolute error and root mean square error). In this
way, nearly every algorithm achieves good results, however both artificial neural networks
and Bayesian networks trained with Tree Augmented Naive seem more suitable if we focus
on the results. Still, Naive Bayes classifier behaves worse than other classifiers. Please note
that Naive Bayes is a type of Bayesian network where the input variables are assumed to
be linear independent. In this way, it skips the causal dependency that may be within the
variables, therefore it cannot achieve as good results as the other classifiers.
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Figure 5. Accuracy of Evaluated Classifiers

Moreover, K-nearest neighbour algorithm, witch is a non-linear classifier, achieves bet-
ter results than one may think in beforehand. In this way, K-nearest neighbour has no
training phase itself (only a little data preprocessing), it only focuses on the resemblance
between the instances. Therefore, it behaves worse than more robust methods such as ANN
and Bayesian networks.
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Figure 6. Error Rate of Evaluated Classifiers

Actually, even the classifiers have not reached a 100% accuracy level, they have in-
teresting results for being used in a high-precision foundry. Remarkably, the good results
achieved by the ANN show that it can be used in a similar way as we have used the Bayesian
networks in a previous work [50]. Thereby, combining the better classifiers and using them
for the defects that suit better, we can reduce in a significative manner the cost and the
duration of the actual testing methods, apart from providing an effective ex-ante method.

6.3. Ultimate Tensile Strength Experiments

As we mentioned before, we evaluated the classifiers in terms of prediction accuracy and
error (i.e. MAE and RSME). In this experiments we have also performed an analysis of
the optimal training dataset size. Therefore we have performed the experiments for the
following training sizes n: n = 100, n = 200, n = 300, n = 400, n = 500, n = 600, n = 700,
n = 800 and n = 889.

In this way, Figure 7 shows the obtained results in terms of prediction accuracy. For a
size of the training dataset of 100 the overall prediction of the machine-learning classifiers
is low, however, Bayesian networks trained with Hill Climbing outperformed the rest of
classifiers with a prediction accuracy of 81.82%. Despite these results, this approach for
Bayesian networks did not perform well when increasing the size of the dataset. On the
other hand, the rest of classifiers, obtained their best results for a training size between
700 and 800 instances and not for the whole training dataset (n = 889) where there is an
interesting accuracy reduction. This fact may be result of the data acquiring phase that is
performed manually and, thus, it is subject to numerous errors that can include noise in
the dataset. Therefore, techniques for reducing the noise of the dataset such as Principal
Component Analysis [51] will be studied in further work.

More accurately, the algorithms showed quite different performances. In this way, k-
nearest neighbour did it surprisingly well for being a lazy algorithm. Specifically, for a
value of k = 1, k-nearest neighbour achieved the best results and the second best classifier
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Figure 7. Accuracy of the evaluated classifiers
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Figure 8. Mean absolute error of the evaluated classifiers

tested. Second, Bayesian networks do achieve overall good results, specifically, Bayesian
networks trained with TAN perform as expected and the results were similar to the ones
obtained in [44]. Finally, MLP outperformed the rest of the classifiers, showing that can be
a interesting classifier for predicting the values of the mechanical properties.

Furthermore, Figure 8 shows the Mean Absolute Error and Figure 9 shows the Root
Mean Square Error. Thereby, the results obtained are similar to the ones of prediction
accuracy and MLP also outperformed the rest of algorithms in terms of error.

In addition, the classifiers have interesting results and can be used in a high-precision
foundry. Remarkably, the outstanding results achieved by Multilayer Perceptron show that
it can be used in a similar way as we have used the Bayesian networks in a previous work
[44].
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Figure 9. Root mean square error of the evaluated classifiers

7. Conclusions

On one hand, microshrinkages are tiny porosities that appear when the casting is cooling
down. On the other hand, ultimate tensile strength is the capacity of a metal to resist de-
formation when subject to a certain load. Predicting the apparition of microshrinkages and
the value of ultimate tensile strength render as the hardest issues in foundry production, due
to many different circumstances and variables that are involved in the casting process and
determine it.

Our work in [50] pioneers the application of Artificial Intelligence to the prediction of
microshrinkages. Likewise, regarding ultimate tensile strength we presented a model to the
prediction of mechanical properties [44].

To this extent, we focus here on comparing machine-learning classifiers used for the
prediction of ultimate tensile strength and microshrinkage apparition. Specifically, we have
included and adapted to our particular problem domain three classifiers that have a widely
use in similar issues. All of them behave well, but Bayesian networks performed the best
in the microshrinkage experiment whilst artificial neural networks outperformed the rest
of the classifiers regarding ultimate tensile strength. Still, the ability of Bayesian theory
and specifically, the sensitivity module cannot be ignored, since it is an effective method
that provides a decision support system for the operators in the foundry plant. Therefore,
with the combination of the sensitivity module and the best classifiers we can reduce in
a significative manner the cost and the duration of the actual testing methods, apart from
providing an effective ex-ante method.

The future development of this predictive tool is oriented in three main directions. First,
we plan to extend our analysis to the prediction of other defects in order to develop a global
system of incident analysis. Second, we will compare more supervised and semi-supervised
machine learning algorithms in order to prove their effectiveness to predict foundry defects.
Finally, we plan to integrate the best classifiers in meta-classifier combining the partial
results.
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