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Abstract Malware is any kind of computer software potentially harmful to both
computers and networks. The amount of malware is increasing every year and poses
a serious global security threat. Signature-based detection is the most widely used
commercial antivirus method, however, it consistently fails to detect new malware.
Supervised machine-learning models have been used to solve this issue, but the use-
fulness of supervised learning is far to be perfect because it requires that a significant
amount of malicious code and benign software to be identified and labelled before-
hand. In this paper, we propose a new method of malware protection that adopts
a semi-supervised learning approach to detect unknown malware. This method is
designed to build a machine-learning classifier using a set of labelled (malware and
legitimate software) and unlabelled instances. We performed an empirical validation
demonstrating that the labelling efforts are lower than when supervised learning is
used, while maintaining high accuracy rates.

1 Introduction

Malware is any computer software intentionally designed to damage computers.
Although ‘fame and glory’ were the main goals of malware writers in the past,
more recently, their reasons have evolved into economic considerations [9].

Commercial anti-malware solutions generally base their main detection systems
on signature databases [7]. A signature is a unique sequence of bytes that is always
present within malicious executables and in the files already infected by that mal-
ware. The main problem of such an approach is that specialists have to wait until
new malware has damaged several computers to generate a signature file and they
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can provide a suitable solution. Suspect files that are later subjected to analysis are
compared with this list of signatures. When the signatures match, the file being
tested is flagged as malware. Although this approach has been demonstrated to be
effective when threats are known in advance, signature methods cannot cope with
code obfuscation, with previously unseen malware, or with large amounts of new
malware [11, 12].

Machine-learning-based approaches train classification algorithms that detect
new malware (i.e., ‘in the wild’), relying on datasets composed of several charac-
teristic features of both malicious and benign software. Schultz et al. [14] were the
first to introduce the concept of applying machine-learning models to the detection
of malware based on their respective binary codes. Specifically, they applied several
classifiers to three different feature sets: (i) program headers, (ii) strings and (iii)
byte sequence. Later, Kolter et al. [4] improved Schulz’s results [14], by applying n-
grams (i.e., overlapping byte sequences) instead of non-overlapping sequences. This
approach employed several algorithms, achieving the best results with a boosted1

decision tree. In a similar vein, substantial research has focused on n-gram distribu-
tions of byte sequences and data-mining [8, 19, 12].

Machine-learning classifiers require a high number of labelled executables for
each of the classes (i.e., malware and benign datasets). Nevertheless, it is quite dif-
ficult to obtain this amount of labelled data for a real-world problem such as mali-
cious code analysis. To generate these data, a time-consuming process of analysis
is mandatory, and in the process, some malicious executables can avoid detection.
Within the full scope of machine-learning, several approaches have been proposed
to deal with this issue.

Semi-supervised learning is a type of machine-learning techniques that is spe-
cially useful when a limited amount of labelled data exists for each class. These
techniques create a supervised classifier based on labelled data and predict the la-
bel for all unlabelled instances. The instances whose classes have been predicted
with a certain threshold of confidence are added to the labelled dataset. The process
is repeated until certain conditions are satisfied (a commonly used criterion is the
maximum likelihood found by the expectation-maximisation technique). These ap-
proaches improve the accuracy of fully unsupervised methods (i.e., no labels within
the dataset) [1].

In light of this background, we propose here the first approach that employs a
semi-supervised learning technique for the detection of unknown malware. In par-
ticular, we utilise the method Learning with Local and Global Consistency (LLGC)
[18] able to learn from both labelled and unlabelled data and capable of providing
a smooth solution with respect to the intrinsic structure displayed by both labelled
and unlabelled instances. For the representation of executables, we choose the byte
n-gram distribution, a well-known technique that have achieved significant results
with supervised machine learning (e.g., [4, 8, 12]). However, the presented semi-
supervised methodology is scalable to any representation susceptible to be repre-
sented as a feature vector. Summarising, our main findings in this paper are: (i) we

1 Boosting is a machine-learning technique that builds a strong classifier composed by weak clas-
sifiers [13].
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describe how to adopt LLGC for unknown malware detection, (ii) we determine
the optimal number of labelled instances and we evaluated how this parameter af-
fects the final accuracy of the models and (iii) we show that labelling efforts can be
reduced in the industry, while still maintaining a high rate of accuracy.

The remainder of this paper is organised as follows. Section 2 provides the back-
ground regarding the representation of executables based on byte n-gram frequen-
cies. Section 3 describes the LLGC method and how it can be adopted for unknown
malware detection. Section 4 describes the experiments and presents results. Finally,
Section 5 concludes the paper and outlines avenues for future work.

2 Byte n-gram representation

Byte n-grams frequencies distribution is a well-known approach for training machine-
learning classifiers to detect unknown malicious code [14, 4, 8, 15, 19, 12]. To ob-
tain a representation of the executables by the use of byte n-grams, we need to
extract every possible sequence of bytes and their appearance frequency. Specifi-
cally, a binary program P can be represented as a sequence of ` bytes b as P =
{b1,b2,b3, ...,b`−1,b`}. A byte n-gram sequence g is defined as a subset of consec-
utive bytes within an executable file where g⊆P and it is made up of bytes b, such
as g = (b1,b2,b3, ...,bn−1,bn) where n is the length of the byte n-gram g. Therefore,
a program P is composed of byte n-grams such as P = (g1,g2, ...,g`−1,g`) where
` is the total number of possible n-grams of a fixed length n.

4D 5A 90 00
03 00 00 00
04 00 00 00
FF FF 00 00

Fig. 1 Machine code example.

Consider an example based on the machine code snippet shown in Fig. 1; the
following byte bi-grams can be generated: g1 = (4D, 5A), g2 = (5A, 90), g3 = (90,
00), g4 = (00, 03), g5 = (03, 00), g6 = (00, 00), g7 = (00, 00), g8 = (00, 04),
g9 = (04, 00), g10 = (00, 00), g11 = (00, 00), g12 = (00, FF), g13 = (FF, FF),
g14 = (FF, 00), and g15 = (00, 00).

We use ‘term frequency - inverse document frequency’ (t f − id f ) [6] to obtain
the weight of each byte n-grams, whereas the weight of the ith n-gram in the jth

executable, denoted by weight(i, j), is defined by: weight(i, j) = t fi, j · id fi, where
the term frequency t fi, j [6] is defined as: t fi, j = mi, j

∑k mk, j
where mi, j is the number of

times the n-gram ti, j appears in an executable e, and ∑k mk, j is the total number of
n-grams in the executable e.
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On the other hand, the inverse document frequency id fi is defined as: id fi =
log(|E |/(|E : ti ∈ e|) where |E | is the total number of executables and |E : ti ∈ e| is
the number of documents containing the n-gram ti.

Finally, we can obtain a vector v composed of byte n-gram frequencies, v =
((g1,weight1), ...,(gm−1,weightm−1),(gm, weightm)), where gi is the byte n-gram
and weighti is the value of t f − id f for that particular n-gram.

3 Overview of LLGC

Learning with Local and Global Consistency (LLGC) [18] is a semi-supervised
algorithm that provides smooth classification with respect to the intrinsic structure
revealed by known labelled and unlabelled points. The method is a simple iteration
algorithm that constructs a smooth function coherent to the next assumptions: (i)
nearby points are likely to have the same label and (ii) points on the same structure
are likely to have the same label [18].

Formally, the algorithm is stated as follows. Let X = {x1,x2, ...,x`−1,x`} ⊂ Rm

be the set composed of the data instances and L = {1, ...,c} the set of labels (in our
case, this set comprises two classes: malware and legitimate software) and xu(`+
1≤ u≤ n) the unlabelled instances. The goal of LLGC (and every semi-supervised
algorithm) is to predict the class of the unlabelled instances. F is the set of n× c
matrices with non-negative entries, composed of matrices F = [FT

1 , ...,FT
n ]T that

match to the classification on the dataset X of each instance xi. with the label
assigned by yi = argmax j≤c Fi, j. F can be defined as a vectorial function such as
F : X → Rc to assign a vector Fi to the instances xi. Y is an n× c matrix such as
Y ∈ F with Yi, j = 1 when xi is labelled as yi = j and Yi, j = 0 otherwise Considering
this, the LLGC algorithm performs as follows:

if i 6= j and Wi,i = 0 then
Form the affinity matrix W defined by Wi, j = exp

(
−||xi−x j ||2

2·σ2

)
;

Generate the matrix S = D−1/2 ·W ·D−1/2 where D is the diagonal matrix with its (i, i)
element equal to the sum of the i-th row of W ;
while ¬ Convergence do

F(t +1) = α ·S ·F(t)+(1−α) ·Y where α is in the range (0,1);
F∗ is the limit of the sequence {F(t)};
Label each point xi as argmax j≤c F∗i, j;

Fig. 2 LLGC algorithm.

The algorithm first defines a pairwise relationship W on the dataset X setting
the diagonal elements to zero. Suppose that a graph G = (V,E) is defined within
X , where the vertex set V is equal to X and the edge set E is weighted by the
values in W . Next, the algorithm normalises symmetrically the matrix W of G. This
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step is mandatory to assure the convergence of the iteration. During each iteration
each instance receives the information from its nearby instances while it keeps its
initial information. The parameter α denotes the relative amount of the information
from the nearest instances and the initial class information of each instance. The
information is spread symmetrically because S is a symmetric matrix. Finally, the
algorithm sets the class of each unlabelled specimen to the class of which it has
received most information during the iteration process.

4 Empirical Validation

The research question we seek to answer through this empirical validation is the
following one: What is the minimum number of labelled instances required to assure
a suitable performance using LLGC? To this end, we collected a dataset comprising
1,000 malicious executables and 1,000 benign ones. For the malware, we gathered
random samples from the website VxHeavens2. Although they had already been
labelled according to their family and variant names, we analysed them using Eset
Antivirus3 to confirm this labelling. For the benign dataset, we collected legitimate
executables from our own computers. We also performed an analysis of the benign
files using Eset Antivirus to confirm their legitimacy.

Hereafter, we extracted the byte n-gram representation for each file in the dataset
for n = 2. This specific length was chosen because it is the number of bytes a oper-
ation represented by an operational code needs in machine code and it is a widely-
used n-gram length in the literature (e.g., [14, 4]) Because the total number of fea-
tures we obtained was high, we applied a feature selection step based on a Document
Frequency (DF) measure, which counts the number of documents in which a spe-
cific n-gram appears, selecting the 1,000 top ranked byte n-grams. This concrete
number of features was chosen because it provides a balance between efficiency
and accuracy and it has been proven to be effective [8].

Next, we split the dataset into different percentages of training and tested in-
stances. In other words, we changed the number of labelled instances from 10% to
90% to measure the effect of the number of labelled instances on the final perfor-
mance of LLGC in detecting unknown malware. We did not use cross-validation
because in the validation we do not want to test the performance of the classifier
when a fixed size of training instances is used iteratively. Otherwise, we employ a
variable number of training instances and try to predict the class of the remaining
ones using LLGC in order to determine which is the best training set size. In this
case, the training instances are the labelled ones whereas the unlabelled ones are the
ones in the test dataset. In particular, we used the LLGC implementation provided
by the Semi-Supervised Learning and Collective Classification package4 for the

2 http://vx.netlux.org/
3 http://www.eset.com/
4 Available at:http://www.scms.waikato.ac.nz/∼fracpete/projects/collective-
classification/downloads.html



6 Igor Santos, Javier Nieves and Pablo G. Bringas

well-known machine-learning tool WEKA [2]. Specifically, we configured it with a
transductive stochastic matrix W [18] and we employed the Euclidean distance.

To test the approach, we measured the True Positive Ratio (TPR), i.e., the number
of malware instances correctly detected divided by the total number of malware
files: T PR = T P/(T P + FN) where T P is the number of malware cases correctly
classified (true positives) and FN is the number of malware cases misclassified as
legitimate software (false negatives). We also measured the False Positive Ratio
(FPR), i.e., the number of benign executables misclassified as malware divided by
the total number of benign files: FPR = FP/(FP + T N) where FP is the number
of benign software cases incorrectly detected as malware and T N is the number
of legitimate executables correctly classified. Furthermore, we measured accuracy,
i.e., the total number of the hits of the classifiers divided by the number of instances
in the whole dataset: Accuracy(%) = (T P + T N)/(T P + FP + T P + T N) Besides,
we measured the Area Under the ROC Curve (AUC) that establishes the relation
between false negatives and false positives [17]. The ROC curve is obtained by
plotting the TPR against the FPR. All the these measures refer to the test instances.

Fig. 3 Accuracy, TPR and AUC results. The X axis represents the percentage of labelled instances.
The best AUC results with a 50% size for the labelled dataset.

Fig. 3 and Fig. 4 show the obtained results. The best results in terms of AUC were
obtained with a training set containing 50% of labelled instances. These results indi-
cate that we can reduce the efforts of labelling software in a 50% while maintaining
a AUC higher than 88%. In terms of accuracy, the best results were achieved with a
training size of 65%.

Previous supervised learning obtains better results (above 90% of accuracy [14,
4, 8]) than this semi-supervised approach. However, the main contribution of this
paper is the reduction in the number of required labelled instances while maintaining
a relative high precision. We consider that these results are significant for the anti-
malware industry. The reduction of the efforts required for unknown malware can
help to deal with the increasing amount of new malware.

However, because of the static nature of the features we used with LLGC, it can-
not counter packed malware. Packed malware is produced by cyphering the payload
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Fig. 4 FPR results. The X axis represents the percentage of labelled instances. In particular, the
best results were obtained with a size greater than 30%.

of the executable and having it deciphered when finally loaded into memory. Indeed,
broadly-used static detection methods can deal with packed malware only by using
the signatures of the packers. Accordingly, dynamic analysis seems to be a more
promising solution to this problem [3]. One solution for this obvious limitation of
our malware detection method is the use of a generic dynamic unpacking schema
such as PolyUnpack [10], Renovo [3], OmniUnpack [5] and Eureka [16].

5 Concluding Remarks

Unknown malware detection has become an important topic of research and con-
cern owing to the growth of malicious code in recent years. Moreover, it is well
known that the classic signature methods employed by antivirus vendors are no
longer completely effective in facing the large volumes of new malware. There-
fore, signature methods must be complemented with more complex approaches that
provide the detection of unknown malware families. While machine-learning meth-
ods are a suitable approach for unknown malware, they require a high number of
labelled executables for each classes (i.e., malware and benign datasets). Since it
is difficult to obtain such amounts of labelled data in a real-word environment, a
time-consuming process of analysis is mandatory.

In this paper, we propose for the fist time the use of a semi-supervised learning
approach for unknown malware detection. This learning technique does not need a
large amount of labelled data; it only needs several instances to be labelled. There-
fore, this methodology can reduce efforts in unknown malware detection. By la-
belling 50% of the software, we can achieve results with more than 86% of accu-
racy.

Future work will be focused on three main directions. First, we plan to extend
our study of semi-supervised learning approaches by applying more algorithms to
this issue. Second, we will use different features for training these kinds of models.
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Finally, we will focus on facing packed executables with a hybrid dynamic-static
approach.
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