
Using Opcode Sequences in Single-Class Learning to

Detect Unknown Malware

Igor Santos∗, Felix Brezo, Borja Sanz, Carlos Laorden, Pablo G. Bringas

DeustoTech - University of Deusto, Laboratory for Smartness, Semantics and Security
(S3Lab), Avenida de las Universidades 24, 48007 Bilbao, Spain

This paper is a preprint of a paper accepted by IET Information Security and is subject
to Institution of Engineering and Technology Copyright. When the final version is

published, the copy of record will be available at IET Digital Library

Abstract

Malware is any type of malicious code that has the potential to harm a

computer or network. The volume of malware is growing at a faster rate

every year and poses a serious global security threat. Although signature-

based detection is the most widespread method used in commercial antivirus

programs, it consistently fails to detect new malware. Supervised machine-

learning models have been used to address this issue. However, the use of

supervised learning is limited because it needs a large amount of malicious

code and benign software to first be labelled. In this paper, we propose a new

method that uses single-class learning to detect unknown malware families.

This method is based on examining the frequencies of the appearance of

opcode sequences to build a machine-learning classifier using only one set

of labelled instances within a specific class of either malware or legitimate

∗Corresponding author
Email addresses: isantos@deusto.es (Igor Santos), felix.brezo@deusto.es (Felix

Brezo), borja.sanz@deusto.es (Borja Sanz), claorden@deusto.es (Carlos Laorden),
pablo.garcia.bringas@deusto.es (Pablo G. Bringas)

software. We performed an empirical study that shows that this method can

reduce the effort of labelling software while maintaining high accuracy.

Keywords: malware detection, computer security, data mining, machine

learning, supervised learning

1. Introduction

Malware is computer software designed to damage computers. In the

past, fame or glory were the main goals for malware writers, but nowadays,

the reasons have evolved mostly into economical matters (Ollmann, 2008).

However, there are several exceptions to this general trend like the recent

malware ‘Stuxnet’, which spies SCADA systems within industrial environ-

ments and reprograms them (Marks, 2010).

Commercial anti-malware solutions base their detection systems on sig-

nature databases (Morley, 2001). A signature is a sequence of bytes always

present within malicious executables together with the files already infected

by that malware. The main problem of such an approach is that specialists

have to wait until the new malware has damaged several computers to gene-

rate a file signature and thereby provide a suitable solution for that specific

malware. Suspect files subject to analysis are compared with the list of sig-

natures. When a match is found, the file being tested is flagged as malware.

Although this approach has been demonstrated to be effective against th-

reats that are known beforehand, signature methods cannot cope with code

obfuscation, previously unseen malware or large amounts of new malware

(Santos et al., 2010).

Two approaches exist that can deal with unknown malware that the clas-

2

sic signature method cannot handle, namely, anomaly detectors and machine-

learning-based detectors. Regarding the way information is retrieved, there

are two malware analysis approaches: static analysis which is performed

without executing the file and dynamic analysis which implies running the

sample in an isolated and controlled environment monitoring its behaviour.

Anomaly detectors retrieve significant information from non-malicious

software and use it to obtain benign behaviour profiles. Every significant de-

viation from such profiles is flagged as suspicious. Li et al. (2005) proposed

an static fileprint (or n-gram) analysis in which a model or set of models at-

tempt to construct several file types within a system based on their structural

(that is, byte) composition. This approach bases analysis on the assumption

that non-malicious code is composed of predictably regular byte structures.

On a similar vein, Cai et al. (2005) employed static byte sequence frequen-

cies to detect malware by applying a Gaussian likelihood model fitted with

Principal Component Analysis (PCA) (Jolliffe, 2002). Dynamic anomaly de-

tectors have been also proposed by the research community. For instance,

Milenković et al. (2005) employed a technique which guaranteed that only se-

cure instructions were actually executed in the system. The system employed

signatures that were verified in execution time. Masri and Podgurski (2005)

described Dynamic Information Flow Analysis (DIFA) which worked as a

specification system. The system was designed only for Java applications.

Unfortunately, these methods usually show high false positive rates (i.e., be-

nign software is incorrectly classified as malware), which presents difficulties

for their adoption by commercial antivirus vendors.

Machine-learning-based approaches build classification tools that detect

3

malware in the wild (i.e., undocumented malware) by relying on datasets

composed of several characteristic features of both malicious samples and be-

nign software. Schultz et al. (2001) were the first to introduce the concept of

applying data-mining models to the detection of malware based on respective

binary codes. Specifically, they applied several classifiers to three different

feature extraction approaches, namely, program headers, string features and

byte sequence features. Subsequently, Kolter and Maloof (2004) improved

the results obtained by Schultz et al. by applying n-grams (i.e., overlapping

byte sequences) instead of non-overlapping sequences. The method employed

several algorithms to achieve optimal results using a Boosted1 Decision Tree.

Similarly, substantial research has focused on n-gram distributions of byte

sequences and data mining (Moskovitch et al., 2008b; Shafiq et al., 2008;

Zhou and Inge, 2008; Santos et al., 2009). Additionally, opcode sequences

have recently been introduced as an alternative to byte n-grams (Dolev and

Tzachar, 2008; Santos et al., 2010; Moskovitch et al., 2008a). This approach

appears to be theoretically better because it relies on source code rather than

the bytes of a binary file (Christodorescu, 2007) (for a more detailed review

of static features for machine-learning unknown malware detection refer to

Shabtai et al. (2009)).

There are also machine-learning approaches that employ a dynamic analy-

sis to train the classifiers. Rieck et al. (2008) proposed the use of machine-

learning for both variant and unknown malware detection. The system em-

ployed API calls to train the classifiers. On a similar vein, Devesa et al. (2010)

1Boosting is machine-learning technique that builds a strong classifier composed by

weak classifiers (Schapire, 2003).

4

employed a sandbox to monitor the behaviour of an executable and vectors

containing the binary occurrences of several specific behaviours (mostly dan-

gerous system calls) were extracted and used to train several classic machine-

learning methods. Recently, machine-learning approaches have been used for

a complete system that includes early detection, alert and response Shabtai

et al. (2010).

Machine-learning classifiers require a high number of labelled executables

for each of the classes (i.e., malware and benign). Furthermore, it is quite

difficult to obtain this amount of labelled data in the real-world environment

in which malicious code analysis would take place. To generate these data, a

time-consuming process of analysis is mandatory, and even so, some malicious

executables can avoid detection. Within machine-learning analysis, several

approaches have been proposed to address this issue.

Semi-supervised learning is a type of machine-learning technique that is

especially useful when a limited amount of labelled data exist for each class.

These techniques train a supervised classifier based on labelled data and

predict the label for unlabelled instances. The instances with classes that

have been predicted within a certain threshold of confidence are added to

the labelled dataset. The process is repeated until certain conditions are

satisfied; one commonly used criterion is the maximum likelihood from the

expectation-maximisation technique (Zhu, 2005). These approaches improve

the accuracy of fully unsupervised (i.e., no labels within the dataset) met-

hods (Chapelle et al., 2006). However, semi-supervised approaches require a

minimal amount of labelled data for each class; therefore, they cannot be ap-

plied in domains in which only the instances belonging to a class are labelled

5

(e.g., malicious code).

Datasets of labelled instances for only a single class are known as partially

labelled datasets (Li and Liu, 2003). The class that has labelled instances is

known as the positive class (Liu et al., 2003). Building classifiers using this

type of dataset is known as single-class learning (Wei et al., 2008) or learning

from positive and unlabelled data.

With this background in mind, we propose the adoption of single-class

learning for the detection of unknown malware based on opcode sequences.

Because the amount of malware is growing faster every year, the task of

labelling malware is becoming harder, and approaches that do not require

all data to be labelled are thus needed. Therefore, we studied the potential

of a two-step single-class learner called Roc-SVM (Li and Liu, 2003), which

has already been used for text categorisation problems (Li and Liu, 2003),

for unknown malware detection. The main contributions of our study are as

follows.

• We describe how to adopt Roc-SVM for unknown malware detection.

• We investigate whether it is better to label malicious or benign software.

• We study the optimal number of labelled instances and how it affects

the final accuracy of models.

• We show that labelling efforts can be reduced in the anti-malware in-

dustry by maintaining a high rate of accuracy.

The remainder of this paper is organised as follows. Section 2 provides

background regarding the representation of executables based on opcode-

sequence frequencies. Section 3 describes the Roc-SVM method and how

6

it can be adopted for unknown malware detection. Section 4 describes the

experiments performed and presents the results. Section 5 discusses the

obtained results and their implications for the anti-malware industry. Finally,

Section 6 concludes the paper and outlines avenues for future work.

2. Opcode-sequence Features for Malware Detection

To represent executables using opcodes, we extracted the opcode sequen-

ces and their frequency of appearance. More specifically, a program ρ may

be defined as a sequence of instructions I, where ρ = (I1, I2, ..., In−1, In). An

instruction is a 2-tuple composed of an operational code and a parameter or

a list of parameters. Because opcodes are significant by themselves (Bilar,

2007), we discard the parameters and assume that the program is composed

of only opcodes. These opcodes are gathered into several blocks that we call

opcode sequences.

Specifically, we define a program ρ as a set of ordered opcodes o, ρ =

(o1, o2, o3, o4, ..., on−1, on), where n is the number of instructions I of a pro-

gram ρ. An opcode sequence os is defined as an ordered subgroup of opcodes

within the executable file, where os ⊆ ρ. It is made up of ordered opcodes

o and os = (o1, o2, o3, ..., om1, om), where m is the length of the sequence of

opcodes os. We used the NewBasic Assembler2 as the tool for obtaining the

assembly files in order to extract the opcode sequences of the executables.

Consider an example based on the assembly code snippet shown in Figure

1. The following sequences of length 2 can be generated: s1 = (mov, add),

2http://www.frontiernet.net/ fys/newbasic.htm

7

s2 = (add, push), s3 = (push, add), s4 = (add, and), s5 = (and, push), s6 =

(push, push) and s7 = (push, and). Because most of the common operations

that can be used for malicious purposes require more than one machine code

operation, we propose the use of sequences of opcodes instead of individual

opcodes. As adding syntactical information with opcode sequences, we aim

at identifying better the blocks of instructions (that is, opcode sequences)

that pass on the malicious behaviour to an executable.

We used this approach to choose the lengths of the opcode sequences.

Nevertheless, it is hard to establish an optimal value for the lengths of the

sequences; a small value will fail to detect complex malicious blocks of ope-

rations whereas long sequences can easily be avoided with simple obfuscation

techniques.

We use ‘term frequency inverse document frequency’ (tf · idf) (Baeza-

Yates and Ribeiro-Neto, 1999) to obtain the weight of each opcode sequence;

the weight of the ith n-gram in the jth executable, denoted by weight(i, j),

is defined by:

weight(i, j) = tfi,j · idfi (1)

Note that term frequency tfi,j (Baeza-Yates and Ribeiro-Neto, 1999) is

defined as:

tfi,j =
ni,j∑
k nk,j

(2)

Note that ni,j is the number of times the sequence si,j (in our case an

opcode sequence) appears in an executable e, and
∑

k nk,j is the total number

of terms in the executable e (in our case the total number of possible opcode

8

sequences)

We compute this measure for every possible opcode sequence of fixed

length n, thereby acquiring a vector v⃗ of the frequencies of opcode sequences

si = (o1, o2, o3, ..., on−1, on). We weight the frequency of occurrence of this

opcode sequence using inverse document frequency idfi is defined as:

idfi =
|E|

|E : ti ∈ e|
(3)

|E| is the total number of executables and |E : ti ∈ e| is the number of

documents containing the opcode sequence ti.

Finally, we obtain a vector v⃗ composed of opcode-sequence frequencies,

v⃗ = ((os1, weight1), (os2, weight2), ..., (osm−1, weightm−1), (osm, weightm)),

where osi is the opcode sequence and weighti is the tf ·idf for that particular

opcode sequence.

3. The Roc-SVMMethod for Learning from Partially-labelled Data

Roc-SVM (Li and Liu, 2003) is based on a combination of the Rocchio

method (Rocchio, 1971) and SVM (Vapnik, 2000). The method utilises the

Rocchio method to select some significant negative instances belonging to the

unlabelled class; SVM is then applied iteratively to generate several classifiers

and then to select one of them.

For the first step (shown in Figure 2, the method assumes that the entire

unlabelled dataset U is composed of negative instances and then uses the

positive set P together with U as the training data to generate a Rocchio

classifier. We configured α = 16 and β = 4 as recommended in Buckley et al.

(1994) and used in Li and Liu (2003).

9

The model is then employed to predict the class of instances within U .

For the prediction, each test instance e ∈ U is compared with each prototype

vector e ∈ P using the cosine measure (McGill and Salton, 1983). The

instances that are classified as negative are considered significant negative

data and are denoted by N .

In the second step (shown in Figure 3), Roc-SVM trains and tests several

SVMs Li and Liu (2003) iteratively and then selects a final classifier. The

SVM algorithms divide the n-dimensional spatial representation of the data

into two regions using a hyperplane. This hyperplane always maximises the

margin between the two regions or classes. The margin is defined by the

longest distance between the examples of the two classes and is computed

based on the distance between the closest instances of both classes, which are

called supporting vectors (Vapnik, 2000). The selection of the final classifier

is determined by the amount of positive examples in P which are classified

as negative. In Liu et al. (2003) they define that if more than the 8% of

the positive documents are classified as negatives, SVM has been wrongly

chosen, therefore S1 is used. In other cases, Slast is employed. As they stated

in Liu et al. (2003), they used 8% because they wanted to be conservative

enough not to select a weak last SVM classifier.

This generation is performed using the datasets P and N . Q is the set

of remaining unlabelled instances such that Q = U −N .

4. Empirical study

The research questions we aimed to answer with this empirical study were

as follows.

10

• What class (that is, malware or benign software) is of better use to label

when using an opcode-sequence-based representation of executables?

• What is the minimum number of labelled instances required to assure

suitable performance when using an opcode-sequence-based representa-

tion of executables?

To this end, we conformed a dataset comprising 1,000 malicious executa-

bles and 1,000 benign ones. For the malware, we gathered random samples

from the website VX Heavens3, which assembles a malware collection of more

than 17,000 malicious programs, including 585 malware families that repre-

sent different types of current malware such as Trojan horses, viruses and

worms.

Since our method would not be able to detect packed executable, we

removed any packed malware before selecting the 1,000 malicious executables.

Although they had already been labelled with their family and variant names,

we analysed them using Eset Antivirus4 to confirm this labelling.

This malware dataset contains executables coded with diverse purposes,

as shown in Table 1, where backdoors, email worms and hacktools represent

half of the whole malware population. The average filesize is 299 KB, ranging

from 4 KB to 5,832 KB, representing the files smaller than 100 KB the 43.8%

of the dataset, the files between 100 KB and 1,000 KB the 49.6% and the

files bigger than 1,000 KB the final 6.6%.

3http://vx.netlux.org/
4http://www.eset.com/

11

These executables were compiled with very different generic compilers

including Borland C++, Borland Delphi, Microsoft Visual C++, Microsoft

Visual Basic and FreeBasic as it is shown in Table 2. Note that 44 of them

were compiled with debugger versions and 70 were compiled with overla-

ying versions of the platforms shown in the table, while the other 886 were

generated with standard versions of these compilers.

For the benign dataset, we collected legitimate executables from our own

computers. We also performed an analysis of the benign files using Eset

Antivirus to confirm the correctness of their labels. This benign dataset is

composed of different applications, such as installers or uninstallers, updating

packages, tools of the Operating System, printer drivers, registry editing

tools, browsers, PDF viewers, maintenance and performance tools, instant

messaging applications, compilers, debuggers, etc. The average file size is

222 KB, ranging from 4 KB to 5,832 KB, representing the files smaller than

100 KB the 69.6% of the dataset, the files between 100 KB and 1,000 KB

the 25.4% and the files bigger than 1,000 KB the final 5.0%.

Again, these executables were compiled with very different generic com-

pilers like Borland C++, Borland Delphi, Dev-C++, Microsoft Visual C++,

MingWin32 and Nullsoft; and two packers: ASProtect and UPX; as it is

shown in Table 3. Note that 69 of them were compiled with debugger ver-

sions and 28 were compiled with overlaying versions of the already mentioned

platforms, while 179 were generated with standard versions of the aforemen-

tioned compilers.

Using these datasets, we formed a total dataset of 2,000 executables. In

a previous work Moskovitch et al. (2008a), a larger dataset was employed

12

to validate the model. We did not use a larger training dataset because of

technical limitations. However, the randomly selected dataset was heteroge-

neously enough to raise sound conclusions. In a further work, we would like

to test how this technique scales with larger datasets.

Next, we extracted the opcode-sequence representations of opcode-sequence

length n = 2 for every file in each dataset. The number of features obtained

with an opcode length of two was very high at 144,598 features, from which

only 51,949 have WTFs above than zero. We applied a feature selection

step using Information Gain (Kent, 1983), selecting the top 1,000 features

from the 51,949, which represents an 1.9% of the total features. We selected

1,000 features because it is a usual number to work with in text categorisa-

tion (Forman, 2003). However, this value may change performance: a low

number of features can decrease representativeness while a high number of

features slows down the training step. In preliminary tests, we found out

that this number of features maximised the performance of the model both

in accuracy and processing overhead. The reason of not extracting further

opcode-sequence lengths is that the underlying complexity of the feature

selection step and the huge amount of features obtained would render the

extraction very slow. Besides, an opcode-sequence length of 2 has proven to

be the best configuration in a previous work (Moskovitch et al., 2008a).

We performed two different experiments. In the first experiment, we

selected the positive and labelled class stored in P as malware, whereas in

the second experiment, we selected the benign executables as the positive

class. For both experiments, we split the dataset into 10 subsets of training

and test datasets using cross-validation (Bishop, 2006). In this way, we have

13

the same training and test sets for both experiments. Later, we changed the

number of labelled instances in the training datasets of each subset to 100,

200, 300, 400, 500, 600, 700, 800 and 900, taking into account which class is

going to be the labelled on in each experiment. The unlabelled ones within

the training set still belonged to the training set but their labels would be

unknown until the first step of the algorithm finishes. In this way, we measure

the effects of the number of labelled instances on the final performance of

Roc-SVM’s ability to detect unknown malware. In summary, we performed

9 runs of Roc-SVM for each possible labelled class (malware or legitimate

software) for each of the 10 subsets in each experiment (malware or legimate

software labelled). A summary of the construction of the different training

and test datasets is shown in Figure 4.

To evaluate the results of Roc-SVM, we measured the precision of the

malware (MP) instances in each run, which is the amount of malware co-

rrectly classified divided by the amount of malware correctly classified and

the number of legitimate executables misclassified as malware:

MP =
TP

TP + FP
(4)

where TP is the number of true positives i.e., number of malware instances

correctly classified and FP is the number of false positives i.e., number of

legitimate executables misclassified as malware.

In addition, we measured the precision of the legitimate executables (LP),

which is the number of benign executables correctly classified divided by

the number of legitimate executables correctly classified and the number of

malicious executables misclassified as benign executables:

14

LP =
TN

TN + FN
(5)

where TN is the number of legitimate executable correctly classified i.e., true

negatives and FN, or false negatives, is the number of malicious executables

incorrectly classified as benign software.

We also measured the recall of the malicious executables (MR), which

is the number of malicious executables correctly classified divided by the

amount of malware correctly classified and the number of malicious executa-

bles misclassified as benign executables:

MR =
TP

TP + FN
(6)

where TP is the number of true positives i.e., number of malware instances

correctly classified and FN, or false negatives, is the number of malicious

executables incorrectly classified as benign software. This measure is also

known as false positive rate.

Next, we measured the recall of legitimate executables (LR) in each run,

which is the number of benign executables correctly classified divided by

the number of legitimate executables correctly classified and the number of

legitimate executables misclassified as malware:

LR =
TN

TN + FP
(7)

where TN is the number of legitimate executable correctly classified i.e., true

negatives and FP is the number of false positives i.e., number of legitimate

executables misclassified as malware.

15

We also computed the F-measure, which is the harmonic mean of both

the precision and recall:

F -measure = 2 · Precision ∗Recall

Precision+Recall
(8)

where Precision is the mean value between both malware and legitimate

precision (MP and LP) and Recall is the mean value between both malware

and legitimate recall (MR and LR).

Finally, we measured the accuracy of Roc-SVM, which is the number of

the classifier’s hits divided by the total number of classified instances:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Figure 5 shows the results from selecting malware as the class for labe-

lling. In this way, we can appreciate how the overall results improve when

more malware executables are added. With regards to malware recall, when

the size of the set of labelled instances increases, the rate of malware recall

decreases. In other words, the more malicious executables are added to the

labelled set, the less capable Roc-SVM is of detecting malware. Malware

precision increases with the size of the labelled dataset, meaning that the

confidence of Roc-SVM’s detection of malware also increases. Legitimate

precision decreases when the size of the labelled set increases, which indica-

tes that more malicious executables are classified as benign software. Howe-

ver, legitimate recall increases, which shows that as the amount of labelled

malware increases, so does the number of correctly classified instances of

software. Both the F-measure and accuracy increase along with the size of

the labelled dataset.

16

Figure 6 shows the results when we select benign software as the labe-

lled class. Overall, the results improve when more labelled executables are

added. However, it only increases until 600 benign executables are labelled.

Then, the classifier worsens. This indicates that too much legitimate soft-

ware is redundant for the classifier. These general trends are very similar to

the previous results. Malware recall decreases when the number of labelled

instances increases. Malware precision increases with the size of the labelled

dataset, and legitimate precision decreases when the size of the labelled set

increases.

To compare the results obtained by Roc-SVM, we have defined two type

of baselines: simple euclidean distance with malware labelled and the same

distance measure with legitimate software labelled. For both baselines, we

have used a 10-fold cross validation and the maximum amount of labelled

software we have used to validate Roc-SVM: 900 instances. We have not

used lower training set sizes because the results obtained with 900 instances,

which will be the highest possible using this simple measure, are lower than

the ones obtained with our single-class approach (as shown in Table 4). In

order to provide a better distance measure we have weighted each feature

with its information gain value with respect to the class.

Thereafter, we have measured the euclidean distance between the test

dataset, composed of 100 malicious instances and 100 benign executable for

each fold, the 900 training instances for each fold. In order to select the global

deviation from the training set (that can be either malware or legitimate

software) three combination rules were used: (i) the mean value, (ii) the

lowest distance value and (iii) the highest value of the computed distances.

17

Next, we have selected the threshold as the value with highest f-measure,

selected from 10 possible values between the value that minimised the false

positives and the value that minimised the false negatives.

Table 4 shows the obtained results with Euclidean distance. The distance

approach, although we have used the maximum number of training examples,

obtained much worse results than the Roc-SVM approach proposed in this

paper. Indeed, several configurations were as bad as a random classifier,

showing that this simplistic approach is not feasible and that our single-class

approach is far much better for classifying malware using the information of

only one class of executables.

In summary, the obtained results show that it is better to label benign

software rather than malware when we can only label a small number of

benign executables. This results are in concordance with the work of Song

et al. (2007) regarding feasibility of blacklisting. However, if we can label a

large amount of malware, the classifier would likely improve. The impact of

the number of labelled instances is positive, enhancing the results when the

size of the labelled dataset increases.

5. Discussion

We believe that our results will have a strong impact on the study of unk-

nown malware detection, which usually relies on supervised machine learning.

The use of supervised machine-learning algorithms for model training can be

problematic because supervised learning requires that every instance in the

dataset be properly labelled. This requirement means that a large amount

of time is spent labelling. We have dealt with this problem using single-class

18

learning that only needs a limited amount of a class (whether malware or

benign) to be labelled. Our results outline the amount of labelled malware

that is needed to assure a certain performance level in unknown malware

detection. In particular, we found out that if we labelled 60% of the benign

software, which is the 30% of the total corpus, the Roc-SVM method can

achieve an accuracy and F-measure above 85%.

Although these results of accuracy are high, they may be not enough for

an actual working environment. A solution to this problem is to employ user

feedback and generate both blacklisting of the known malicious files and

whitelisting of the confirmed benign applications. However, this feedback

may not be enough in order to improve the models. In that case, our proposed

method can be also used in the laboratories of the antivirus vendors to reduce

their efforts.

It should also be interesting to evaluate how our method behaves chrono-

logically in order to establish the importance of keeping updated the training

set as suggested in Moskovitch and Elovici (2008), but we did not have an

accurate information about the actual date each executable was retrieved.

We would like to test this capability in a further work. On a similar vein, the

imbalance problem has been introduced in previous work Moskovitch et al.

(2008b,a); basically it is stated that the balance of each class depends on

the final results of a classifier. In our context, where we use a set of labelled

instances and a set of unlabelled ones to train, an investigation of the effects

in the balance between labelled and unlabelled instances is interesting as

further work.

However, because of the static nature of the features we used with Roc-

19

SVM, it cannot counter packed malware. Packed malware results from cip-

hering the payload of the executable and deciphering it when it finally loads

into memory. Indeed, broadly used static detection methods can deal with

packed malware only by using the signatures of the packers. As such, dy-

namic analysis seems like a more promising solution to this problem (Kang

et al., 2007). One solution to solve this obvious limitation of our malware de-

tection method may involve the use of a generic dynamic unpacking schema,

such as PolyUnpack (Royal et al., 2006), Renovo (Kang et al., 2007), Om-

niUnpack (Martignoni et al., 2007) and Eureka (Sharif et al., 2008). These

methods execute the sample in a contained environment and extract the

actual payload, allowing for further static or dynamic analysis of the execu-

table. Another solution is to use concrete unpacking routines to recover the

actual payload, but this method requires one routine per packing algorithm

(Ször, 2005). Obviously, this approach is limited to a fixed set of known pac-

kers. Likewise, commercial antivirus software also applies X-ray techniques

that can defeat known compression schemes and weak encryption (Perriot

and Ferrie, 2004). Nevertheless, these techniques cannot cope with the in-

creasing use of packing techniques, and we thus suggest the use of dynamic

unpacking schema to address this problem.

Besides, we have chosen not to use the opcode arguments in the represen-

tation. Bilar Bilar (2007) proved that opcode by themselves and disregarding

the operands are enough to explain the variability between malware and le-

gitimate software. However, we may improve the performance of the method

of representation by using the information of the operands. To this end, we

should categorise them into semantic units rather than using the arguments

20

as they appear and, therefore, avoid simple obfuscations by only changing

the order of the parameters. We would like to prove this possibility in a

further work.

6. Conclusions

Unknown malware detection has become a research topic of great concern

owing to the increasing growth in malicious code in recent years. In addition,

it is well known that the classic signature methods employed by antivirus

vendors are no longer completely effective against the large volume of new

malware. Therefore, signature methods must be complemented with more

complex approaches that allow the detection of unknown malware families.

Although machine-learning methods are a suitable solution for combating

unknown malware, they require a high number of labelled executables for

each of the classes under consideration (i.e., malware and benign datasets).

Because it is difficult to obtain this amount of labelled data in a real-word

environment, a time-consuming analysis process is often mandatory.

In this paper, we propose the use of a single-class learning method for

unknown malware detection based on opcode sequences. Single-class learning

does not require a large amount of labelled data, as it only needs several

instances that belong to a specific class to be labelled. Therefore, this method

can reduce the cost of unknown malware detection. Additionally, we found

that it is more important to obtain labelled malware samples than benign

software. By labelling 60% of the legitimate software, we can achieve results

above 85% accuracy.

Future work will be oriented towards four main directions. First, we will

21

use different features as data for training these kind of models. Second, we

will focus on detecting packed executables using a hybrid dynamic-static ap-

proach. Third, we plan to perform a chronological evaluation of this method,

where the update need of the training set will be determined. Fourth, we

would like to investigate in the effect of the balance between labelled and un-

labelled instances in single-class learning. Finally, we would like to improve

the representation of executables by adding the information contained in the

arguments of the operations.

Acknowledgements

We would like to acknowledge to the anonymous reviewers for their helpful

comments and suggestions.

References

Baeza-Yates, R. A., Ribeiro-Neto, B., 1999. Modern Information Retrieval.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Bilar, D., 2007. Opcodes as predictor for malware. International Journal of

Electronic Security and Digital Forensics 1 (2), 156–168.

Bishop, C., 2006. Pattern recognition and machine learning. Springer New

York.

Buckley, C., Salton, G., Allan, J., 1994. The effect of adding relevance infor-

mation in a relevance feedback environment. In: Proceedings of the 17th

annual international ACM SIGIR conference on Research and development

in information retrieval. Springer-Verlag New York, Inc., pp. 292–300.

22

Cai, D., Theiler, J., Gokhale, M., 2005. Detecting a malicious executable

without prior knowledge of its patterns. In: Proceedings of the the De-

fense and Security Symposium. Information Assurance, and Data Network

Security. Vol. 5812. pp. 1–12.

Chapelle, O., Schölkopf, B., Zien, A., 2006. Semi-supervised learning. MIT

Press.

Christodorescu, M., 2007. Behavior-based malware detection. Ph.D. thesis.

Devesa, J., Santos, I., Cantero, X., Penya, Y. K., Bringas, P. G., 2010. Au-

tomatic Behaviour-based Analysis and Classification System for Malware

Detection. In: Proceedings of the 12th International Conference on Enter-

prise Information Systems (ICEIS).

Dolev, S., Tzachar, N., May 26 2008. Malware signature builder and detection

for executable code. EP Patent 2,189,920.

Forman, G., 2003. An extensive empirical study of feature selection metrics

for text classification. The Journal of Machine Learning Research 3, 1289–

1305.

Jolliffe, I., 2002. Principal component analysis. Springer verlag.

Kang, M., Poosankam, P., Yin, H., 2007. Renovo: A hidden code extractor

for packed executables. In: Proceedings of the 2007 ACM workshop on

Recurring malcode. pp. 46–53.

Kent, J., 1983. Information gain and a general measure of correlation. Bio-

metrika 70 (1), 163.

23

Kolter, J., Maloof, M., 2004. Learning to detect malicious executables in the

wild. In: Proceedings of the 10th ACM SIGKDD international conference

on Knowledge discovery and data mining. ACM New York, NY, USA, pp.

470–478.

Li, W., Wang, K., Stolfo, S., Herzog, B., 2005. Fileprints: Identifying file

types by n-gram analysis. In: Proceedings of the 2005 IEEE Workshop on

Information Assurance and Security. Citeseer.

Li, X., Liu, B., 2003. Learning to classify texts using positive and unlabeled

data. In: Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI). Vol. 18. Citeseer, pp. 587–594.

Liu, B., Dai, Y., Li, X., Lee, W., Yu, P., 2003. Building text classifiers

using positive and unlabeled examples. In: Proceedings of the 3rd IEEE

International Conference on Data Mining(ICDM). pp. 179–186.

Marks, P., 2010. Stuxnet: the new face of war. The New Scientist 208 (2781),

26–27.

Martignoni, L., Christodorescu, M., Jha, S., 2007. Omniunpack: Fast, ge-

neric, and safe unpacking of malware. In: Proceedings of the 23rd Annual

Computer Security Applications Conference (ACSAC). pp. 431–441.

Masri, W., Podgurski, A., 2005. Using dynamic information flow analysis

to detect attacks against applications. In: Proceedings of the Workshop

on Software Engineering for Secure SystemsBuilding Trustworthy Appli-

cations. ACM, pp. 1–7.

24

McGill, M., Salton, G., 1983. Introduction to modern information retrieval.

McGraw-Hill.

Milenković, M., Milenković, A., Jovanov, E., 2005. Using instruction block

signatures to counter code injection attacks. ACM SIGARCH Computer

Architecture News 33 (1), 108–117.

Morley, P., 2001. Processing virus collections. In: Proceedings of the 2001

Virus Bulletin Conference (VB2001). Virus Bulletin, pp. 129–134.

Moskovitch, R., Elovici, Y., 2008. Unknown Malicious Code Detection–

Practical Issues. In: Proceedings of the 7th European Conference on Infor-

mation Warfare. pp. 145–153.

Moskovitch, R., Feher, C., Tzachar, N., Berger, E., Gitelman, M., Dolev, S.,

Elovici, Y., 2008a. Unknown malcode detection using opcode representa-

tion. Intelligence and Security Informatics, 204–215.

Moskovitch, R., Stopel, D., Feher, C., Nissim, N., Elovici, Y., 2008b. Unk-

nown malcode detection via text categorization and the imbalance pro-

blem. In: Proceedings of the 6th IEEE International Conference on Inte-

lligence and Security Informatics (ISI). pp. 156–161.

Ollmann, G., 2008. The evolution of commercial malware development kits

and colour-by-numbers custom malware. Computer Fraud & Security

2008 (9), 4–7.

Perriot, F., Ferrie, P., 2004. Principles and practise of x-raying. In: Procee-

dings of the Virus Bulletin International Conference. pp. 51–66.

25

Rieck, K., Holz, T., Willems, C., D

”ussel, P., Laskov, P., 2008. Learning and classification of malware beha-

vior. In: Proceedings of Detection of Intrusions and Malware, and Vulne-

rability Assessment (DIMVA). Springer, pp. 108–125.

Rocchio, J., 1971. Relevance feedback in information retrieval. The SMART

retrieval system: experiments in automatic document processing, 313–323.

Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W., 2006. Polyunpack:

Automating the hidden-code extraction of unpack-executing malware. In:

Proceedings of the 22nd Annual Computer Security Applications Confe-

rence (ACSAC). pp. 289–300.

Santos, I., Brezo, F., Nieves, J., Penya, Y., Sanz, B., Laorden, C., Bringas,

P., 2010. Idea: Opcode-sequence-based malware detection. In: Engineering

Secure Software and Systems. Vol. 5965 of Lecture Notes in Computer

Science. pp. 35–43.

Santos, I., Penya, Y., Devesa, J., Bringas, P., 2009. N-Grams-based file sig-

natures for malware detection. In: Proceedings of the 11th International

Conference on Enterprise Information Systems (ICEIS), Volume AIDSS.

pp. 317–320.

Schapire, R., 2003. The boosting approach to machine learning: An overview.

Lecture Notes in Statistics, 149–172.

Schultz, M., Eskin, E., Zadok, F., Stolfo, S., 2001. Data mining methods for

detection of new malicious executables. In: Proceedings of the 22nd IEEE

Symposium on Security and Privacy. pp. 38–49.

26

Shabtai, A., Moskovitch, R., Elovici, Y., Glezer, C., 2009. Detection of ma-

licious code by applying machine learning classifiers on static features: A

state-of-the-art survey. Information Security Technical Report 14 (1), 16–

29.

Shabtai, A., Potashnik, D., Fledel, Y., Moskovitch, R., Elovici, Y., 2010.

Monitoring, analysis, and filtering system for purifying network traffic of

known and unknown malicious content. Security and Communication Net-

works, n/a–n/a.

URL http://dx.doi.org/10.1002/sec.229

Shafiq, M., Khayam, S., Farooq, M., 2008. Embedded Malware Detection

Using Markov n-Grams. Lecture Notes in Computer Science 5137, 88–107.

Sharif, M., Yegneswaran, V., Saidi, H., Porras, P., Lee, W., 2008. Eureka: A

Framework for Enabling Static Malware Analysis. In: Proceedings of the

European Symposium on Research in Computer Security (ESORICS). pp.

481–500.

Song, Y., Locasto, M., Stavrou, A., Keromytis, A., Stolfo, S., 2007. On the

infeasibility of modeling polymorphic shellcode. In: Proceedings of the

14th ACM conference on Computer and communications security. ACM,

pp. 541–551.

Ször, P., 2005. The art of computer virus research and defense. Addison-

Wesley Professional.

Vapnik, V., 2000. The nature of statistical learning theory. Springer.

27

Wei, C., Chen, H., Cheng, T., 2008. Effective spam filtering: A single-class

learning and ensemble approach. Decision Support Systems 45 (3), 491–

503.

Zhou, Y., Inge, W., 2008. Malware detection using adaptive data compres-

sion. In: Proceedings of the 1st ACM workshop on Workshop on AISec.

ACM New York, NY, USA, pp. 53–60.

Zhu, X., 2005. Semi-supervised learning literature survey. Tech. Rep. 1530,

Computer Sciences, University of Wisconsin-Madison.

28

Figures

mov ax,0000h

add [0BA1Fh],cl

push cs

add [si+0CD09h],dh

and [bx+si+4C01h],di

push sp

push 7369h

and [bx+si+72h],dh

Figure 1: Assembly code example.

29

// Assign the unlabelled set U the negative class, and the

positive set P the positive class

foreach e ∈ U do

e← c⃗−;

foreach e ∈ P do

e← c⃗+;

c⃗+ ← α 1
|P|

∑
e∈P

e⃗
||e⃗|| − β 1

|U|
∑

e∈U
e⃗

||e⃗|| ;

c⃗− ← α 1
|U|

∑
e∈U

e⃗
||e⃗|| − β 1

|P|
∑

e∈P
e⃗

||e⃗|| ;

foreach e ∈ U do

if sim(c⃗+, e⃗) ≤ sim(⃗c−, e⃗) then

N ← N ∪ e ;

Figure 2: Rocchio selection of negative instances from U to N .

30

// Assign the set N the negative class, and the positive

set P the positive class

foreach e ∈ N do

e← c⃗−;

foreach e ∈ P do

e← c⃗+;

repeat

// Use P and U to train a SVM classifier Si

Si ← train(P ∪N);

// Classify Q using Si. The set of instances in Q that

are classified as negative is denoted by W

Q′ ← Classify(Q);

W ← {e ∈ Q′ : e = c⃗−};

if |W| ≠ 0 then

Q ← Q−W ;

N ← N ∪W ;

until |W| = 0;

// Use the last SVM classifier S1 if > 8% positive are

classified as negative or the first classifier Slast in

other cases, to classify P

if |{e ∈ Q′ : e = c⃗+}| > 8
100
|Q′| then

Select S1 as the final classifier;

else

Select Slast as the final classifier;

Figure 3: Generating the classifier.

31

Figure 4: Representation of the construction of training and test sets.. Ten different

divisions of the data were performed of training and test set. For each division, two

different types of labelled class was selected: malware and legitimate software. For each

of them, the amount of labelled instances ranged from the 10% to 90%

Figure 5: Results after labelling the class composed of malicious executables. The overall

results improve when the number of labelled malicious executables increases. Roc-SVM

can guarantee an overall accuracy of 83.432% when 600 executables are labelled, which

requires labelling 60% of the malware and 30% of the total corpus.

32

Figure 6: Results from labelling the class composed of benign executables. The overall

results improve when the number of labelled benign executables increases up to 600 labelled

instances. After that, accuracy decreases. Roc-SVM can guarantee an overall accuracy of

84.221% when only 400 benign executables are labelled, which requires labelling 40% of the

benign software and 20% of the total executable corpus. Labelling 600 benign executables

obtains a higher accuracy of 87.456%.

33

Tables

Table 1: Categorisation of the malware dataset depending on their functionality.

Functionality Number of instances

Backdoor 305

Hacktool 130

Email Worm 124

Email Flooder 82

Exploit 73

DOS 72

Flooder 61

IM Flooder 55

Constructor 48

IRC Worm 28

IM Worm 16

Net Worm 6

34

Table 2: Categorisation of the malware dataset depending on the used compiler.

Compiler Instances per Version Total Instances

Borland C++ 19

56Borland C++ 1999 36

Borland C++ DLL Method 2 1

Borland Delphi 2.0 12

183

Borland Delphi 3.0 25

Borland Delphi 4.0-5.0 76

Borland Delphi 6.0 4

Borland Delphi 6.0-7.0 66

FreeBasic 0.14 1 1

Microsoft VisualBasic 5.0 528 528

Microsoft Visual C++ 4

232

Microsoft Visual C++ 4.x 14

Microsoft Visual C++ 5.0 42

Microsoft Visual C++ 6.0 154

Microsoft Visual C++ 7.0 15

Microsoft Visual C++ 8.0 3

35

Table 3: Categorisation of the benign dataset depending on the used compiler.

Compiler Instances per Version Total Instances

ASProtect 2.1x 1 1

Borland C++ 4 4

Borland Delphi 2.0 7

12
Borland Delphi 5.0 1

Borland Delphi 6.0 1

Borland Delphi Setup Module 3

Dev-C++ 4.9.9.2 2 2

Microsoft Visual C++ 4.x 6

249
Microsoft Visual C++ 5.0 45

Microsoft Visual C++ 6.0 151

Microsoft Visual C++ 7.0 47

MingWin32 GCC 3.x 1 1

Nullsoft Install System 2.x 2
6

Nullsoft PiMP Stub 4

UPX 0.89.6 - 1.02 1 1

Unknown 724 724

36

Table 4: Results for Euclidean distance using malware and legitimate software as training

dataset for 900 labelled instances (the maximum amount tested in our single-class ap-

proach). Acc. stands for accuracy, MR stands for malware recall, MP stands for malware

precision, LR stands for legitimate recall, LP stands for legitimate precision and F-M

stands for f-measure.
Approach Acc. MR MP LR LP F-M

Euclidean with

49.67% 45.33% 90.11% 54.00% 54.00% 58.80%Mean Value and

Legitimate Software

Euclidean with

68.60% 83.61% 94.34% 53.60% 100.00% 80.43%Maximum Value and

Legitimate Software

Euclidean with

64.86% 95.22% 93.07% 34.50% 00.00% 54.19%Minimum Value and

Legitimate Software

Euclidean with

71.60% 67.10% 73.74% 76.10% 76.10% 73.22%Mean Value and

Malicious Software

Euclidean with

59.35% 19.40% 96.51% 99.30% 100.00% 74.01%Maximum Value and

Malicious Software

Euclidean with

79.50% 90.50% 74.18% 68.50% 00.00% 50.58%Minimum Value and

Malicious Software

37

