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ABSTRACT
Spam has become an important problem for computer secu-
rity because it is a channel for the spreading of threats such
as computer viruses, worms and phishing. Currently, more
than 85% of received emails are spam. Historical approaches
to combat these messages, including simple techniques such
as sender blacklisting or the use of email signatures, are no
longer completely reliable. Many solutions utilise machine-
learning approaches trained using statistical representations
of the terms that usually appear in the emails. However,
these methods require a time-consuming training step with
labelled data. Dealing with the situation where the avail-
ability of labelled training instances is limited slows down
the progress of filtering systems and offers advantages to
spammers. In a previous work, we presented the first spam
filtering method based on anomaly detection that reduces
the necessity of labelling spam messages and only employs
the representation of legitimate emails. We showed that
this method achieved high accuracy rates detecting spam
while maintaining a low false positive rate and reducing the
effort produced by labelling spam. In this paper, we en-
hance that system applying a data reduction algorithm to
the labelled dataset, finding similarities among legitimate
emails and grouping them to form consistent clusters that
reduce the amount of needed comparisons. We show that
this improvement reduces drastically the processing time,
while maintaining detection and false positive rates stable.
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1. INTRODUCTION
Electronic mail (email) is a powerful communication chan-

nel. Nevertheless, as happens with all useful media, it is
prone to misuse. Flooding inboxes with annoying and time-
consuming messages, more than 85% of received emails are
spam1. Besides, bulk email not only is very annoying to
every-day email users, but also constitutes a major com-
puter security problem that costs billions of dollars in pro-
ductivity losses [4]. Moreover, it can be used as a medium
for phishing (i.e., attacks that seek to acquire sensitive in-
formation from end-users) [10] and the spread of malicious
software (e.g., computer viruses, Trojan horses, spyware and
Internet worms) [4].

Several approaches have been proposed by the academic
community to solve the spam problem [16, 6, 21, 7]. Among
them, the termed as statistical approaches [23] use machine-
learning techniques to classify emails. These approaches
have proved their efficiency detecting spam and are the most
extended techniques to fight it. In particular, the use of the
Bayes’ theorem is widely used by anti-spam filters (e.g., Spa-
mAssasin [14], Bogofilter [15], and Spamprobe [5]).

These statistical approaches are usually supervised, i.e.,
they need a training set of previously labelled samples. These
techniques perform better as more training instances are

1http://www.junk-o-meter.com/stats/index.php



available, which means that a significant amount of previ-
ous labelling work is needed to increase the accuracy of the
models. This work includes a gathering phase in which as
many emails as possible are collected. However, the avail-
ability of labelled training instances is limited, which slows
down the progress of anti-spam systems.

In a previous work, we presented the first spam filter-
ing method based on anomaly detection [20] that reduces
the necessity of labelling spam messages and only employs
the representation of legitimate emails. This approach cal-
culates vectors composed of certain features and compares
the samples against a set of vectors representing legitimate
emails. If the compared sample is sufficiently different, then
it is considered as spam. Although the results obtained were
significant enough to validate our method, the number of
comparisons needed to analyse each sample was consider-
ably high and consequently, it presented a high processing
overhead.

In consideration of this background, we propose here an
enhancement of our previous method that applies partitional
clustering to the dataset in order to reduce the number of
vectors in the dataset used as normality. This improvement
boosts scalability due to the reduction in the processing
time.

Summarising, our main contributions are:

• We adapt a method for email dataset reduction based
on the partitional clustering algorithm Quality Thresh-
old (QT) clustering, and generate reduced datasets of
different sizes.

• We empirically validate the reduction algorithm test-
ing its accuracy results and comparing them to previ-
ous work.

• We prove that a unique synthetically generated sam-
ple for legitimate emails is representative enough to
implement an anomaly detection system without com-
promising accuracy results.

The remainder of this paper is organised as follows. Sec-
tion 2 details our anomaly-based method. Section 3 de-
scribes the experiments and presents results. Section 4 dis-
cusses the obtained results and their implications, and out-
lines avenues for future work.

2. METHOD DESCRIPTION
The method described in this paper is based on a previous

work, in which we presented an anomaly-based spam filter
[20]. We have improved its efficiency by designing a data
reduction phase capable of boosting the scalability of the
filtering system.

The first step consists in the representation of the emails
comprising both datasets. Then we apply the clustering al-
gorithm to them, to obtain a reduced version that conserves
the original datasets’ characteristics. Finally, the anomaly
detection step is performed. Due to the sample reduction
phase, the number of comparisons performed decreases and,
thus, the comparison time required for the analysis of each
sample is much lower.

2.1 Representation of emails
As other spam filtering systems, our approach attempts

to accurately classify email massages into 2 main categories:

spam or not spam (i.e., legitimate emails). To this end, we
use the information found within the body and subject of an
email message and discard every other piece of information
(e.g., the sender or the time-stamp of the email). To repre-
sent messages, we start by removing stop-words [22], which
are words devoid of content (e.g., ‘a’,‘the’,‘is’). These words
do not provide any semantic information and add noise to
the model [18].

Afterwards, we represent the emails using an Information
Retrieval (IR) model. An IR model can be defined as a
4-tuple [E ,Q, F,R(qi, ej)] [2] where E , is a set of represen-
tations of emails; F is a framework for modelling emails,
queries and their relationships, Q is a set of representations
of user queries and, finally, R(qi, ej) is a ranking function
that associates a real number with a query qi (qi ∈ Q) and
an email representation ej , so that (ej ∈ E).

As E is the set of text emails e, {e : {t1, t2, ...tn}}, each
comprising n terms t1, t2, . . . , tn, we define the weight wi,j

as the number of times the term ti appears in the email
ej . If wi,j is not present in e, wi,j = 0. Therefore, an
email ej can be represented as the vector of weights ~ej =
(w1,j , w2,j , ...wn,j).

On the basis of this formalisation, we use the well known
Term Frequency – Inverse Document Frequency (TF–IDF)
[18] weighting schema, where the weight of the ith term in
the jth document, is defined by weight(i, j) = tfi,j · idfi,
where term frequency is defined as tfi,j = (ni,j)/(

∑
k nk,j),

ni,j is the number of times the term ti,j appears in a doc-
ument d, and

∑
k nk,j is the total number of terms in the

document d. The inverse term frequency is defined as idfi =
(|D|)/(|D : ti ∈ d|), where |D| is the total number of docu-
ments and |D : ti ∈ d| is the number of documents contain-
ing the term ti.

2.2 Data reduction
Dataset reduction is a step that has to be faced in very

different problems when working with large datasets. In our
previous work [20], the experiments were performed with
a base of more than 2,000 (for the LingSpam dataset) and
more than 4,000 (for the SpamAssassin dataset) legitimate
emails, which means that every sample analysed had to be
compared 2,000 or 4,000 times to classify it as spam or not.
Therefore, we propose a data reduction algorithm based on
partitional clustering.

Cluster analysis divides data into meaningful groups [13].
These techniques usually employ distance measures to com-
pare instances in datasets to make groups with those which
appear to be similar. We can identify several types of clus-
tering, but the most common ones are hierarchical cluster-
ing and partitional clustering. The first approach generates
clusters in a nested style, which means that the dataset is
divided into a set of clusters which are subdivided into other
clusters related hierarchically. In contrast, partional cluster-
ing techniques create a one-level (unnested) partitioning of
the data points [13]. We are interested in this last technique
to validate our initial hypothesis: it is possible to divide a
big set of emails that represent normality (i.e., legitimate
emails) into a reduced set of representations.

QT clustering algorithm was proposed by Heyer et al. [9]
to extract useful information from large amounts of gene ex-
pression data. This clustering algorithm does not need to
specify the number of clusters desired. Concretely, it uses
a similarity threshold value to determine the maximum ra-



input : The original dataset V, the distance threshold
for each cluster threshold, and the minimum
number of vectors in each cluster
minimumvectors

output: The reduced dataset R
// Calculate the distance from each vector (set

of email features) to the rest of vectors in

the dataset.

foreach {vi|vi ∈ V} do
foreach {vj |vj ∈ V} do

// If a vector vj’s distance to vi is

lower than the specified threshold,

then vj is added to the potential

cluster Ai, associated to the vi
vector

if distance(vi,vj) ≥ threshold then
Ai.add(vj)

// In each loop, select the potential cluster

with the highest number of vectors

while ∃Ai ∈ A : |Ai| ≥ minimumvectors and
∀Aj ∈ A : |Ai| ≥ |Aj | and i 6= j do

// Add the centroid vector for the cluster

to the result set

R.add(centroid(Ai))

// Discard potential clusters associated to

vectors vj ∈ Ai

foreach {vj |vj ∈ Ai} do
A.remove(Aj)

V.remove(vj)
// Remove vectors vj ∈ Ai from the clusters

Ak remaining in A
foreach {Ak|Ak ∈ A} do

foreach {vj |vj ∈ Ak and vj ∈ Ai} do
Ak.remove(vj)

// Add the remaining vectors to the final

reduced dataset

foreach {vj |vj ∈ V} do
R.add(vj)

Figure 1: QT Clustering based dataset reduction
algorithm.

dial distance of any cluster. This way, it generates a vari-
able number of clusters that meet a quality threshold. Its
main disadvantage is the high number of distance calcula-
tions needed. Nevertheless, in our case, this computational
overhead is admissible because we only have to reduce the
dataset once, (we employ an static representation of normal-
ity that only varies from platform to platform).

Our algorithm, shown in Figure 1, is based on the concepts
proposed by Heyer et al. [9], but it is adapted to our data
reduction problem and it is implemented iteratively, instead
of recursively.

Formally, let A = {A0,A1, ...,An} be the set of potential
clusters. For each vector vi in the dataset V, there is a
potential cluster Ai ∈ A. A potential cluster Ai is composed
of the set of vectors at a distance respect to vi not higher
than the threshold previously specified.

Once the potential clusters are calculated, we select the
cluster with the highest number of vectors as a final cluster.

Then, we calculate its centroid, defined as c = x1+x2+· · ·+
xk/k where x1, x2, · · · , xk are points in the feature space.
The resultant centroid is added to the final reduced dataset.
Afterwards, each vector vj present in the selected cluster Ai

is removed from the original dataset V (as they will be rep-
resented by the previously calculated centroid). Moreover,
the potential clusters Aj ∈ A associated to each vector vj
previously removed are also discarded. When there are not
more clusters available with a number of vectors higher than
the parameter minimumvectors, the remaining vectors in
V are added to the final reduced dataset and the algorithm
finishes and returns the resulting reduced dataset. The fi-
nal result is a dataset composed of one centroid representing
each cluster and all the vectors that were not associated to
any cluster by the QT clustering algorithm.

2.3 Anomaly Detection
The features described represent each email as a point

in the feature space. Our anomaly detection system anal-
yses points in the feature space and classifies emails based
on their similarity. The analysis of an email consists of 2
different phases:

• Extraction of the features from the email.

• Measurement of the distance from the point represent-
ing the email to the points that symbolise normality
(i.e., legitimate emails).

As a result, any point at a distance from normality that
surpasses an established threshold is considered an anomaly
and, thus, a spam message. In this study, we have considered
2 different distance measures:

• Manhattan Distance. This distance between two
points v and u is the sum of the lengths of the projec-
tions of the line segment between the points onto the
coordinate axes:

d(x, y) =

n∑
i=0

|xi − yi| (1)

where x is the first point; y is the second point; and xi

and yi are the ith components of the first and second
point, respectively.

• Euclidean Distance. This distance is the length of
the line segment connecting two points. It is calculated
as:

d(x, y) =

n∑
i=0

√
x2
i − y2

i (2)

where x is the first point; y is the second point; and xi

and yi are the ith components of the first and second
point, respectively.

Since we have to compute this measure with a variable
number of points representing legitimate messages, a com-
bination metric is required in order to obtain a final distance
value which considers every measure performed. To this end,
we employ 3 simple rules:



• Mean rule. Select the mean distance value of the
computed distances.

• Max rule. Select the highest distance value.

• Min rule. Select the lowest distance value.

In this way, when our method analyses an email, the final
distance value is dependant on the distance measure and the
combination rule selected.

3. EMPIRICAL VALIDATION
To evaluate the performance of our method we have con-

ducted an experiment consisting of 2 phases: firstly, we re-
duce the set of vectors corresponding to the representation
of the legitimate emails that represent normality and, sec-
ondly, we start the anomaly detection step to measure both
accuracy and efficiency.

3.1 Experimental Configuration
We used the Ling Spam2 and SpamAssassin3 datasets.
The SpamAssassin public mail corpus is a selection of

1,897 spam messages and 4,150 legitimate emails.
Ling Spam consists of a mixture of both spam and legit-

imate messages retrieved from the Linguistic list, an email
distribution list about linguistics. It comprises 2,893 differ-
ent emails, of which 2,412 are legitimate emails obtained by
downloading digests from the list and 481 are spam emails
retrieved from one of the authors of the corpus (for a more
detailed description of the corpus please refer to [1, 17]).
From the 4 different datasets provided in this corpus, each
of one with different pre-processing steps, we chose the Bare
dataset, which has no pre-processing.

We performed for both datasets a Stop Word Removal [22]
based on an external stop-word list4 and removed any non
alpha-numeric character.

Then, we used the Vector Space Model (VSM) [19], an
algebraic approach for Information Filtering (IF), Infor-
mation Retrieval (IR), indexing and ranking, to create the
model. This model represents natural language documents
in a mathematical manner through vectors in a multidimen-
sional space.

We extracted the top 1,000 attributes using Information
Gain [11], an algorithm that evaluates the relevance of an
attribute by measuring the relevance with respect to the
class:

IG(j) =
∑
vj∈R

∑
Ci

P (vj , Ci) · (P (vj , Ci)/(P (vj) · P (Ci)) (3)

where Ci is the ith class, vj is the value of the jth interpre-
tation, P (vj , Ci) is the probability that the jth attribute has
the value vj in the class Ci, P (vj) is the probability that the
jth interpretation has the value vj in the training data, and
P (Ci) is the probability of the training dataset belonging to
the class Ci.

2http://nlp.cs.aueb.gr/software and datasets/
lingspam public.tar.gz
3http://spamassassin.apache.org/publiccorpus/
4http://www.webconfs.com/stop-words.php

In order to evaluate the performance of the predictors,
k-fold cross validation [12] is commonly used in machine-
learning experiments [3]. For SpamAssasin, we performed
a 5-fold cross-validation to divide the dataset composed of
legitimate emails (the normal behaviour) into 5 different di-
visions of 3,320 emails for representing normality and 830
for measuring deviations within legitimate emails. In this
way, each fold is composed of 3,320 legitimate emails that
will be used as representation of normality and 2,726 testing
emails, from which 830 are legitimate emails and 1,896 are
spam.

With regards to Ling Spam dataset, we also performed
a 5-fold cross-validation [12] forming 3 different divisions of
1,930 emails and two divisions of 1,929 emails for represent-
ing normality and other 3 divisions of 482 emails and 2 of
483 for measuring deviations within legitimate email. In
this way, each fold is composed of 1,930 or 1,929 legitimate
emails that will be used as representation of normality and
963 or 962 testing emails, from which 483 or 482 were legit-
imate emails and 480 were spam. The number of legitimate
emails varied in the two last folds because the number of
legitimate emails is not divisible by 5.

To test the dataset reduction algorithm proposed, 4 exper-
imental configurations were selected for each distance mea-
sure. The threshold parameter values for our QT cluster-
ing based algorithm were selected by empirical observation.
Table 1 shows the reductions obtained in the process. Re-
duction ratio varies from 13.21% for Euclidean distance and
threshold 1.50 to 99.94% for both Euclidean and Manhattan
distance and an infinite threshold (in practice, this thresh-
old is set to the maximum value allowed for a 64-bit double
variable). The result obtained for the infinity threshold is
a unique centroid of the whole dataset that represents the
arithmetic mean vector, or a single representation of nor-
mality. In this case, selection rules do not influence the final
result because it is only performed one single comparison for
each sample.

3.2 Efficiency Results
During our experimental evaluation, we measured the times

employed in both data reduction and anomaly detection:

• Data reduction. In this phase, we reduced the orig-
inal datasets for each fold. In this way, we used 8 dif-
ferent configurations to reduce each different dataset:
Euclidean distance (1.50, 1.75, 2.00 and ∞) and Man-
hattan distance (1.50, 1.75, 2.00 and ∞).

The average processing time consumed to reduce the
datasets with each configuration is 1,107 seconds for
LingSpam and 3,302 seconds for SpamAssassin when
using Euclidean distance and 751 seconds for LingSpam
and 2,179 seconds for SpamAssassin when using Man-
hattan distance. Note that this process, in spite of
being very time consuming, is executed only once and
does not interfere with the performance of the system.

• Sample comparison. In this phase, for each exper-
imental configuration employed in the data reduction
stage, the samples under test were compared against
the reduced dataset. The number of comparisons de-
pends exclusively on the number of vectors present in
the resulting datasets, so it is straightforward that the



Table 1: Number of vectors conforming the reduced datasets for the different reduction parameters.
LingSpam

Distance Quality % Average Vectors per fold
measure threshold reduction 1 2 3 4 5

Euclidean

1.50 13.21% 1,647 1,646 1,674 1,688 1,718
1.75 57.10% 800 802 817 848 871
2.00 89.72% 184 184 191 212 220
∞ 99.94% 1 1 1 1 1

Manhattan

1.50 33.75% 1,318 1,322 1,296 1,223 1,232
1.75 46.78% 1,079 1,047 1,051 979 978
2.00 62.47% 769 749 750 673 679
∞ 99.94% 1 1 1 1 1

SpamAssassin
Distance Quality % Average Vectors per fold
measure threshold reduction 1 2 3 4 5

Euclidean

1.50 89.78% 302 342 431 297 324
1.75 97.63% 66 79 102 66 79
2.00 99.34% 16 18 33 20 21
∞ 99.96% 1 1 1 1 1

Manhattan

1.50 93.59% 119 230 251 221 242
1.75 96.81% 50 117 132 109 121
2.00 98.57% 17 53 60 52 54
∞ 99.96% 1 1 1 1 1

(a) Time required by the comparison phase for each
reduced dataset of LingSpam

(b) Time required by the comparison phase for each
reduced dataset of SpamAssassin

Figure 2: The X axis represents the resulting reduction rate for each dataset once the clustering step was
applied. The bigger the reduction rate, the lower the number of vectors utilised. The Y axis represents the
average comparison time for each executable file, expressed in milliseconds.

time employed in this step is inversely proportional to
the threshold value used in the clustering algorithm.
Figure 2 shows the average time employed by the com-
parison step for each testing sample. It can be no-
ticed that the time required for comparison is lower
when fewer vectors are utilised. For euclidean dis-
tance the average comparison time varies from 494.53
ms for a 1.50 clustering threshold value, to 0.46 ms
for an ∞ threshold (comparison against a single vec-
tor representation) with LingSpam and from 121.07 ms
for a 1.50 threshold to 0.35 for an ∞ threshold with
SpamAssassin. In the case of manhattan distance,

times are lower due to the simplicity of the calcula-
tions needed, varying from 257.55 ms and 56.22 for a
1.50 clustering threshold value to 0.30 ms and 0.24 for
∞ threshold with LingSpam and SpamAssassin respec-
tively. The reduced comparison times offered by Spa-
mAssassin when comparing it with LingSpam are due
to the increased reduction suffered by the first dataset
(as shown in Table 1).

3.3 Efficacy Results
Hereafter, we obtained the representation of the emails

from both datasets (LingSpam and SpamAssassin), reduced



Table 2: Results for the different reduced datasets of LingSpam, combination rules and distance measures.
LingSpam

Dataset Selection rule Threshold Prec. Rec. AUC

Euclidean

Prev.
work

Mean 2.59319 0.92821 0.91583 0.95017
Max 4.15651 0.85953 0.79292 0.85725
Min 1.93707 0.87510 0.93125 0.93944

1.50
Mean 2.61855 0.93012 0.90958 0.94963
Max 4.15651 0.85953 0.79292 0.85725
Min 2.01180 0.93285 0.90292 0.95180

1.75
Mean 2.72416 0.93929 0.90250 0.95162
Max 4.15651 0.85953 0.79292 0.85725
Min 2.05017 0.94598 0.88292 0.95563

2.00
Mean 2.91093 0.94501 0.88792 0.95028
Max 4.15647 0.85953 0.79292 0.85725
Min 2.08618 0.95385 0.85250 0.95542

∞
Mean 2.11057 0.95802 0.83667 0.95461
Max 2.11057 0.95802 0.83667 0.95461
Min 2.11057 0.95802 0.83667 0.95461

Manhattan

Prev.
work

Mean 4.04255 0.79183 0.73542 0.83851
Max 5.81974 0.76655 0.74292 0.83054
Min 2.59853 0.56694 0.91042 0.77710

1.50
Mean 3.97401 0.84907 0.73833 0.86281
Max 5.81974 0.76655 0.74292 0.83054
Min 2.91339 0.76078 0.81625 0.88033

1.75
Mean 4.08539 0.87605 0.73917 0.87027
Max 5.81974 0.76655 0.74292 0.83054
Min 3.05884 0.79812 0.81542 0.89099

2.00
Mean 4.22296 0.90349 0.74500 0.88178
Max 5.81974 0.76655 0.74292 0.83054
Min 3.20269 0.93333 0.72333 0.89595

∞
Mean 3.58608 0.87308 0.75667 0.87198
Max 3.58608 0.87308 0.75667 0.87198
Min 3.58608 0.87308 0.75667 0.87198

the dataset using the 2 different distance measures and 4
different threshold values (resulting into 16 different reduced
datasets), and employed the same 2 different measures and
the 3 combination rules described in Section 2.3 to test the
datasets and obtain a final measure of deviation for each
testing sample.

For each measure and combination rule, we established 10
different thresholds to determine whether an email is spam
or not, and selected the one which conducted to the best
results in each case.

We evaluated the accuracy by measuring precision, recall,
and Area Under the ROC Curve (AUC). We measured the
precision of the spam identification as the number of cor-
rectly classified spam emails divided by the number of cor-
rectly classified spam emails and the number of legitimate
emails misclassified as spam, SP = Ns→s/(Ns→s + Nl→s),
where Ns→s is the number of correctly classified spam and
Nl→s is the number of legitimate emails misclassified as
spam.

Additionally, we measured the recall of the spam email
messages, which is the number of correctly classified spam
emails divided by the number of correctly classified spam
emails and the number of spam emails misclassified as le-
gitimate, SR = Ns→s/(Ns→s + Ns→l), where Ns→s is the
number of correctly classified spam and Ns→l is the number
of spam emails misclassified as legitimate.

Finally, the AUC is defined as the area under the curve

formed by the union of the points representing False Positive
Rate (FPR) and True Positive Rate (TPR) for each possible
threshold in a plot where the X axis represents the FPR and
the Y axis represents the TPR. To calculate the AUC we
used the points corresponding to the 10 thresholds selected.
The lowest and the highest thresholds were selected in such a
way that they produced a 0% of False Negative Rate (FNR)
and a 0% of FPR respectively. The rest of thresholds were
selected by equally dividing the range between the first and
the last threshold. The area under the curve formed by these
points was calculated dividing it into 9 trapezoidal subareas
and computing them independently:

AUC =
i=9∑
i=0

(xi+1 − xi) · yi +
(xi+1 − xi) · (yi+1 − yi)

2

Tables 2 and 3 show the obtained results. To simplify
the results presented in Tables 2 and 3, we only show the
performance associated to the best threshold for each con-
figuration. Our anomaly-based spam filtering system is able
to correctly detect more than 95 % of junk mails while main-
taining the rate of misclassified legitimate emails lower than
5 % for the best configuration tested with SpamAssassin
(Manhattan distance, 2.00 threshold and Min rule) and an



Table 3: Results for the different reduced datasets of SpamAssassin, combination rules and distance measures.
SpamAssassin

Dataset Selection rule Threshold Prec. Rec. AUC

Euclidean

Prev.
work

Mean 2.13512 0.76144 0.97774 0.83574
Max 3.83970 0.72990 0.97658 0.80730
Min 1.39962 0.92103 0.93998 0.93987

1.50
Mean 2.27873 0.77587 0.97278 0.83044
Max 3.66095 0.72592 0.98481 0.78032
Min 1.47257 0.95677 0.87553 0.94392

1.75
Mean 2.43757 0.76615 0.96973 0.81427
Max 3.64738 0.72674 0.98217 0.77337
Min 1.50019 0.95161 0.86297 0.93374

2.00
Mean 2.54008 0.73190 0.97795 0.78741
Max 3.58818 0.71212 0.98112 0.76317
Min 1.51793 0.92955 0.85876 0.91770

∞
Mean 1.55007 0.76339 0.98186 0.83639
Max 1.55007 0.76339 0.98186 0.83639
Min 1.55007 0.76339 0.98186 0.83639

Manhattan

Prev.
work

Mean 2.44136 0.91033 0.92848 0.93379
Max 5.29903 0.69589 0.99958 0.73404
Min 1.37525 0.91527 0.97764 0.96504

1.50
Mean 3.01706 0.91716 0.91793 0.92964
Max 5.29349 0.69558 1.00000 0.72957
Min 2.07288 0.90819 0.93597 0.93198

1.75
Mean 3.14866 0.89718 0.91857 0.91760
Max 5.29349 0.69552 1.00000 0.70210
Min 2.07288 0.94005 0.89483 0.93266

2.00
Mean 3.52854 0.83624 0.95179 0.90021
Max 4.97643 0.69558 1.00000 0.69474
Min 2.33412 0.91584 0.95274 0.95378

∞
Mean 2.37407 0.91779 0.93270 0.93985
Max 2.37407 0.91779 0.93270 0.93985
Min 2.37407 0.91779 0.93270 0.93985

(a) Dataset reduction rate and the accuracy achieved
with each reduced dataset of LingSpam.

(b) Dataset reduction rate and the accuracy achieved
with each reduced dataset of SpamAssassin.

Figure 3: The continuous line represents the increasing reduction rate (the higher the rate, the lower the
number of samples in the reduced dataset), while the dotted lines represent the area under the ROC curve
(AUC) obtained with each reduced dataset.

improvable 10 % rate with LingSpam (Euclidean distance,
1.50 of threshold and Min rule). As it can be observed, min
combination rule achieved the best results for all configura-
tions.

Figures 4 and 5 show 6 different plots for each different
distance measure and selection rule. In each plot we can
observe 4 ROC curves corresponding to the 4 different re-

duced datasets. We can observe that in some of the cases,
the ROC curve shows better results when the threshold em-
ployed for reduction is ∞ (and thus, the number of vectors
to compare with, is only 1). Figures 3(a) and 3(b) repre-
sent the evolution for the Max selector. Concretely, as the
number of vectors is reduced, the system looses accuracy for
SpamAssassin and maintains it for LingSpam. Nevertheless,



(a) ROC curve for the Euclidean distance and Mean se-
lector.

(b) ROC curve for the Manhattan distance and Mean
selector.

(c) ROC curve for the Euclidean distance and Max se-
lector.

(d) ROC curve for the Manhattan distance and Max
selector.

(e) ROC curve for the Euclidean distance and Min se-
lector.

(f) ROC curve for the Manhattan distance and Min se-
lector.

Figure 4: ROC curves for the different experimental configurations applied to LingSpam. Each figure shows
4 ROC curves corresponding to the different reduced datasets.

when the samples are compared against the mean vector,
the results obtained improve and are even better than the
ones achieved for the not reduced dataset (Euclidean and
Manhattan distances with Max selector, shown in Figures
4(c), 5(c), 4(d), 5(d)).

This behaviour is more noticeable for Max selector, owing
to the fact that this selector is more sensitive to groups of
vectors distant from the normality representation and can af-
fect in a negative way as it alters the distance value obtained.
In contrast, the Min selector achieved the best results in all

cases. In particular, the results obtained for min selector
with an ∞ threshold are sounder than the ones obtained
without reduction in the case of the LingSpam dataset but
are worse for the SpamAssassin dataset.

4. DISCUSSION AND CONCLUSIONS
This method improves a previous work where we pre-

sented the first spam filtering method based on anomaly
detection [20] that reduces the necessity of labelling spam
messages and only employs the representation of legitimate
emails. In this paper, we enhance that system applying



(a) ROC curve for the Euclidean distance and Mean
selector.

(b) ROC curve for the Manhattan distance and Mean
selector.

(c) ROC curve for the Euclidean distance and Max se-
lector.

(d) ROC curve for the Manhattan distance and Max
selector.

(e) ROC curve for the Euclidean distance and Min se-
lector.

(f) ROC curve for the Manhattan distance and Min
selector.

Figure 5: ROC curves for the different experimental configurations applied to SpamAssassin. Each figure
shows 4 ROC curves corresponding to the different reduced datasets.

a data reduction algorithm that boosts scalability in the
anomaly detection process, enabling a much more efficient
comparison of samples. We show that this improvement
reduces drastically the processing time, while maintaining
detection and false positive rates stable. As opposite to
other approaches, anomaly detection systems do not need
previously labelled data of both classes (i.e., spam and le-
gitimate), as they measure the deviation of email samples to
normality (legitimate emails). In this way, this approach re-
duces significantly the labelling efforts required by machine-
learning methods.

Although anomaly detection systems tend to produce high

false positive rates, our experimental results show very low
values in every case. Furthermore, accuracy is not affected
by the dataset reduction process. It can be observed that
the AUC does not vary significantly as the number of vec-
tors in the dataset decreases. Even when a single centroid
vector is used, results are still sound, or, in some cases, even
better than the ones obtained with no reduction. This fact
brings us to the conclusion that it is possible to determine a
single representation for legitimate emails, and that this sin-
gle representation is sufficiently accurate to classify as spam
any sample whose representation deviates from our model.

Nevertheless, there are some limitations that should be



taken into account in further work. First, the Quality Thresh-
olds and the thresholds of each selection rule have been se-
lected through empirical observation. An extensive analysis
is mandatory in order to detect possible optimisations. An
automated process could select the best threshold combina-
tions to improve the results of our filtering system. Fur-
thermore, the difference in the results between LingSpam
and SpamAssassin datasets will be subject to further study
to provide a more comprehensive understanding of the be-
haviour of our proposed method with datasets of different
nature.

Secondly, this study assumes that spam emails represent
the anomalous messages. According to nowadays junk email
traffic volume and to the characteristics of this type of mes-
sages this assumption may be incorrect. Further work will
focus on this topic, comparing both approaches, spam as
anomaly and legitimate emails as anomaly.

Finally, the datasets we employed should be extended to
more current ones in order to test the method against bigger
collections in size and also with different legitimate emails.
In this way, the TREC 2007 Public Corpus [8], which con-
tains 75,419 messages, presents as a good choice in order to
extend this study and our future work.
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