
Collective Classification for Spam Filtering

Carlos Laorden, Borja Sanz, Igor Santos, Patxi Galán-Garćıa, and
Pablo G. Bringas

DeustoTech Computing - S3Lab, University of Deusto
Avenida de las Universidades 24, 48007 Bilbao, Spain

{claorden,borja.sanz,isantos,patxigg,pablo.garcia.bringas}@deusto.es

Abstract. Spam has become a major issue in computer security be-
cause it is a channel for threats such as computer viruses, worms and
phishing. Many solutions feature machine-learning algorithms trained
using statistical representations of the terms that usually appear in the
e-mails. Still, these methods require a training step with labelled data.
Dealing with the situation where the availability of labelled training in-
stances is limited slows down the progress of filtering systems and offers
advantages to spammers. Currently, many approaches direct their efforts
into Semi-Supervised Learning (SSL). SSL is a halfway method between
supervised and unsupervised learning, which, in addition to unlabelled
data, receives some supervision information such as the association of
the targets with some of the examples. Collective Classification for Text
Classification poses as an interesting method for optimising the classifi-
cation of partially-labelled data. In this way, we propose here, for the first
time, Collective Classification algorithms for spam filtering to overcome
the amount of unclassified e-mails that are sent every day.

Keywords: Spam filtering, collective classification, semi-supervised learn-
ing

1 Introduction

Flooding inboxes with annoying and time-consuming messages, more than 85%
of received e-mails are spam1.

Several approaches have been proposed by the academic community to solve
the spam problem [1–4]. Among them, the termed as statistical approaches [5] use
machine-learning techniques to classify e-mails. These approaches have proved
their efficiency detecting spam and are the most extended technique to fight it.
In particular, the use of the Bayes’ theorem is widely used by the anti-spam
filters (e.g., SpamAssasin [6], Bogofilter [7], and Spamprobe [8]).

These statistical approaches are usually supervised, i.e., they need a train-
ing set of previously labelled samples. These techniques perform better as more
training instances are available. It means that a significant amount of previous
labelling work is needed to increase the accuracy of the models. This work in-
cludes a gathering phase in which as many e-mails as possible are collected. Then,

1 http://www.junk-o-meter.com/stats/index.php



each e-mail has to be classified as spam or legitimate. Finally, machine-learning
models are generated based upon the labelled data.

This task is usually performed for text categorisation. Since text classification
mostly uses the content of the documents and external sources to build accurate
document classifiers, there is a great effort in the scientific community [9–11] di-
rected towards the link structure among documents, to improve the performance
of document classification.

The connections that can be found within documents vary from the most
common citation graph, such as papers citing other papers or websites linking
other websites, to links constructed from relationships including: co-author, co-
citation, appearance at a conference venue, and others. The combination of these
connections leads to the creation of an interlinked collection of text documents.

In some cases, it is interesting to determine the topic of not just a single
document, but to infer it for a collection of unlabelled documents. Collective
classification tries to collectively optimise the problem taking into account the
connections present among the documents. This is a semi-supervised technique,
i.e., uses both labelled and unlabelled data – typically a small amount of labelled
data and a large amount of unlabelled data – that reduces the labelling work.

Given this background, we propose the first spam filtering system that uses
collective classification to optimise the classification performance. Through this
approach, we minimise the necessity of labelled e-mails without a significant
penalisation of the accuracy of detection.

Summarising, our main findings are the following: (i) we describe how to
adopt collective classification for spam filtering, (ii) we try to determine which
is the optimal size of the labelled dataset for collective-classification-based spam
filtering, and (iii) we show that this approach can reduce the efforts of labelling
e-mails while maintaining a high accuracy rate.

The reminder of this paper is organised as follows. Section 2 describes the
process of using collective classification applied to the spam filtering problem.
Section 3 details the experiments performed and presents the results. Finally,
Section 4 concludes and outlines avenues for future work.

2 Collective Classification for Spam Filtering

Collective classification is a combinatorial optimization problem, in which we
are given a set of documents, or nodes, D = {d1, ..., dn} and a neighbourhood
function N , where Ni ⊆ D\{Di}, which describes the underlying network struc-
ture [12]. Being D a random collection of documents, it is divided into two sets
X and Y where X corresponds to the documents for which we know the correct
values and Y are the documents whose values need to be determined. Therefore,
the task is to label the nodes Yi ∈ Y with one of a small number of labels,
L = {l1, ..., lq}.

Since the spam problem can be tackled as a text classification problem, we use
the Waikato Environment for Knowledge Analysis (WEKA) [13] and its Semi-



Supervised Learning and Collective Classification plugin2. In the remainder of
this section we review the collective algorithms used in the empirical evaluation.

2.1 CollectiveIBk

It uses internally WEKA’s classic IBk algorithm, implementation of the K-
Nearest Neighbour (KNN), to determine the best k on the training set and
builds then, for all instances from the test set, a neighbourhood consisting of k
instances from the pool of train and test set (either a näıve search over the com-
plete set of instances or a k-dimensional tree is used to determine neighbours).
All neighbours in such a neighbourhood are sorted according to their distance
to the test instance they belong to. The neighbourhoods are sorted according to
their ‘rank’, where ‘rank’ means the different occurrences of the two classes in
the neighbourhood.

For every unlabelled test instance with the highest rank, the class label is de-
termined by majority vote or, in case of a tie, by the first class. This is performed
until no further unlabelled test instances remain. The classification terminates
by returning the class label of the instance that is about to be classified.

2.2 CollectiveForest

It uses WEKA’s implementation of RandomTree as base classifier to divide the
test set into folds containing the same number of elements. The first iteration
trains using the original training set and generates the distribution for all the
instances in the test set. The best instances are then added to the original
training set (being the number of instances chosen the same as in a fold).

The next iterations train with the new training set and generate then the
distributions for the remaining instances in the test set.

2.3 CollectiveWoods & CollectiveTree

CollectiveWoods works like CollectiveForest using CollectiveTree instead of Ran-
domTree.

Collective tree is similar to WEKA’s original RandomTree classifier, it splits
the attribute at that position that divides the current subset of instances (train-
ing and test instances) into two halves. The process finishes if one of the following
conditions is met:

– Only training instances would be covered (the labels for these instances are
already known).

– Only test instances in the leaf, case in which distribution from the parent
node is taken.

– Only training instances of one class, case in which all test instances are
considered to have this class.

2 http://www.scms.waikato.ac.nz/~fracpete/projects/collectiveclassification



To calculate the class distribution of a complete set or a subset, the weights
are summed up according to the weights in the training set, and then normalised.
The nominal attribute distribution corresponds to the normalised sum of weights
for each distinct value and, for the numeric attribute, distribution of the binary
split based on median is calculated and then the weights are summed up for the
two bins and finally normalised.

2.4 RandomWoods

It works like WEKA’s classic RandomForest but using CollectiveBagging (classic
Bagging, a machine learning ensemble meta-algorithm to improve stability and
classification accuracy, extended to make it available to collective classifiers)
in combination with CollectiveTree in contrast to RandomForest, which uses
Bagging and RandomTree.

3 Empirical Evaluation

To evaluate the collective algorithms we used the Ling Spam3 and SpamAssas-
sin4 datasets. Ling Spam consists of a mixture of both spam and legitimate
messages retrieved from the Linguistic list, an e-mail distribution list about lin-
guistics. It comprises 2,893 different e-mails, of which 2,412 are legitimate e-mails
obtained by downloading digests from the list and 481 are spam e-mails retrieved
from one of the authors of the corpus (for a more detailed description of the cor-
pus please refer to [14, 15]). From the 4 different datasets provided in this corpus,
each of one with different pre-process steps, we choose the Bare dataset, which
has no pre-processing.

The SpamAssassin public mail corpus is a selection of 1,897 spam messages
and 4,150 legitimate e-mails. Unfortunatelly, due to computational restrictions
we were obliged to reduce the dataset to a 50%, so the final used dataset com-
prises 3,023 e-mails, of which 964 are spam e-mails and 2,059 are legitimate
messages.

In addition, we performed for both datasets a Stop Word Removal [16] based
on an external stop-word list5 and removed any non alpha-numeric character.

We then used the Vector Space Model (VSM) [17], an algebraic approach for
Information Filtering (IF), Information Retrieval (IR), indexing and ranking,
to create the model. This model represents natural language documents in a
mathematical manner through vectors in a multidimensional space.

We extracted the top 1,000 attributes using Information Gain [18], an algo-
rithm that evaluates the relevance of an attribute by measuring the information
gain with respect to the class: IG(j) =

∑
vj∈R

∑
Ci

P (vj , Ci)·(P (vj , Ci)/(P (vj)·
P (Ci)) where Ci is the i-th class, vj is the value of the j-th interpretation,

3 http://nlp.cs.aueb.gr/software and datasets/lingspam public.tar.gz
4 http://spamassassin.apache.org/publiccorpus/
5 http://www.webconfs.com/stop-words.php



P (vj , Ci) is the probability that the j-th attribute has the value vj in the class
Ci, P (vj) is the probability that the j-th interpretation has the value vj in the
training data, and P (Ci) is the probability of the training dataset belonging to
the class Ci.

We constructed an ARFF file [19] (i.e., Attribute Relation File Format) with
the resultant vector representations of the e-mails to build the aforementioned
WEKA’s classifiers.

To evaluate the results, we measured the most frequently used for spam:
precision, recall and Area Under the ROC Curve (AUC). We measured the
precision of the spam identification as the number of correctly classified spam e-
mails divided by the number of correctly classified spam e-mails and the number
of legitimate e-mails misclassified as spam, SP = Ns→s/(Ns→s +Nl→s), where
Ns→s is the number of correctly classified spam and Nl→s is the number of
legitimate e-mails misclassified as spam.

Additionally, we measured the recall of the spam e-mail messages, which
is the number of correctly classified spam e-mails divided by the number of
correctly classified spam e-mails and the number of spam e-mails misclassified
as legitimate, SR = Ns→s/(Ns→s +Ns→l).

Finally, we measured the Area Under the ROC Curve (AUC), which estab-
lishes the relation between false negatives and false positives [20]. The ROC curve
is represented by plotting the rate of true positives (TPR) against the rate of
false positives (FPR). Where the TPR is the number of spam messages correctly
detected divided by the total number of junk e-mails, TPR = TP/(TP + FN),
and the FPR is the number of legitimate messages misclassified as spam divided
by the total number of legitimate e-mails, FPR = FP/(FP + TN).

For our experiments we tested the different configurations of the collective
algorithms with sizes for the X set of known instances, varying from a 10% to a
90% of the instances used for training (i.e., instances known during the test).

Fig. 1. Precision of the evaluation of collective algorithms for spam filtering with dif-
ferent sizes for the X set of known instances. Solid lines correspond to Ling Spam and
dashed lines correspond to SpamAssassin.



Fig. 1 shows the precision of the different algorithms. Collective KNN shows
significant improvements with Ling Spam when the number of known instances
increases (from 0.68 with 10% to 0.89 with 90%), but remains constant with
SpamAssassin (between 0.93 and 0.94). Collective Forest was the best collective
algorithm when evaluating the precision achieving between 0.99 and 1.00 for
Ling Spam and no less than 0.93 for SpamAssassin. Finally, Collective Woods
and Random Woods experience some improvements when increasing the number
of known instances when testing with both datasets.

Fig. 2. Recall of the evaluation of collective algorithms for spam filtering with different
sizes for the X set of known instances. Solid lines correspond to Ling Spam and dashed
lines correspond to SpamAssassin.

Fig. 2 shows the recall of the different algorithms. Again, Collective KNN
shows better results, although not good enough, when the number of known
instances increases: from a 0.32 with 10% to 0.75 with 90% for Ling Spam and
from 0.13 with 10% to 0.83 with 90%. Collective Forest presents a poor 0.78 for
10% with Ling Spam but behaves better with the rest of configurations in both
datasets: a minimum of 90% and a maximum of 0.97. Finally, Collective Woods
and Random Woods behave similar, with very poor recall, achieving maximums
with 90% of 0.16 and 0.20 respectively for Ling Spam and 0.68 and 0.66 for
SpamAssassin.

Finally, Fig. 3 shows the Area under de ROC curve (AUC) of the different
algorithms. Once more, the performance of Collective KNN increases with more
known instances: from 0.64 with 10% to 0.87 with 90% for Ling Spam and
from 0.56 to 0.90 for SpamAssassin. Collective Forest offers a perfect 1.00 for
every configuration with Ling Spam and a minimum of 0.99 with SpamAssassin
posing as a suitable choice for collective classification. Finally, Collective Woods
and Random Woods offer similar results, increasing from 0.86 both to 0.92 and
0.90 respectively with Ling Spam and from 0.93 and 0.92 to 0.94 both with
SpamAssassin.



Fig. 3. Area under de ROC curve (AUC) evaluation of collective algorithms for spam
filtering with different sizes for the X set of known instances. Solid lines correspond to
Ling Spam and dashed lines correspond to SpamAssassin.

4 Discussion and Concluding Remarks

Collective Classification algorithms for spam filtering pose as a suitable approach
for optimising the classification of partially-labelled data and, therefore, over-
come the amount of unclassified spam e-mails that are created every day.

In particular, Collective Forest shows great results for every configuration
of known instances (i.e., different sizes for the X set of known instances), with
values above 0.93 of precision, above 0.90 of recall (only offering a poor recall of
0.78 with a 10% of X ) and almost 1.00 for all configurations of AUC.

Since precision and AUC are slightly affected with the variation of known
instances, values of X , to determine the optimal size of labelled data, and as-
suming that Collective Forest is the chosen algorithm, the recall should be the
factor to take into account. For a value of X = 60%, CollectiveForest achieves
its maximums, only experiencing a loss of 0.03 of recall for Ling Spam.

As the number of unsolicited bulk messages increases, the classification and
labelling steps, that commonly supervised methods make use of, become more
unattainable. To revert this situation, we propose the first spam filtering system
that uses collective classification to optimise classification performance. Through
the algorithms introduced, the necessity of labelled e-mails is minimised, by a
40%, without a significant penalisation in the detection capabilities.

Future work will be focused on three main directions. First, we plan to extend
our study of collective classification by applying more algorithms to the spam
problem. Second, we will select different features as data to train the models.
Finally, we will perform a more complete analysis on the effects of the labelled
degree of the data.



References

1. Robinson, G.: A statistical approach to the spam problem. Linux J. 2003 (March
2003) 3

2. Chirita, P., Diederich, J., Nejdl, W.: MailRank: using ranking for spam detection.
In: Proceedings of the 14th ACM international conference on Information and
knowledge management, ACM (2005) 373–380

3. Schryen, G.: A formal approach towards assessing the effectiveness of anti-spam
procedures. In: System Sciences, 2006. HICSS’06. Proceedings of the 39th Annual
Hawaii International Conference on. Volume 6., IEEE (2006) 129–138

4. Chiu, Y., Chen, C., Jeng, B., Lin, H.: An Alliance-Based Anti-spam Approach.
In: Natural Computation, 2007. ICNC 2007. Third International Conference on.
Volume 4., IEEE (2007) 203–207

5. Zhang, L., Zhu, J., Yao, T.: An evaluation of statistical spam filtering tech-
niques. ACM Transactions on Asian Language Information Processing (TALIP)
3(4) (2004) 243–269

6. Mason, J.: Filtering spam with spamassassin. In: HEANet Annual Conference.
(2002)

7. Raymond, E.: Bogofilter: A fast open source bayesian spam filters (2005)
8. Burton, B.: Spamprobe-bayesian spam filtering tweaks. In: Proceedings of the

Spam Conference. (2003)
9. Dengel, A., Dubiel, F.: Clustering and classification of document structure-a ma-

chine learning approach. Document Analysis and Recognition, International Con-
ference on 2 (1995) 587

10. Fujisawa, H., Nakano, Y., Kurino, K.: Segmentation methods for character recogni-
tion: from segmentation to document structure analysis. Proceedings of the IEEE
80(7) (2002) 1079–1092

11. Denoyer, L., Gallinari, P.: Bayesian network model for semi-structured document
classification. Information Processing & Management 40(5) (2004) 807–827

12. Namata, G., Sen, P., Bilgic, M., Getoor, L.: Collective classification for text clas-
sification. Text Mining (2009) 51–69

13. Garner, S.: Weka: The Waikato environment for knowledge analysis. In: Proceed-
ings of the New Zealand Computer Science Research Students Conference. (1995)
57–64

14. Androutsopoulos, I., Koutsias, J., Chandrinos, K., Paliouras, G., Spyropoulos, C.:
An evaluation of naive bayesian anti-spam filtering. In: Proceedings of the work-
shop on Machine Learning in the New Information Age. (2000) 9–17

15. Sakkis, G., Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Spyropoulos, C.,
Stamatopoulos, P.: A memory-based approach to anti-spam filtering for mailing
lists. Information Retrieval 6(1) (2003) 49–73

16. Wilbur, W., Sirotkin, K.: The automatic identification of stop words. Journal of
information science 18(1) (1992) 45–55

17. Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing.
Communications of the ACM 18(11) (1975) 613–620

18. Kent, J.: Information gain and a general measure of correlation. Biometrika 70(1)
(1983) 163–173

19. Holmes, G., Donkin, A., Witten, I.H.: Weka: a machine learning workbench. (Au-
gust 1994) 357–361

20. Singh, Y., Kaur, A., Malhotra, R.: Comparative analysis of regression and machine
learning methods for predicting fault proneness models. International Journal of
Computer Applications in Technology 35(2) (2009) 183–193


