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Abstract—Microshrinkages are known as probably the most
difficult defects to avoid in high-precision foundry. This failure
renders the casting invalid, with the subsequent cost increment.
Modelling the foundry process as an expert knowledge cloud
allows machine learning algorithms to foresee the value of a
certain variable, in this case, the probability that a microshrin-
kage appears within a casting. However, this approach needs to
label every instance for generating the model that can classify
the castings. In this paper, we present a new approach for
detecting faulty castings inspired on anomaly detection methods.
This approach represents correct castings as feature vectors
of information extracted from the foundry process. Thereby, a
casting is classified as correct or not correct by measuring its
deviation to the representation of normality (i.e., correct castings).
We show that this method achieves good accuracy rates to reduce
the cost and testing time in foundry production.

I. INTRODUCTION

The casting production or the foundry process is considered
as one of the main factors influencing and improving the
development of the world economy. Since the ancient time,
such as it is showed in Biblical verses, Egyptian drawings
or illustrations on Greek vases, it has already existed an
advanced casting handicraft. When considering the develop-
ment of foundry engineering in a historical aspect we tend
to connect it with the development of the human civilisation
and the attribution of a high position among the oldest world
professions. Consequently, the casting production has always
been considered like an ancient-magic-surrounded activity.

The actual capacity of the world’s casting production, which
is higher than 60 million metric tones per year, is strongly
diversified [1]. The last decade brought significant changes in
the world map of the greatest casting producers. Currently, the
biggest producer is China, closely followed by Europe. These
and other countries supply key pieces to many other industries,
such as automotive, naval, weapon and aeronautic. Therefore,
the foundry process is subject to very strict safety controls to
assure the quality of the manufactured castings because, as
one may think, the tiniest defect may become fatal.

The techniques for the assurance of failure-free foundry
processes are exhaustive production control and diverse simu-
lation techniques [2]. Many of the techniques used can only be
applied when the casting is done. Thus, when a faulty casting
is detected, it must be remelted, which can be translated into a
cost increment. There are also other tests that have to destroy
the castings, called destructive inspections, e.g., the tests for
checking the mechanical properties. Likewise, these tests must

be done when the casting is finished and the destruction of the
casting also means a cost increment.

Unfortunately, these methods are still incapable of preven-
ting what is known to be the most difficult flaw in ductile
iron castings, namely the microshrinkage. More specifically,
this imperfection, also called secondary contraction, consists
of tiny porosities that appear inside the casting when it is
cooling down. The difficulty of its detection is due to the fact
that almost all the parameters of the foundry process influence
the apparition of microshrinkages.

Indeed, the problem of the microshrinkage apparition is
very difficult to solve due to the following reasons [3]: (i)
A huge amount of data is required to be managed that it is
not prioritised or categorised in any way, (ii) it is very hard
to find cause-effect relationships between the variables of the
system and (iii) the human knowledge used in this task usually
tends to be subjective, incomplete and not subjected to any test
[4].

Currently, machine learning is being used increasingly in
the field of metallurgy in order to solve the aforementioned
problems. One of the most widely used methods is the
application of neural networks in several aspects such us
classifying foundry pieces [5], optimising casting parameters
[6], detection of causes of casting defects [7] and in other
problems [8]. Similarly, other experiments involving K-nearest
neighbour algorithm include fault detection of semiconductor
manufacturing processes [9]. Bayesian networks are also used
as previous methods in Bayesian Neural networks methodo-
logy (e.g., predicting the ferrite number in stainless steel [10]).

In our previous work, we tested several machine-learning
classifiers [11], [12], e.g., Bayesian networks, support vector
machines, decision trees, artificial neural networks among
others, to identify which is the best classifier to predict
microshrinkages and, also, to reduce the noise in the data
gathering process produced by the foundry workers [13].

Despite the good accuracy level achieved in the previous
works, this kind of approaches requires the whole dataset
to be labelled, i.e., every instance of the dataset must be
classified in correct or faulty casting before the training of
the machine-learning models. The reason underlying this task
is that the labelled dataset is the knowledge base employed
by the machine-learning classifiers to generate the complete
classification model. However, the labelling work is a hard,
expensive and time-consuming work.

Given this background, we present a method to classify



castings and to foresee microshrinkages that is highly ins-
pired in anomaly detection methods. This type of approach
is capable of determining whether a casting contains the
secondary contraction defect or not by comparing features of
the casting extracted from the foundry process with a dataset
composed only by correct castings. Thus, when a casting
under prediction presents a considerable deviation to what is
considered as usual (the previously labelled correct castings), it
is considered that the casting has some flaw, and specifically in
this case, there is a high probability that the casting has some
microshrinkages. This method deals with the aforementioned
problem, achieving a reduction in the number of castings
required to be labelled.

Anomaly detection techniques have been applied in the
industrial damage detection domain. This domain can be
classified into two others: (i) dealing with defects in mecha-
nical components and (ii) dealing with defects in physical
structures. For instance, this type of anomaly-based approach
was previously used for fault detection in mechanical units
[14] and, also, for structural defect detection [15].

Summarising, our main contributions are: (i) we select a set
of variables extracted from the foundry process to determine
whether a casting has a microshrinkage or not and we provide
a relevance measure for each variable based on information
gain, (ii) we propose an anomaly-detection-based architecture
for microshrinkage prediction, by means of weighted compa-
rison against a dataset composed of only correct castings and
(iii) we evaluate the method using three different deviation
measures and show that this method can achieve high accuracy
rates while reducing the number of labelled castings required.

The remainder of the paper is organised as follows. Section
II details the casting production process and presents tone of
the most difficult defect to avoid, the microshrinkage. Section
III introduces in deeper detail the concept of the anomaly
detection method explaining the distance measures tested in
this research. Section IV describes the experiments performed
and examines the obtained results. Finally, section V discusses
the main implications of our results while describes the main
limitations of our approach and outlines the avenues of future
work.

II. FOUNDRY PROCESS AND MICROSHRINKAGES

The foundry process can be considered as one of the axes
of our society. However, a task that seems simple becomes
complex due to the hard conditions in which it is carried
out. Besides the casting process, the foundry workers produce
castings that are close to the final product shape, i.e., ‘near-
net shape’ components. To this end, the production has to pass
through several stages in which the castings are transformed
to obtain the final casting.

Although all of the foundry process are not equal, the work
flow performed in foundries is very similar to the work-flow
shown in Fig. 1. The most important stages are the following
[16]:

• Pattern making: In this step, moulds (exteriors) or cores
(interiors) are produced in wood, metal or resin for being

used to create the sand moulds in which the castings will
be made.

• Sand mould and core making: The sand mould is the
most widely extended method for ferrous castings. Sand
is mixed with clay and water or other chemical binders.
Next, the specialised machines create the two halves of
the mould and join them together to provide a container
in which the metals are poured into.

• Metal melting: In this process (see 1 in Fig. 1), raw
materials are melt and mixed. Molten metal is prepared
in a furnace and depending on the choice of the furnace,
the quality, the quantity and the throughput of the melt
change.

• Casting and separation: Once the mixture is made,
the molten material is poured into the sand mould. It
can be done using various types of ladles or, in high
volume foundries, automated pouring furnaces. Later, the
metal begins to cool. This step (see 2 in Fig. 1) is
really important because the majority of the defects can
appear during this phase. Finally, when the casting has
been cooled enough to maintain the shape, the casting is
separated from the sand. The removed sand is recovered
for further uses.

• Removal of runners and risers: Some parts of the cas-
ting that had been used to help in the previous processes
are then removed. They can be detached by knocking off,
sawing or cutting.

• Finishing: To finish the whole process some actions are
usually performed, e.g., cleaning the residual sand, heat
treatment and rectification of defects by welding.

Fig. 1. Foundry process work-flow showing the different phases castings
have to pass through. More accurately, in 1 it is showed the metal melting
step, and in 2 it is showed the casting preparation and separation step.

The complexity of detecting faulty castings using an ex-ante
method arises principally from the high number of variables
that participate in the production process and, therefore, may
influence on the final design of a casting.



In consequence, the foundry process is simplified to solve
the aforementioned problem. In our case, the main variables to
control in order to predict the faulty castings can be classified
into metal-related and mould-related categories. Metal-related
variables are divided into the following categories:

• Composition: Type of treatment, inoculation and charges
[17].

• Nucleation potential and melt quality: Obtained by
means of a thermal analysis program [18], [19], [20].

• Pouring: Duration of the pouring process and tempera-
ture.

Mould-related variables can be split into the following
categories:

• Sand: Type of additives used, sand-specific features and
carrying out of previous test or not.

• Moulding: Machine used and moulding parameters.
The dimension and geometry of the casting also play a

very important role in this practice and, thus, we included
several variables to control these two features. We also took
into account other parameters regarding the configuration of
each machine working in the manufacturing process [21]. In
this way, we represent the castings with 24 variables [11].

A casting defect is an irregularity in the casting. Defects are
defined as conditions that make a casting to be corrected or
rejected. There are several defects that affect metal castings
such as, shrinkages, gas porosities or pouring metal defects
[16].

In this paper, we deal with microshrinkages. This kind of
defects usually appears during the cooling phase of the metal
but it cannot be noticed until the production is accomplished.
This flaw consists of a form of filamentary shrinkage in
which the cavities are very small but large in number and
can be distributed over a significant area of the casting, i.e., a
minuscule internal porosities or cavities. It is produced because
the metals are less dense as a liquid than as a solid and
the density of the metal increases and it solidifies while the
volume decreases in parallel. During this process, diminutive,
microscopically undetectable interdendritic voids may appear
leading to a reduction of the castings hardness and, in the
cases faced here (where the casting is a part of a very sensitive
piece), rendering the piece useless [22].

The way to examine castings is the usage of non-destructive
inspections. The most common techniques are X-ray and ultra-
sound emissions. Unfortunately, both require suitable devices,
specialised staff and quite a long time to analyse all the parts.
Moreover, every test have to be done once the casting is done.
Therefore, post-production inspection is not an economical
alternative to the pre-production detection of microshrinkages.

Although we have already obtained overall significant re-
sults through a machine-learning-based approach predicting
those imperfections [11], [23], [24], [25], [26], [27], [12],
[13], these approaches require a manual labour to label every
casting within the dataset. This process can be specially time-
consuming for several machine-learning models and hinders a
subsequent cost increment. Note that in the year 2009, China,

which is the biggest producer of castings in the world, produ-
ced 35.3 million tons of castings [1] and Europe, the second
producer, make 12 million tons of castings [1]. Although not
all the castings were labelled, the cost of the foundry workers
developing labelling tasks would be too high. Therefore, if
only a little piece of the production is labelled, the cost of the
prediction preprocessing steps will be reduced.

Therefore, we present here an anomaly-based approach that
only requires labelling the correct castings and that measures
the deviations of the inspected pieces with these previous
labelled castings. Such an approach will indeed reduce the
efforts of labelling castings, working with less information
available in beforehand.

To this end, as we mentioned before, we manage 24 varia-
bles extracted from the foundry process. We apply relevance
weights to each characteristic based on Information Gain
(IG) [28], which provides a measure for each characteristic
that shows its importance to consider whether a casting is
valid or not. These weights were calculated from a real
dataset acquired from a foundry specialised in safety and
precision components for the automotive industry. The dataset
is composed of 690 correct castings and 261 faulty castings,
and serve to obtain a better distance rating among samples.

III. ANOMALY DETECTION

Through the features described in the previous section, our
method represents valid castings as points in the feature space.
When a casting is being inspected our method starts by
computing the values of the point in the feature space. This
point is then compared with the previously calculated points
of the valid foundry castings.

To this end, distance measures are required. We have used
the following distance measures:

• Manhattan Distance. This distance between two points
v and u is the sum of the lengths of the projections of
the line segment between the points onto the coordinate
axes:

d(x, i) =
n∑

i=0

|xi − yi| (1)

where x is the first point; y is the second point; and xi

and yi are the ith component of first and second point,
respectively.

• Euclidean Distance. This distance is the length of the
line segment connecting two points. It is calculated as:

d(x, y) =

n∑
i=0

√
v2i − u2

i (2)

where x is the first point; y is the second point; and xi

and yi are the ith component of first and second point,
respectively.

• Cosine Similarity. It is a measure of similarity between
two vectors by finding the cosine of the angle between
them [29]. Since we are measuring distance and not



similarity we have used 1 − Cosine Similarity as a
distance measure:

d(x, y) = 1− cos (θ) = 1− v⃗ · u⃗
||v⃗|| · ||u⃗||

(3)

where v⃗ is the vector from the origin of the feature space
to the first point x, u⃗ is the vector from the origin of
the feature space to the second point y, v⃗ · u⃗ is the inner
product of v⃗ and u⃗. ||v⃗|| · ||u⃗|| is the cross product of v⃗
and u⃗. This distance ranges from 0 to 1, where 1 means
that the two evidences are completely different and 0
means that the evidences are the same (i.e., the vectors
are orthogonal between them).

By means of these measures, we are able to compute the
deviation of a casting respect to a set of not faulty castings.
Since we have to compute this measure with the points
representing valid castings, a combination metric is required
in order to obtain a final value of distance which considers
every measure performed. To this end, our system employs
3 simplistic rules: (i) select the mean value, (ii) select the
lowest distance value and (iii) select the highest value of the
computed distances. In this way, when our method inspects a
casting a final distance value is acquired, which will depend
on both the chosen distance measure and combination rule.

IV. EMPIRICAL VALIDATION

To evaluate our anomaly-based faulty casting detector, we
collected a dataset from a foundry specialised in safety and
precision components for the automotive industry, principally
in disk-brake support with a production over 45,000 tons a
year.

The experiments were focused exclusively in the micro-
shrinkage prediction. Note that, as aforementioned, micro-
shrinkages have internal presence, hence, the evaluation must
be done according to non-destructive X-ray, first, and ultra-
sound testing techniques thenceforth to ensure that even the
smallest microshrinkages are found [4].

The acceptance/rejection criterion of the studied models
resembles the one applied by the final requirements of the
customer (i.e., in the examined cases, the automotive industry).
According to the very restrictive quality standards imposed
by these clients, pieces flawed with an invalid microshrinkage
must be rejected.

In the validation, we worked with two different references,
i.e., type of pieces and, to evaluate the proposed method, with
the results of the non-destructive X-ray and ultrasound inspec-
tions from 951 production stocks performed in beforehand.
The dataset comprises 690 correct castings and 261 faulty
castings.

Specifically, we followed the next configuration for the
empirical validation:

1) Cross validation: Despite the small dataset, we had to
use as much of the available information to obtain a
proper evaluation of the data. To this end, we performed
a 5-fold cross-validation [30] over the correct castings
to divide them into 5 different divisions of 552 castings

for representing normality and 138 for testing. In this
way, each fold is composed of 552 not faulty castings
that will be used as representation of normality and 399
testing castings, from which 138 are valid castings and
261 are faulty castings.

2) Calculating distances and combination rules: We
extracted the characteristics described in Section II and
employed the 3 different measures and the 3 different
combination rules described in Section III to obtain a
final measure of deviation for each testing evidence.
More accurately, we applied the following distances: (i)
the Manhattan Distance, (ii) the Euclidean Distance and
(iii) the Cosine Similarity. For the combination rules we
have tested the followings: (i) the mean value, (ii) the
lowest distance and (iii) the highest value.

3) Defining thresholds: For each measure and combination
rule, we established 10 different thresholds to determine
whether a casting is valid or not.

4) Testing the method: We evaluated accuracy by mea-
suring False Negative Ratio (FNR) and False Positive
Ratio (FPR).
In particular, FNR is defined as:

FNR(β) =
FN

FN + TP
(4)

where TP is the number of faulty castings correctly
classified (true positives) and FN is the number of
faulty castings misclassified as valid castings (false
negatives).
On the other hand, FPR is defined as

FPR(α) =
FP

FP + TN
(5)

where FP is the number of valid castings incorrectly
detected as faulty castings while TN is the number of
valid castings correctly classified.

Table I shows the obtained results. Euclidean and Manhattan
distances, despite of consuming less processing time, have
achieved better results than cosine-similarity-based distance
for the tested thresholds. Moreover, our anomaly-based faulty
casting detector, for each distance measure, accomplished
its best results selecting the mean value for computing the
final distance of a casting respect to the not faulty castings.
In particular, our detector is able to detect more than 85%
of faulty castings (using Manhattan distance), maintaining
the rate of misclassified castings lower than 15%. However,
all the distances obtained similar results. Euclidean distance
achieves more than 84% of accuracy and cosine-similarity-
based obtains more than an 83% of accuracy.

Comparing with our previous works focused on microshrin-
kage [11], [12], the anomaly-based method achieves similar
results as many of the previously evaluated classifiers. In fact,
this method improves the behaviour of K-nearest neighbour
(from lower than 81% of accuracy to higher than 85%). In the
same way, the presented approach improves others classifiers
such us Bayesian networks learned using K2 and Hill climber



TABLE I
RESULTS FOR DIFFERENT COMBINATION RULES AND DISTANCE MEASURES. THE RESULTS IN BOLD ARE THE BEST FOR EACH COMBINATION RULE AND
DISTANCE MEASURE. OUR METHOD IS ABLE TO DETECT MORE THAN 85 % OF THE FAULTY CASTINGS WHILE MAINTAINING FPR LOWER THAN 15 %.

1− Cosine Similarity EuclideanDistance ManhattanDistance
Combination Threshold FNR FPR Threshold FNR FPR Threshold FNR FPR

Mean

0.10957 0.00000 0.92754 0.12932 0.00000 0.98406 0.23561 0.00000 0.99588
0.14659 0.06207 0.51014 0.14613 0.03831 0.68406 0.27519 0.03448 0.74928
0.18361 0.11111 0.25217 0.16293 0.08659 0.36377 0.31478 0.08352 0.38841
0.22063 0.15709 0.17971 0.17974 0.15172 0.27681 0.35436 0.14789 0.29420
0.25765 0.16092 0.15797 0.19654 0.15709 0.27246 0.39395 0.26820 0.18116
0.29468 0.16782 0.14203 0.21335 0.33487 0.14058 0.43353 0.46207 0.08406
0.33170 0.27739 0.10435 0.23015 0.61609 0.04638 0.47312 0.65977 0.03913
0.36872 0.36935 0.05652 0.24696 0.73103 0.01304 0.51270 0.77778 0.01449
0.40574 0.57701 0.02754 0.26376 0.78697 0.01304 0.55229 0.83525 0.00725
0.44276 0.72414 0.00000 0.28057 0.89195 0.00000 0.59187 0.93180 0.00000

Maximum

0.43994 0.00000 0.98116 0.22137 0.00000 1.00000 0.50955 0.00000 1.00000
0.50212 0.04215 0.71449 0.24592 0.03448 0.91594 0.56456 0.01992 0.95942
0.56431 0.07663 0.58406 0.27048 0.05747 0.78406 0.61956 0.04444 0.81449
0.62649 0.11418 0.38116 0.29503 0.11877 0.62319 0.67457 0.12337 0.56957
0.68867 0.15479 0.24638 0.31959 0.13793 0.41449 0.72957 0.26897 0.32319
0.75086 0.16092 0.17826 0.34414 0.18008 0.26522 0.78458 0.49579 0.14783
0.81304 0.16092 0.16232 0.36870 0.34483 0.20000 0.83958 0.68966 0.07826
0.87522 0.17241 0.15652 0.39325 0.66284 0.08696 0.89549 0.81456 0.01884
0.93741 0.36935 0.11739 0.41781 0.79464 0.03333 0.94959 0.92107 0.00870
0.99959 0.99080 0.00000 0.44236 0.98161 0.00000 1.00460 0.98161 0.00000

Minimum

0.00018 0.00000 0.83913 0.00423 0.00000 0.92754 0.00740 0.00000 1.00000
0.01207 0.39923 0.07826 0.01604 0.22146 0.23913 0.11820 0.71034 1.00000
0.02396 0.59387 0.03188 0.02785 0.36398 0.14493 0.22900 0.99004 1.00000
0.03585 0.70728 0.01594 0.03967 0.49732 0.08986 0.33980 1.00000 1.00000
0.04774 0.71648 0.00870 0.05148 0.63908 0.06957 0.45060 1.00000 1.00000
0.05962 0.72567 0.00435 0.06329 0.71571 0.02609 0.56140 1.00000 0.96377
0.07151 0.72567 0.00435 0.07510 0.72261 0.01739 0.67220 1.00000 0.58261
0.08340 0.73333 0.00290 0.08692 0.72567 0.00580 0.78300 1.00000 0.15507
0.09529 0.73563 0.00145 0.09873 0.73410 0.00290 0.89380 1.00000 0.02174
0.10718 0.73563 0.00000 0.11054 0.73563 0.00000 1.00460 1.00000 0.0000

algorithms and Naı̈ve Bayes. Otherwise, the Bayesian net-
works learnt with Tree Augmented Naı̈ve (TAN) and Artificial
Neural Networks (ANN), using Multilayer Perceptron and
Backpropagation algorithm achieved a close behaviour to
this anomaly-based approach. Anyhow, this method cannot
improve other classifiers such as Support Vector Machines,
or Decision Trees: higher than 90% of accuracy.

Besides, FNR and FPR established the cost of misclassifica-
tion. It is important to set the cost of false negatives (1−FNR)
and false positives, in other words, establish whether is better
to classify a faulty casting as correct casting or to classify a co-
rrect casting as a casting with a microshrinkage. In particular,
since our method is developed to predict castings as correct or
faulty, one may think that is more important to minimise the
false negative ratio (castings which have a microshrinkage but
we do not detect in beforehand) than to fail indicating that
our well done casting may have a microshrinkage. In fact,
this requirement comes from foundries because they adopt a
conservative point of view to assure their cost ratios.

Even though the system has not raised a 100% accuracy
level, it has achieved significant results (more than 85%)
that may positively impact the production of high precision
foundries. Our method reduces in a significant way the cost
and the duration of the actual testing methods and, also, detects
microshrinkages in beforehand.

To include the anomaly-based detection method in foun-
dries, the behaviour of the system can be performed in the

following way: (i) when the system detects that a microshrin-
kage ought to appear, the operator may change the factors to
produce this reference or the reference (and, thus, skip the
cost of having to manufacture it again) or (ii) being a part
of a Model Predictive Control system [31], specifically, inside
the prediction step. Using the second approach the system can
foresee defects and determine the required changes to solve
them in an automatic or semi-automatic way.

V. DISCUSSION AND CONCLUSIONS

Foreseeing the apparition of microshrinkages in ductile iron
castings is one of the most hard challenges in foundry-related
research. Our work in [3], [11] pioneered the application of
Artificial Intelligence to the prediction of microshrinkages.

This time, our main contribution is the anomaly-detection-
based approach employed for miscroshrinkage detection. In
contrast to our previous approaches, this method only needs
to previously label the correct castings and measures the
deviation of the castings under inspection respect to norma-
lity (castings without the microshrinkage defect). Although
anomaly detection systems tend to produce high error rates
(specially, false positives), our experimental results show low
values. This proofs the validity of our initial hypothesis.

Anyway, it presents several limitations that should be stu-
died in a further work. Firstly, we cannot identify different
levels of warnings as we did in our previous works. In
this case, we only can classify the castings as correct or



faulty. Nevertheless, we could compute it using another ano-
maly detection techniques such as clustering-based or nearest-
neighbour-based anomaly detection.

Secondly, this kind of techniques based on the measurement
of distances cannot achieve good results if the training data is
disperse. In other words, if the normality cannot be represented
as a compact group of instances, the threshold that allows
to divide the instances into correct and faulty cannot be set
correctly. Nevertheless, this fact can be solved due to the
nature of the production process: all the castings are always
produced in similar way. Hence, generated vectors of castings
are close to each other, representing the normality easily and,
therefore, allowing to measure the distances between correct
and faulty castings.

Finally, it is important to consider efficiency and processing
time. Our system compares each casting against a relative
big dataset (244 vectors for each fold). Despite Euclidean
and Manhattan distances are easy to compute, cosine distance
and more complex distance measures such as Mahalanobis
distance may take too much time to process every casting
under analysis. For this reason, in further work we will
emphasise on improving the system efficiency by reducing
the whole dataset to a limited amount of samples which is
sufficiently representative.
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simulation tools,” in Proceedings of the 16th European Conference and
Exhibition on Digital Simulation for Virtual Engineering, 2006, invited
talk.

[3] Y. Penya, P. Garcı́a Bringas, and A. , Zabala, “Advanced fault prediction
in high-precision foundry production,” in Proceedings of the 6th IEEE
International Conference on Industrial Informatics, 2008, pp. 1673–
1677.
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[20] P. Larrañaga, J. Sertucha, and R. Suárez, “Análisis del proceso de soli-
dificación en fundiciones grafı́ticas esferoidales.” Revista de Metalurgia,
vol. 42, no. 4, pp. 244–255, 2006.
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