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Abstract: Malware is any type of computer software harmful to computers and networks. The amount of malware is
increasing every year and poses as a serious global security threat. Signature-based detection is the most
broadly used commercial antivirus method, however, it fails to detect new and previously unseen malware.
Supervised machine-learning models have been proposed in order to solve this issue, but the usefulness of
supervised learning is far to be perfect because it requires a significant amount of malicious code and benign
software to be identified and labelled in beforehand. In this paper, we propose a new method that adopts a
collective learning approach to detect unknown malware. Collective classification is a type of semi-supervised
learning that presents an interesting method for optimising the classification of partially-labelled data. In this
way, we propose here, for the first time, collective classification algorithms to build different machine-learning
classifiers using a set of labelled (as malware and legitimate software) and unlabelled instances. We perform
an empirical validation demonstrating that the labelling efforts are lower than when supervised learning is
used, while maintaining high accuracy rates.

1 INTRODUCTION

Commercial anti-malware solutions are based on sig-
nature databases for the detection of known malicious
executables (Morley, 2001). However, there are sev-
eral problems that make the signature-based methods
less than completely reliable: first they cannot cope
with code obfuscations and second cannot detect pre-
viously unseen malware. In this paper, we are going
to focus on the second problem: detecting previously
unseen malware.

Machine-learning-based approaches train classifi-
cation algorithms that detect new malware (this type
of malware is usually called ‘in the wild’ by the anti-
malware industry and research community), relying
on datasets composed of several characteristic fea-
tures of both malicious and benign software. Schultz
et al. (Schultz et al., 2001) were the first to intro-
duce the concept of applying machine-learning algo-
rithms for the detection of malware based on their re-
spective binary codes. They applied different clas-
sifiers to three types of feature sets: (i) program

headers, (ii) strings and (iii) byte sequences. Later,
Kolter et al. (Kolter and Maloof, 2004) improved
Schulz’s results by applying n-grams (i.e., overlap-
ping byte sequences) instead of non-overlapping se-
quences. This approach employed several algorithms,
achieving the best results with a boosted1 decision
tree. Substantial research has focused on n-gram dis-
tributions of byte sequences and machine-learning al-
gorithms (Moskovitch et al., 2008; Zhou and Inge,
2008; Santos et al., 2009).

Nevertheless, machine-learning classifiers require
a high number of labelled executables for each of the
classes (i.e., malware and benign). It is quite difficult
to obtain this amount of labelled data for a real-world
problem such as the malicious code analysis. To gen-
erate these data, a time-consuming process of analysis
is mandatory and, in the process, some malicious exe-
cutables can avoid detection. Within the full scope of
machine-learning, several approaches have been pro-

1Boosting is a machine-learning technique that builds a
strong classifier composed of a high number of weak clas-
sifiers (Schapire, 2003).



posed to deal with this issue. Semi-supervised learn-
ing is a type of machine-learning technique that is
specially useful when a limited amount of labelled
data exists for each class (Chapelle et al., 2006).
In particular, collective classification (Neville and
Jensen, 2003) is an approach that uses the relational
structure of the combined labelled and unlabelled
data-set to enhance classification accuracy. With re-
lational approaches, the predicted label of an example
will often be influenced by the labels of related ex-
amples. The idea behind collective classification is
that the predicted labels of a test-example should also
be influenced by the predictions made for the related
test-examples. In some cases, it is interesting to de-
termine the topic of not just a single evidence, but to
infer it for a collection of unlabelled evidences. Col-
lective classification tries to collectively optimise the
problem taking into account the connections present
among the executables’ machine code. This is a semi-
supervised technique, i.e., uses both labelled and un-
labelled data – typically a small amount of labelled
data and a large amount of unlabelled data – that re-
duces the labelling work.

Given this background, in a previous work (San-
tos et al., 2011), we proposed the adoption of LLGC,
a semi-supervised approach, for malware detection.
Here, we propose the first approach that employs col-
lective classification algorithms for the detection of
unknown malware that improves our previous results.
These methods are able to learn from both labelled
and unlabelled data. For the representation of ex-
ecutables, we chose the byte n-gram distribution, a
well-known technique that has achieved significant
results with supervised machine learning (Kolter and
Maloof, 2004; Moskovitch et al., 2008; Santos et al.,
2009; Devesa et al., 2010). However, the presented
collective methodology is scalable to any representa-
tion susceptible to be represented as a feature vector.

Summarising, our main findings in this paper are:
(i) we describe how to adopt collective classification
for unknown malware detection, (ii) we determine
the optimal number of labelled instances and evalu-
ate how this parameter affects the final accuracy of
the models and (iii) we show that labelling efforts can
be reduced in the industry, while still maintaining a
high rate of accuracy.

2 BYTE N-GRAM
REPRESENTATION

Byte n-grams frequencies distribution is a well-
known approach for training machine-learning classi-
fiers to detect unknown malicious code (Schultz et al.,

2001; Kolter and Maloof, 2004; Moskovitch et al.,
2008; Shafiq et al., 2008; Zhou and Inge, 2008; San-
tos et al., 2009). To obtain a representation of the
executables by the use of byte n-grams, we need to
extract every possible sequence of bytes and their ap-
pearance frequency.

Specifically, a binary program P can be rep-
resented as a sequence of ` bytes b as P =
{b1,b2,b3, ...,b`−1,b`}. A byte n-gram sequence g
is defined as a subset of consecutive bytes within an
executable file where g ⊆ P and it is made up of
bytes b, such as g = (b1,b2,b3, ...,bn−1,bn) where
n is the length of the byte n-gram g. Therefore,
a program P is composed of byte n-grams such as
P = (g1,g2, ...,g`−1,g`) where ` is the total number
of possible n-grams of a fixed length n.

We use ‘term frequency - inverse document fre-
quency’ (t f − id f ) (McGill and Salton, 1983) to ob-
tain the weight of each byte n-gram, whereas the
weight of the ith n-gram in the jth executable, denoted
by weight(i, j), is defined by: weight(i, j) = t fi, j · id fi
where the term frequency t fi, j (McGill and Salton,
1983) is defined as: t fi, j = mi, j

∑k mk, j
where mi, j is the

number of times the n-gram ti, j appears in an exe-
cutable e, and ∑k mk, j is the total number of n-grams
in the executable e.

On the other hand, the inverse document fre-
quency id fi is defined as: id fi = |E |

|E :ti∈e| where |E |
is the total number of executables and |E : ti ∈ e| is
the number of executables containing the n-gram ti.

Finally, we can obtain a vector ~v com-
posed of byte n-grams frequencies, ~v =
((g1,weight1), ...,(gm−1,weightm−1),(gm, weightm)),
where gi is the byte n-gram and weighti is the value
of t f − id f for that particular n-gram.

3 COLLECTIVE
CLASSIFICATION

Collective classification is a combinatorial optimiza-
tion problem, in which we are given a set of doc-
uments, or nodes, D = {d1, ...,dn} and a neigh-
bourhood function N, where Ni ⊆ D \ {Di}, which
describes the underlying network structure (Namata
et al., 2009). Being D a random collection of docu-
ments, it is divided into two sets X and Y where X
corresponds to the documents for which we know the
correct values and Y are the documents whose val-
ues need to be determined. Therefore, the task is to
label the nodes Yi ∈ Y with one of a small number
of labels, L = {l1, ..., lq}. We use the Waikato En-
vironment for Knowledge Analysis (WEKA) (Garner,



1995) and its Semi-Supervised Learning and Collec-
tive Classification plugin2 which provides the follow-
ing collective classifiers:

• CollectiveIBk: It uses internally WEKA’s classic
IBk algorithm, implementation of the K-Nearest
Neighbour (KNN), to determine the best k on the
training set and builds then, for all instances from
the test set, a neighbourhood consisting of k in-
stances from the pool of train and test set (either a
naı̈ve search over the complete set of instances or
a k-dimensional tree is used to determine neigh-
bours), which are sorted according to their dis-
tance to the test instance they belong to. For every
unlabelled test instance with the highest rank, the
class label is determined by majority vote. This
is performed until no further unlabelled test in-
stances remain. The classification terminates by
returning the class label of the instance that is
about to be classified.

• CollectiveForest: It uses WEKA’s implementa-
tion of RandomTree as base classifier to divide the
test set into folds containing the same number of
elements. The first iteration trains using the orig-
inal training set and generates the distribution for
all the instances in the test set. The best instances
are then added to the original training set (being
the number of instances chosen the same as in a
fold). The next iterations train with the new train-
ing set and generate then the distributions for the
remaining instances in the test set.

• CollectiveWoods & CollectiveTree: Collective-
Woods works like CollectiveForest using Collec-
tiveTree instead of RandomTree. Collective tree
splits the attribute at that position that divides the
current subset of instances (training and test in-
stances) into two halves. The process finishes if
one of the following conditions is met: (i) only
training instances would be covered (the labels
for these instances are already known), (ii) only
test instances in the leaf, case in which distribu-
tion from the parent node is taken and (iii) only
training instances of one class, case in which all
test instances are considered to have this class. To
calculate the class distribution of a complete set
or a subset, the weights are summed up according
to the weights in the training set, and then nor-
malised. The nominal attribute distribution corre-
sponds to the normalised sum of weights for each
distinct value and, for the numeric attribute, distri-
bution of the binary split based on median is cal-
culated and then the weights are summed up for

2Available at: http://www.scms.waikato.ac.nz/~fracpete/
projects/collectiveclassification

the two bins and finally normalised.
• RandomWoods: It works like WEKA’s classic

RandomForest but using CollectiveBagging (clas-
sic Bagging, a machine learning ensemble meta-
algorithm to improve stability and classification
accuracy, extended to make it available to col-
lective classifiers) in combination with Collec-
tiveTree in contrast to RandomForest, which uses
Bagging and RandomTree.

4 EXPERIMENTAL RESULTS

The research question we seek to answer through this
empirical validation is the following one: What is the
minimum number of labelled instances required to as-
sure a suitable performance using collective classi-
fication? To this end, we collected a dataset com-
prising 1,000 malicious executables and 1,000 benign
ones. For the malware, we gathered random samples
from the website VxHeavens3, which has assembled
a malware collection of more than 17,000 malicious
programs, including 585 malware families that repre-
sent different types of current malware such as Tro-
jan horses, viruses and worms. Although they had al-
ready been labelled according to their family and vari-
ant names, we analysed them using Eset Antivirus4 to
confirm this labelling. For the benign dataset, we col-
lected legitimate executables from our own comput-
ers. We also performed an analysis of the benign files
using Eset Antivirus to confirm their legitimacy.

By means of this dataset, we conducted the fol-
lowing methodology to answer the research question
and thus, evaluate the proposed method:

1. Byte N-gram Extraction. We extracted the byte
n-gram representation for each file in the dataset
for n = 2. This specific length was chosen because
it is the number of bytes that an operation repre-
sented by an operational code needs in machine
code, a widely-used n-gram length in the literature
(Schultz et al., 2001; Kolter and Maloof, 2004).

2. Feature Extraction. Because the total number
of features we obtained was high, we applied a
feature selection step based on a Document Fre-
quency (DF) measure, which counts the number
of documents in which a specific n-gram appears,
selecting the 5,000 top ranked byte n-grams. This
concrete number of features was chosen because
it provides a balance between efficiency and ac-
curacy and it has been proven to be effective
(Moskovitch et al., 2008).

3Available at: http://vx.netlux.org/
4Available at: http://www.eset.com/



(a) Accuracy results. The X axis represents the amount of
labelled data (training dataset) whereas the Y axis repre-
sents the accuracy of the different collective classifiers.

(b) TPR results. The X axis represents the amount of la-
belled data (training dataset) whereas the Y axis represents
the TPR of the different collective classifiers.

(c) FPR results. The X axis represents the amount of la-
belled data (training dataset) whereas the Y axis represents
the FPR of the different collective classifiers.

(d) AUC results. The X axis represents the amount of la-
belled data (training dataset) whereas the Y axis represents
the AUC of the different collective classifiers.

Figure 1: The results of our collective-classification-based malware detection method. Collective Forest was the classifier
with the highest accuracy, TPR and AUC, and the lowest value of FPR. Our results outline that, obviously, the higher the
number of labelled executables are in the dataset the better results are achieved.

3. Training and Test Generation. We constructed
an ARFF file (Holmes et al., 1994) (i.e., At-
tribute Relation File Format) with the resultant
vector representations of the executables to build
the aforementioned WEKA’s classifiers. Next,
we split the dataset into different percentages of
training and tested instances. In other words, we
changed the number of labelled instances from
10% to 90% to measure the effect of the num-
ber of labelled instances on the final performance
of collective classification in detecting unknown
malware. In particular, we used the collective
classification implementations provided by the
Semi-Supervised Learning and Collective Clas-
sification package for the well-known machine-
learning tool WEKA (Garner, 1995). All the clas-
sifiers were tested with their default parameters.

4. Testing the Models. To test the approach, we
measured the True Positive Ratio (TPR), i.e., the
number of malware instances correctly detected
divided by the total number of malware files:
T PR = (T P)/(T P+FN) where T P is the number

of malware cases correctly classified (true posi-
tives) and FN is the number of malware cases
misclassified as legitimate software (false nega-
tives). We also measured the False Positive Ra-
tio (FPR), i.e., the number of benign executa-
bles misclassified as malware divided by the total
number of benign files: FPR = (FP)/(FP+T N)
where FP is the number of benign software cases
incorrectly detected as malware and T N is the
number of legitimate executables correctly clas-
sified. Furthermore, we measured accuracy, i.e.,
the total number of hits of the classifiers divided
by the number of instances in the whole dataset:
Accuracy = (T P + T N)/(T P + FP + T P + T N)
Finally, we measured the Area Under the ROC
Curve (AUC), which establishes the relation be-
tween false negatives and false positives (Singh
et al., 2009). The ROC curve is obtained by plot-
ting the TPR against the FPR. All the these mea-
sures refer to the test instances.
Figure 1 shows the obtained results in terms of ac-

curacy, AUC, TPR and FPR. Figure 1(a) shows the ac-



curacy results of our proposed method. As one may
think in beforehand, the higher the number of train-
ing instances the higher the accuracy of the different
models. In particular, the best overall results were ob-
tained by Collective Forest, achieving results higher
than 90% for every possible configuration and higher
than 95% when half of the instances were used for
training. On the other hand, Collective IBK obtained
the lowest accuracy results, achieving an accuracy
higher than 80% only when more than the 50% of the
instances were employed. Figure 1(b) shows the ob-
tained results in terms of correctly classified malware
executables. Collective Forest was also the best, de-
tecting more than the 90% of the malware executables
for every tested configuration. Figure 1(c) shows the
FPR results. Every classifier obtained results lower
than the 10%. In particular, the lowest FPR was of
2%, achieved by CollectiveForest using the 90% of
the instances for training. However, in order to guar-
antee results of FPR lower than 5%, Collective Forest
only needs to be trained with a minimum of 20% of
the dataset. Finally, regarding AUC (shown in Fig-
ure 1(d)), Collective Forest was the best with results
higher than 97% for every configuration.

5 DISCUSSION

The obtained results validate our initial hypothe-
sis that building an unknown malware detector based
on collective classification is feasible. The classifiers
achieved high performance in classifying unknown
malware, improving our previous results using LLGC
(Santos et al., 2011), which achieved a 86% of ac-
curacy in its best configuration. Therefore, we be-
lieve that our results will have a strong impact in the
area of unknown malware detection, which usually re-
lies on supervised machine learning (Schultz et al.,
2001; Kolter and Maloof, 2004). Training the model
through supervised machine-learning algorithms can
be a problem itself because supervised learning re-
quires each instance in the dataset to be properly la-
belled. This demands a large amount of time and
resources. We have dealt with this problem by us-
ing a collective approach that only needs a certain
amount of data to be labelled. In this way, we tried
to find among our results the number of labelled mal-
ware that is needed to assure a certain performance in
unknown malware detection. In particular, we found
out that if we label the 10% of the the total corpus,
our method can achieve an accuracy and a F-measure
greater than 90%. Nevertheless, there are several con-
siderations regarding the viability of this method.

First, because of the static nature of the proposed

method, it cannot counter packed malware. Packed
malware is the result of cyphering the payload of the
executable and deciphering it when the executable is
finally loaded into memory. One solution to solve this
obvious limitation of our malware detection method is
the use of a generic dynamic unpacking schema such
as PolyUnpack (Royal et al., 2006), Renovo (Kang
et al., 2007), OmniUnpack (Martignoni et al., 2007)
or Eureka (Sharif et al., 2008). These methods exe-
cute the sample in a contained environment and ex-
tract the actual payload, allowing further static or dy-
namic analysis of the executable.

Second, our method can be considered as a statis-
tical representation of executables. Therefore, an at-
tacker can surpass this method of detection by adding
several ‘good’ byte sequences. For example, in the
field of spam filtering (spam is defined as unsolicited
bulk mail), Good Word Attack is a method that mod-
ifies the term statistics by appending a set of words
that are characteristic of legitimate e-mails, thereby
bypass spam filters. Nevertheless, we can adapt to this
malware detector some of the methods that have been
proposed in order to improve spam filtering , such as
Multiple Instance Learning (MIL) (Zhou et al., 2007).
MIL will divide an executable or a vector in the tra-
ditional methods into several sub-instances and will
classify the original vector or classifier based on the
sub-instances.

Finally, in our experiments, we used a training
dataset that is very small in comparison to commercial
antivirus databases. Whenever the dataset size grows,
the issue of scalability becomes a concern. This
problem produces excessive storage requirements, in-
creases time complexity and impairs the general ac-
curacy of the models (Cano et al., 2006). To reduce
disproportionate storage and time costs, it is neces-
sary to reduce the size of the original training set
(Czarnowski and Jedrzejowicz, 2006). To solve this
issue, data reduction is normally considered an ap-
propriate preprocessing optimisation technique (Pyle,
1999; Tsang et al., 2003). Data reduction can be im-
plemented in two ways. Instance selection (IS) seeks
to reduce the number of evidences (i.e., number of
rows) in the training set by selecting the most rele-
vant instances or by re-sampling new ones (Liu and
Motoda, 2001). Feature selection (FS) decreases the
number of attributes or features (i.e., columns) in the
training set (Liu and Motoda, 2008).

Future work will be oriented on three main di-
rections. First, we will extend our study of collec-
tive learning by applying more algorithms to this is-
sue. Second, we will use different features for train-
ing these kind of models. Third, we will face packed
executables with a hybrid dynamic-static approach.
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