
Collective Classification for Packed Executable
Identification

Igor Santos
isantos@deusto.es

Xabier Ugarte-Pedrero
xabier.ugarte@deusto.es

Borja Sanz
borja.sanz@deusto.es

Carlos Laorden
claorden@deusto.es

Pablo G. Bringas
pablo.garcia.bringas.es

S3Lab
DeustoTech - Computing

Deusto Institute of Technology
University of Deusto

Avenida de las Universidades 24, 48007
Bilbao, Spain

ABSTRACT
Malware is any software designed to harm computers. Com-
mercial anti-virus are based on signature scanning, which
is a technique effective only when the malicious executa-
bles have been previously analysed and identified. Malware
writers employ several techniques in order to hide their ac-
tual behaviour. Executable packing consists in encrypting or
hiding the real payload of the executable. Generic unpack-
ing techniques do not depend on the packer used, as they
execute the binary within an isolated environment (namely
‘sandbox’) to gather the real code of the packed executable.
However, this approach is slow and, therefore, a filter step is
required to determine when an executable has been packed.
To this end, supervised machine learning approaches trained
with static features from the executables have been pro-
posed. Notwithstanding, supervised learning methods need
the identification and labelling of a high number of packed
and not packed executables. In this paper, we propose a new
method for packed executable detection that adopts a collec-
tive learning approach to reduce the labelling requirements
of completely supervised approaches. We performed an em-
pirical validation demonstrating that the system maintains a
high accuracy rate while the labelling efforts are lower than
when using supervised learning.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—invasive software

General Terms
Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CEAS ’11 September 1-2, 2011, Perth, Western Australia, Australia
Copyright 2011 ACM 978-1-4503-0788-8/11/09 ...$10.00.

Keywords
malware, machine learning, executable packing

1. INTRODUCTION
Malware is defined as any computer software that dam-

ages computers or networks [30, 24]. Since the antivirus
systems can only assure the detection of currently known
threats, malware creators employ obfuscation techniques that
hide the actual code of the malware. Among these tech-
niques, one that is commonly used is executable packing.
This method encrypts or compresses the actual malicious
code. Packed software has a decryption routine inside its
code that deciphers the malicious code which remains in a
data section of the memory. According to a recent study
[15], up to the 80% of the detected malware is packed.

Because malware creators generally use currently known
packers, packer signatures have been adopted by commercial
antiviruses. For instance, PEID [19] can detect a wide range
of well-known packers while Faster Universal Unpacker (FUU)
[7] identifies the packer to, then, apply custom unpacking
routines designed and specifically coded for each different
packer. However, this approach has the same shortcom-
ings as signatures for malware detection: it is not effective
for unknown obfuscation techniques or custom packers (i.e.,
protectors implemented for certain malware samples). This
limitation is a problem because, according to Morgenstern
and Pilz [16], the 35 % of malware is packed by a custom
packer.

Dynamic unpacking approaches monitor the execution of
a binary within an isolated environment to retrieve its actual
code. This isolated environment can be deployed as a virtual
machine or an emulator [1]. Then, the execution is traced
and stopped when certain events occur.

Various dynamic unpackers (e.g., Universal PE Unpacker
[5] and OllyBonE [29]) are based on heuristics to determine
the exact point where the execution flow jumps from the
unpacking routine to the original code and once reached,
they retrieve the memory content to obtain an unpacked
version of the malicious code. Nevertheless, concrete heuris-
tics are not applicable to every packer because not all of
them work in the same way. For example, some packers

(e.g., [22]) do not unpack the code before executing it: orig-
inal code is transformed and stored as a custom language
and, then, translated to actual code at runtime by an inter-
preter. Thereby, the malicious code will never be present at
the same time in memory.

In contrast, other proposed techniques are not so heuristic
dependant. PolyUnpack [23] obtains an static view of the
code and then compares it to the code dynamically gener-
ated during execution. If both codes differ, the executable
is considered to be packed. Renovo [11] monitors mem-
ory accesses and checks whether any memory area has been
written and then executed or not. OmniUnpack [14] stat-
ically analyses memory pages that have been over-written
and then executed only when a dangerous system call is per-
formed. Finally, Eureka [33] determines the moment when
an executable reaches an stable state so it can be statically
analysed. However, these methods are very time consum-
ing and cannot counter the conditional execution of unpack-
ing routines, a technique used for anti-debugging and anti-
monitoring defense [4, 2, 10].

By using the structural information of PE executables,
some methods (e.g., PE-Miner [6], PE-Probe [25] and Perdisci
et al. [21]) can determine if the sample under analysis is
packed or if it is suspicious of containing malicious code in
order to act as a pre-filter to these time consuming generic
unpacking techniques. These methods employ several fea-
tures to train supervised learning methods.

However, these supervised machine-learning classifiers re-
quire a high number of labelled executables for each of the
classes. It is quite difficult to obtain this amount of labelled
data for a real-world problem such as malicious code anal-
ysis. To gather these data, a time-consuming process of
analysis is mandatory, and in the process, some malicious
executables are able to surpass detection.

Semi-supervised learning is a type of machine-learning
technique specially useful when a limited amount of labelled
data exists for each class [3]. In particular, collective clas-
sification [18] is an approach that uses the relational struc-
ture of the combined labelled and unlabelled data-sets to
enhance the classification accuracy. With these relational
approaches, the predicted label of an example will often be
influenced by the labels of related samples.

The idea underlying collective classification is that the
predicted labels of a test sample should also be influenced by
the predictions made for related test samples. Sometimes,
we can determine the topic of not just a single evidence
but to infer it for a collection of unlabelled evidences. Col-
lective classification tries to collectively optimise the prob-
lem taking into account the connections present among the
instances. In summary, collective classification is a semi-
supervised technique, i.e., uses both labelled and unlabelled
data — typically a small amount of labelled data and a large
amount of unlabelled data —, that reduces the labelling
work.

Against this background, we propose here the first ap-
proach that employs collective classification techniques for
the detection of packed executables based on structural fea-
tures and heuristics. These methods are able to learn from
both labelled and unlabelled data to build accurate classi-
fiers. We propose the adoption of collective learning for the
detection of packed executables using structural information
of the executable. For training the classifiers, we employ the
same structural and heuristic features used in our previous

work [31], which presented an anomaly detector for packed
executable detection.

Summarising, our main contributions in this paper are:

• We describe how to adopt collective classification for
packed executable detection.

• We empirically determine the optimal number of la-
belled instances and we evaluate how this parameter
affects the accuracy of the model.

• We demonstrate that labelling efforts can be reduced
in the malware detection industry, while still maintain-
ing a high accuracy rate.

The remainder of this paper is organised as follows. Sec-
tion 2 describes the structural features employed for packed
executable identification. Section 3 describes different col-
lective classification methods and how they can be adopted
for packed executable detection. Section 4 describes the ex-
periments and presents results. Finally, Section 5 concludes
the paper and outlines avenues for future work.

2. STRUCTURAL FEATURES OF THE PE
FILES

Given the conclusions obtained in previous work [6, 25,
21], we selected a set of 209 structural characteristics from
the PE executables. Some of the characteristics were ob-
tained directly from the PE file header, while the rest were
calculated values based on certain heuristics commonly used
by the community.

We consider that one of the main requisites of our detec-
tion system is the speed, as it constitutes a filtering step for
a heavier unpacking process. For this reason, we selected a
set of characteristics whose extraction does not require too
much processing time, and avoided techniques such as code
disassembly, string extraction or n-gram analysis [21], which
could slow down sample comparison.

Features can be divided into four main groups: 125 raw
header characteristics [25], 31 section characteristics (i.e.,
number of sections that meet certain properties), 29 charac-
teristics of the section containing the entry point (i.e., the
section which will be executed first once the executable is
loaded into memory) and, finally, 24 entropy values (i.e.,
byte randomness in the file).

Furthermore, we have measured each characteristic rele-
vance based on Information Gain (IG) [12]. IG provides a
ratio for each characteristic that measures its importance to
consider if a sample is packed or not. These weights were
calculated from a dataset composed of 1,000 packed executa-
bles (from which 500 belong to the Zeus malware family and
thus, are protected with custom packers, and the other 500
are executables packed with 10 different packers available
on-line), and 1,000 not packed executables. We reduced the
amount of selected characteristics to obtain a more efficient
classification, given that only 166 of them have a non-zero
IG value.

2.1 DOS header characteristics
The first bytes of the PE file header correspond to the

DOS executable fields. IG results showed that these char-
acteristics are not specially relevant, having a maximum IG
value of 0.13, corresponding to the field containing the ad-
dress of the PE header. 19 values range from 0.05 to 0.13,
and the rest present a relevance bellow 0.05.

2.2 File header block
This header block is present in both image files (i.e., “.exe”),

and object files (i.e., “.dll”). From a total of 23 characteris-
tics, 11 have an IG value greater than 0, and only 3 have an
IG value greater than 0.10:

• Header characteristics field (0.51185).

• Time stamp (0.32806).

• Number of sections (0.16112).

2.3 Optional Header Block
The 71 features of this optional block, which is only part

of image files, contain data about how the executable must
be loaded into memory. 51 characteristics have an IG value
over 0, but the most relevant ones are:

• Major linker version (0.53527).

• Import Address Table size (0.3763).

• Size of heap commit (0.34607).

• Major operating system version (0.34302).

• Size of the resource table (0.33863).

• Size of heap reverse (0.33196).

• Size of code (0.30799).

• Address of entry point (0.28229).

• Minor linker version (0.26716).

• Size of the debug data (0.2425).

• Base of data (0.21667).

• Size of initialized data (0.19152).

2.4 Section characteristics
From the 31 characteristics that conform this group, 24

have an IG value greater than 0. The most significant ones
are:

• First section raw data size (0.44452).

• Number of standard sections (0.34731).

• Number of sections with virtual size greater than raw
data (0.34432).

• Number of sections that are readable and writeable
(0.33754).

• Maximum raw data per virtual size ratio (0.32552)
(rawSize/virtualSize, where rawSize is the section
raw data size, and virtualSize is the section virtual
size, both expressed in bytes).

• Number of sections that contain initialized data (0.31558).

• Number of non standard sections (0.2888).

• Number of executable sections (0.27776).

• Number of readable, writeable and executable sections
(0.25601).

• Number of sections that are readable and executable
(0.23809).

• Number of readable sections (0.23608).

• Minimum raw data per virtual size ratio (0.22251).

2.5 Section of entry point characteristics
This group contains 29 characteristics relative to the sec-

tion which will be executed once the executable is loaded
into memory. 18 characteristics have an IG value greater
than 0, from which 9 have a significant relevance:

• Size of raw data (0.42061).

• Raw data per virtual size ratio (0.37729).

• Virtual size (0.355).

• Pointer to raw data (0.32303).

• Header characteristics (0.31739).

• Writeable section (0.3132).

• Virtual address (0.28992).

• Standard section (0.19317)

• A flag that is set if the section contains initialized data
(0.12998).

2.6 Entropy values
We have selected 24 entropy values, commonly used in

previous works [13], and all of them have an IG value greater
than 0. Concretely, 8 have a relevant IG value:

• Global file entropy (0.67246).

• Maximum entropy (0.63232).

• Mean section entropy (0.56581).

• Section of entry point entropy (0.52056).

• Mean code section entropy (0.51106).

• Mean data section entropy (0.4325).

• The number of sections with entropy in the range be-
tween 7.5 and 8 (0.32336).

• Header entropy (0.19541).

• The number of sections with entropy in the range be-
tween 7 and 7.5 (0.10074).

3. COLLECTIVE CLASSIFICATION
Collective classification is a combinatorial optimisation

problem, in which we are given a set of executables, or
nodes, E = {e1, ..., en} and a neighbourhood function N ,
where Ni ⊆ E\{Ei}, which describes the underlying network
structure [17]. Being E a random collection of executables,
it is divided into two sets X and Y, where X corresponds
to the executables for which we know the correct values and
Y are the executables whose values need to be determined.
Therefore, the task is to label the nodes Yi ∈ Y with one of
a small number of labels, L = {l1, ..., lq}.

We use the Waikato Environment for Knowledge Analysis
(WEKA) [8] and its Semi-Supervised Learning and Collec-
tive Classification plugin1. In the remainder of this section
we review the collective algorithms used in the empirical
evaluation.

1Available at: http://www.scms.waikato.ac.nz/˜fracpete/
projects/collectiveclassification

3.1 CollectiveIBK
This model uses internally WEKA’s classic IBK algorithm,

an implementation of the K-Nearest Neighbour (KNN), to
determine the best k instances on the training set and builds
then, for all instances from the test set, a neighbourhood
consisting of k instances from the pool of train and test set
(either a näıve search over the complete set of instances or
a k-dimensional tree is used to determine neighbours). All
neighbours in such a neighbourhood are sorted according
to their distance to the test instance they belong to. The
neighbourhoods are sorted according to their ‘rank’, where
‘rank’ means the different occurrences of the two classes in
the neighbourhood.

For every unlabelled test instance with the highest rank,
the class label is determined by majority vote or, in case of a
tie, by the first class. This is performed until no further test
instances remain unlabelled. The classification terminates
by returning the class label of the instance that is about to
be classified.

3.2 CollectiveForest
It uses WEKA’s implementation of RandomTree as base

classifier to divide the test set into folds containing the same
number of elements. The first iteration trains the model
using the original training set and generates the distribution
for all the instances in the test set. The best instances are
then added to the original training set (being the number of
instances chosen the same as in a fold).

The next iterations train the model with the new training
set and generate then the distributions for the remaining
instances in the test set.

3.3 CollectiveWoods & CollectiveTree
CollectiveWoods works like CollectiveForest using Collec-

tiveTree algorithm instead of RandomTree.
Collective tree is similar to WEKA’s original RandomTree

classifier. It splits the attribute at a position that divides
the current subset of instances (training and test instances)
into two halves. The process finishes if one of the following
conditions is met:

• Only training instances are covered (the labels for these
instances are already known).

• Only test instances in the leaf, case in which distribu-
tion from the parent node is taken.

• Only training instances of one class, case in which all
test instances are considered to have this class.

To calculate the class distribution of a complete set or a
subset, the weights are summed up according to the weights
in the training set, and then normalised. The nominal at-
tribute distribution corresponds to the normalised sum of
weights for each distinct value and, for the numeric at-
tribute, distribution of the binary split based on median is
calculated and then the weights are summed up for the two
bins and finally normalised.

3.4 RandomWoods
It works like WEKA’s classic RandomForest but using

CollectiveBagging (classic Bagging, a machine learning en-
semble meta-algorithm to improve stability and classifica-
tion accuracy, extended to make it available to collective

classifiers) in combination with CollectiveTree. RandomFor-
est, in contrast, uses Bagging and RandomTree algorithms.

4. EMPIRICAL VALIDATION
The research question we seek to answer through this em-
pirical validation is the following one:

What is the minimum number of labelled instances
required to assure a suitable performance in
packed executable detection using collective clas-
sification?

To asses this research question and, therefore, evaluate our
semi-supervised packed executable detector, we collected a
dataset comprising 1,000 not packed executables and 1,000
packed executables. The first one is composed of 500 benign
executables and 500 malicious executables gathered from the
website VxHeavens [32]. The packed samples are divided
into 500 executables manually packed and 500 variants of the
malware family ‘Zeus’ protected by different custom packers.
On the one hand, the 500 executables manually packed were
not packed executables protected with 10 different packing
tools with different configurations: Armadillo, ASProtect,
FSG, MEW, PackMan, RLPack, SLV, Telock, Themida and
UPX. On the one hand, the 500 variants of the ‘Zeus’ family
were protected with packers that PEiD [19] (updated to the
last signature database) was unable to identify.

Hereafter, we extracted the structural representation for
each file in the dataset. Next, we split the dataset into dif-
ferent percentages of training and test instances. In other
words, we changed the number of labelled instances from
10% to 90% to measure the effect of the number of previ-
ously labelled instances on the final performance of collective
classification in detecting packed executables.

By means of this dataset, we conducted the following
methodology to answer the research question and thus, eval-
uate the proposed method:

1. Structural Feature Extraction. We extracted the
features described in Section 2.

2. Feature Selection. We reduced the number of fea-
tures to only the ones that obtained an IG value greater
than 0.

3. Training and Test Generation. We constructed
an ARFF file [9] (i.e., Attribute Relation File Format)
with the resultant vector representations of the exe-
cutables to build the aforementioned WEKA’s classi-
fiers.

We did not use cross-validation because in the evalu-
ation we did not want to test the performance of the
classifier when a fixed size of training instances is used
iteratively. Otherwise, we employed a variable number
of training instances and tried to predict the class of
the remaining ones using collective classification in or-
der to determine which is the best training set size. In
this case, the training instances are the labelled ones
whereas the unlabelled ones are the ones in the test
dataset.

Therefore, we split the dataset into different percent-
ages of training and tested instances, changing the
number of labelled instances from 10% to 90% to mea-
sure the effect of the number of labelled instances on

the final performance of collective classification in de-
tecting packed executables.

As aforementioned, we used the collective classifica-
tion implementations provided by the Semi-Supervised
Learning and Collective Classification package2 for the
well-known machine-learning tool WEKA [8]. All the
classifiers were tested with their default parameters.

4. Testing the Models. To test the approach, we mea-
sured the True Positive Rate (TPR), i.e., the number
of packed executables correctly detected divided by the
total number of packed files:

TPR =
TP

TP + FN
(1)

where TP is the number of packed instances correctly
classified (true positives) and FN is the number of
packed instances misclassified as legitimate software
(false negatives).

We also measured the False Positive Rate (FPR), i.e.,
the number of not packed executables misclassified as
packed divided by the total number of not packed files:

FPR =
FP

FP + TN
(2)

where FP is the number of not packed executables
incorrectly detected as packed and TN is the number
of not packed executables correctly classified.

Furthermore, we measured accuracy, i.e., the total num-
ber of the hits of the classifiers divided by the number
of instances in the whole dataset:

Accuracy(%) =
TP + TN

TP + FP + TP + TN
(3)

Besides, we measured the Area Under the ROC Curve
(AUC), which establishes the relation between false
negatives and false positives [28]. The ROC curve is
obtained by plotting the TPR against the FPR. All
these measures refer to the test instances.

Figure 1 shows the obtained results in terms of accuracy,
TPR, FPR and AUC. Our results outline that, obviously,
the higher the number of labelled executables in the dataset
the better results achieved. However, by using only the 10%
of the available data, with the exception of CollectiveIBK,
the collective classifiers were able to achieve TPRs higher
than 99% and FPRs lower than 0.5%. In particular, Collec-
tiveForest trained with the 10% of the data obtained 99.78%
of accuracy, 99.90% of TPR, 0.30% of FPR and 99.90% of
AUC. Figure 1(a) shows the accuracy results of our proposed
method. All the tested classifiers, with the exception of Col-
lectiveIBK, achieved accuracy results higher than 99%. In
particular, CollectiveForest was the best, achieving an accu-
racy of 99.8% using only a 10% of the instances for training.
Figure 1(b) shows the obtained results in terms of correctly
classified packed executables. In this way, Collective Forest
was also the best detecting the 99.9% of the packed exe-
cutables with only a 10% of the dataset labelled. Figure

2Available at: http://www.scms.waikato.ac.nz/˜fracpete/
projects/collective-classification/downloads.html

1(c) shows the FPR results. Every classifier obtained re-
sults lower than 1%. In particular, the lowest FPR achieved
was of 0.01%, achieved by CollectiveIBK with the 10% of
dataset. However, in order to guarantee results of TPR
lower than 5%, Collective Forest only needs to be trained
with, at least, 20% of the dataset. Finally, regarding AUC,
shown in Figure 1(d), Collective Forest was again the best,
with results higher than 99% for every configuration.

Note that our method is devoted to pre-filter packed exe-
cutables, as an initial phase to decide whether it is necessary
to analyse samples using a generic unpacker or not. Our
main contribution to this topic is the adoption of collective
classification employed for packed executable detection.

Table 1: Comparison with previous work in packed
executable detection. The abbreviation Acc. stands
for Accuracy. Our method outperforms previous
work in packed executable detection using less in-
stances to train models.

Approach Acc. TPR FPR AUC
Perdisci et al. [21] 0.994 0.996 0.008 0.997
CollectiveForest

0.998 0.999 0.003 0.999
(10% of the dataset)

If compared with previous packed executable identifica-
tion methods, our technique does not require as much pre-
viously labelled packed and not packed executables as the
supervised approaches do. The accuracy our system raises
is also higher than the obtained with fully supervised ap-
proaches. Table 1 compares the work of Perdisci et al. [21,
20] with our semi-supervised approach. Albeit the approach
of Perdisci et al., used fully supervised methods our method
outperforms it. Besides, our collective learning based method
requires less executables to be labelled: a 10% of the whole
dataset in order to guarantee an accuracy higher than 99%.
Note that we did not use the same dataset employed by
Perdisci et al., which may alter the results. However, we did
use different custom packers in our evaluation (a 50% of the
packed samples were packed by different custom packers),
which validates our method against custom protectors.

Our main objective was to achieve high accuracy rates
while reducing the required number of labelled executables
and we consider that our method has accomplished it. How-
ever, there are several shortcomings that should be discussed:

• Our approach is not able to identify neither the packer
nor the family of the packer used to cypher the exe-
cutable. This information can help malware analysts
to unpack the executable and to create new unpacking
routines. Sometimes, generic unpacking techniques are
very time consuming or fail and it is easier to use spe-
cific unpacking routines, created for most widespread
packers.

• The features extracted can be modified by malware
writers to bypass the filter. In the case of structural
features, packers can build executables using the same
flags and patterns as common compilers, for instance
importing common DLL files or creating the same num-
ber of sections. Heuristic analysis, in turn, can be
evaded using standard sections instead of not standard
ones, or filling sections with padding data to unbalance
byte frequency and obtain lower entropy values. Our

(a) Accuracy results. The accuracy axis (Y axis) has been
scaled from 50% to 100% in order to appreciate better the evo-
lution of CollectiveIBK. This classifier was the only one that
was highly sensitive to the increase of the training dataset. The
rest of the classifiers obtained accuracies higher than 99.5% us-
ing only a 10% of labelled instances.

(b) TPR results. CollectiveIBK was the only classifier that
obtained low results using a low amount of labelled instances.
In particular, this classifier only achieves a TPR higher than
80% using a labelled dataset size of 60% or higher. The re-
mainder of the classifiers obtained a detection rate of more
than 99% with a 10% of training size.

(c) FPR results. The FPR is scaled from 0.00% to 1.20% in
order to magnify the differences among the configurations. In
general, the higher the amount of labelled instances, the higher
the FPR. However, the FPR is always lower than 1.20%, which
is a sound result. Indeed, using only a 10% of the instances,
we can achieve a FPR lower than 0.4% using CollectiveForest.

(d) AUC results. The AUC axis (Y axis) has been scaled
from 50% to 100% in order to appreciate better the evolution
of CollectiveIBK. As it happened with accuracy, CollectiveIBK
was the only one that was highly sensitive to the increase of the
training dataset. Anyhow, the rest of the classifiers obtained
AUC values higher than 99.9% using only a 10% of labelled
instances.

Figure 1: Results of our collective-classification-based packed executable detection method. Collective Forest
was the overall classifier with the highest accuracy, TPR and AUC.

system is very dependant on heuristics due to the rel-
evance values obtained from IG, making it vulnerable
to such attacks.

The last limitation of our approach is also applicable to
other methods for detecting packed executables. In fact, in
our approach we use every feature that has been used in
previous work [6, 25, 21] and we add several of our own,
like different entropy values, ratio between data and code
sections and so on. Nevertheless, these features are heuris-
tics employed by common packers. Anyhow, new packing
techniques like virtualization [26, 27, 22], which consists on
generating a virtual machine to execute the malicious be-
haviour using an unknown set of instructions within it, do
not necessarily increase the entropy of the file.

Despite the ability of malware packers to surpass these
heuristics is a real problem, the majority of the packed
executables are packed with known packers like UPX. Be-
sides, there is an increasing number of malicious executables

packed with custom packers. In our validation, we have in-
cluded a big number of this type of malware: 500 variants
of the Zeus family, gathered from 2009 to 2011, which PEiD
was not able to detect as packed as they were protected with
custom packers. Our approach was able to detect the major-
ity of these custom packers. Our results show that, although
some of the features mentioned in section 2 may be evaded
by different techniques, it is not trivial to evade all of them
while maintaining the whole functionality.

5. CONCLUDING REMARKS
Malware detection is a critical topic of research due to

its increasing ability to hide itself. Current malware usu-
ally employs executable packing techniques that hide the
real malicious code through encryption or similar techniques.
Generic unpacking techniques that use a contained environ-
ment pose as a solution in order to face these executables.
However, these environments perform their task in a high-

resource-consuming fashion. Therefore, approaches for exe-
cutable pre-filtering have been also proposed that, based on
several static features, are capable of determining whether
an executable is packed or not. These approaches usually
employ supervised learning approaches in order to classify
executables. The problem with supervised learning is that
a previous work of executable labelling is required. This
process in the field of malware can introduce a high per-
formance overhead due to the number of new threats that
appear in-the-wild. In this paper, we have proposed the
first collective-learning-based packed executable detection
system that based upon structural features and heuristics
is able to determine when an executable is packed. We have
empirically validated our method using a dataset composed
of packed executables, with both known packers and cus-
tom packers, and not packed executables, showing that our
technique, despite having less labelling requirements, out-
performs previous work.

The avenues of future work are oriented in three main
ways. First, we plan to extend this approach with an spe-
cific packer detector able to discriminate between executa-
bles packed with a known packer and the ones with a cus-
tom packer in order to apply a concrete unpacking routine
or a dynamic generic step. Second, we plan to test more
semi-supervised techniques in order to compare the results
obtained by collective approaches. Finally, we plan to study
the attacks that malicious software filtering systems can suf-
fer.

6. ACKNOWLEDGMENTS
This research was partially supported by the Basque Gov-
ernment under a pre-doctoral grant given to Xabier Ugarte-
Pedrero. We would also like to acknowledge S21Sec for the
Zeus malware family samples provided in order to set up the
experimental dataset.

7. REFERENCES
[1] K. Babar and F. Khalid. Generic unpacking

techniques. In Proceedings of the 2nd International
Conference on Computer, Control and Communication
(IC4), pages 1–6. IEEE, 2009.

[2] S. Cesare. Linux anti-debugging techniques, fooling
the debugger, 1999. Available online:
http://vx.netlux.org/lib/vsc04.html.

[3] O. Chapelle, B. Schölkopf, and A. Zien.
Semi-supervised learning. MIT Press, 2006.

[4] A. Danielescu. Anti-debugging and anti-emulation
techniques. CodeBreakers Journal, 5(1), 2008.
Available online:
http://www.codebreakers-journal.com/.

[5] Data Rescue. Universal PE Unpacker plug-in.
Available online:
http://www.datarescue.com/idabase/unpack_pe.

[6] M. Farooq. PE-Miner: Mining Structural Information
to Detect Malicious Executables in Realtime. In
Proceedings of the 12th International Symposium on
Recent Advances in Intrusion Detection (RAID),
pages 121–141. Springer-Verlag, 2009.

[7] Faster Universal Unpacker, 1999. Available online:
http://code.google.com/p/fuu/.

[8] S. Garner. Weka: The Waikato environment for
knowledge analysis. In Proceedings of the New Zealand

Computer Science Research Students Conference,
pages 57–64, 1995.

[9] G. Holmes, A. Donkin, and I. H. Witten. Weka: a
machine learning workbench. pages 357–361, August
1994.

[10] L. Julus. Anti-debugging in WIN32, 1999. Available
online: http://vx.netlux.org/lib/vlj05.html.

[11] M. Kang, P. Poosankam, and H. Yin. Renovo: A
hidden code extractor for packed executables. In
Proceedings of the 2007 ACM workshop on Recurring
malcode, pages 46–53. ACM, 2007.

[12] J. Kent. Information gain and a general measure of
correlation. Biometrika, 70(1):163–173, 1983.

[13] R. Lyda and J. Hamrock. Using entropy analysis to
find encrypted and packed malware. IEEE Security &
Privacy, 5(2):40–45, 2007.

[14] L. Martignoni, M. Christodorescu, and S. Jha.
Omniunpack: Fast, generic, and safe unpacking of
malware. In Proceedings of the 2007 Annual Computer
Security Applications Conference (ACSAC), pages
431–441, 2007.

[15] McAfee Labs. Mcafee whitepaper: The good, the bad,
and the unknown, 2011. Available online:
http://www.mcafee.com/us/resources/

white-papers/wp-good-bad-unknown.pdf.

[16] M. Morgenstern and H. Pilz. Useful and useless
statistics about viruses and anti-virus programs. In
Proceedings of the CARO Workshop, 2010. Available
online: www.f-secure.com/weblog/archives/Maik_

Morgenstern_Statistics.pdf.

[17] G. Namata, P. Sen, M. Bilgic, and L. Getoor.
Collective classification for text classification. Text
Mining, pages 51–69, 2009.

[18] J. Neville and D. Jensen. Collective classification with
relational dependency networks. In Proceedings of the
Workshop on Multi-Relational Data Mining (MRDM),
2003.

[19] PEiD. PEiD webpage, 2010. Available online:
http://www.peid.info/.

[20] R. Perdisci, A. Lanzi, and W. Lee. Classification of
packed executables for accurate computer virus
detection. Pattern Recognition Letters,
29(14):1941–1946, 2008.

[21] R. Perdisci, A. Lanzi, and W. Lee. McBoost: Boosting
scalability in malware collection and analysis using
statistical classification of executables. In Proceedings
of the 2008 Annual Computer Security Applications
Conference (ACSAC), pages 301–310, 2008.

[22] R. Rolles. Unpacking virtualization obfuscators. In
Proceedings of 3rd USENIX Workshop on Offensive
Technologies.(WOOT), 2009.

[23] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and
W. Lee. Polyunpack: Automating the hidden-code
extraction of unpack-executing malware. In
Proceedings of the 2006 Annual Computer Security
Applications Conference (ACSAC), pages 289–300,
2006.

[24] I. Santos, F. Brezo, J. Nieves, Y. Penya, B. Sanz,
C. Laorden, and P. Bringas. Idea:
Opcode-sequence-based malware detection. In
Engineering Secure Software and Systems, volume

5965 of LNCS, pages 35–43. 2010.
10.1007/978-3-642-11747-3 3.

[25] M. Shafiq, S. Tabish, and M. Farooq. PE-Probe:
Leveraging Packer Detection and Structural
Information to Detect Malicious Portable Executables.
In Proceedings of the Virus Bulletin Conference (VB),
2009.

[26] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Automatic
reverse engineering of malware emulators. In
Proceedings of the 30th IEEE Symposium on Security
and Privacy, pages 94–109, 2009.

[27] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Rotalumè:
A Tool for Automatic Reverse Engineering of Malware
Emulators. 2009.

[28] Y. Singh, A. Kaur, and R. Malhotra. Comparative
analysis of regression and machine learning methods
for predicting fault proneness models. International
Journal of Computer Applications in Technology,

35(2):183–193, 2009.

[29] J. Stewart. Ollybone: Semi-automatic unpacking on
ia-32. In Proceedings of the 14th DEF CON Hacking
Conference, 2006.

[30] P. Ször. The art of computer virus research and
defense. Addison-Wesley Professional, 2005.

[31] X. Ugarte-Pedrero, I. Santos, and P. G. Bringas.
Structural feature based anomaly detection for packed
executable identification. In Proceedings of the 4th

International Conference on Computational
Intelligence in Security for Information Systems
(CISIS), pages 50–57, 2011.

[32] VX Heavens. Available online:
http://vx.netlux.org/.

[33] V. Yegneswaran, H. Saidi, P. Porras, M. Sharif, and
W. Mark. Eureka: A framework for enabling static
analysis on malware. Technical report, Technical
Report SRI-CSL-08-01, 2008.

