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Abstract. During the last years, malware writers have been using sev-
eral techniques to evade detection. One of the most common techniques
employed by the anti-virus industry is signature scanning. This method
requires the end-host to compare files against a database that should
contain signatures for each malware sample. In order to allow their cre-
ations to bypass these protection systems, programmers use software
encryption tools and code obfuscation techniques to hide the actual be-
haviour of their malicious programs. One of these techniques is packing,
a method that encrypts the real code of the executable and places it as
data in a new executable that contains an unpacking routine. In previous
work, we designed and implemented an anomaly detector based on PE
structural characteristics and heuristic values, and we were able to decide
whether an executable was packed or not. We stated that this detection
system could serve as a filtering step for a generic and time consum-
ing unpacking phase. In this paper, we improve that system applying
a data reduction algorithm to our representation of normality (i.e., not
packed executables), finding similarities among executables and grouping
them to form consistent clusters that reduce the amount of comparisons
needed. We show that this improvement reduces drastically the process-
ing time, while maintaining detection and false positive rates stable.

Key words: malware, packer, anomaly detection, dataset clustering,
computer security

1 Introduction

Malware (or malicious software) is the term used to define any software that
has been written with malicious intentions to harm computers or networks and
usually to obtain personal benefits in an illegitimate way. Malware authors’
intentions have evolved in the last years. In the past, the intentions behind
malware were fame and self-pride, but nowadays money is the main motivation.
For this reason, efforts to bypass anti-virus tools have increased and thus, the
power and variety of malware programs, together with their ability to overcome
all kinds of security barriers [1]. One of the most commonly used techniques



is executable packing, which consists of cyphering or compressing the actual
malicious code in order to hide it and evade signature scanning methods. Packed
programs include a decryption routine that is first executed. This code extracts
the real payload from memory and executes it. Some reports claim that up to
an 80 % of the malware analysed is packed [2].

Traditional anti-virus systems apply signature scanning to identify malicious
code. This technique has been also applied to detect executables protected with
well known packers by scanning for certain byte sequences. PEID [3] is able to
detect a wide range of well-known packers. Besides, Faster Universal Unpacker
(FUU) [4] tries to identify the packer utilised to hide the original code and
then applies custom unpacking routines designed and written for each packer.
However, this approach has the same shortcoming as signatures for malware de-
tection: it is not effective with unknown obfuscation techniques, nor with custom
packers (i.e.,executable packing-unpacking algorithms exclusively designed for a
certain malicious program). Actually, according to Morgenstern and Pilz [5], 35
% of malware is packed by a custom packer. This fact makes custom packers an
important issue to consider.

Several approaches have been proposed to overcome this evasion technique.
We can divide these approaches into static and dynamic approaches. Static ap-
proaches gather information about the employed packer without executing the
sample, while dynamic unpacking approaches trace the execution of an exe-
cutable and extract its protected code once unpacked. Normally, the samples
are run inside an isolated environment like a virtual machine or an emulator [6].

Numerous dynamic unpackers try to identify the original entry point (i.e.,
where the execution jumps from the unpacking routine to the original code)
by using heuristics. Once the execution flow reaches that point, the memory
content is dumped to disk in order to obtain an unpacked version of the malicious
code (e.g., Universal PE Unpacker [7] and OllyBonE [8]). Nevertheless, specific
heuristics cannot be universalised to all the packers in the wild, since all of them
work in very different manners. For instance, some packers use virtual instruction
sets and attach an interpreter to the executable in such a way that the original
code is never present in memory [9]. Other approaches decrypt frames of code
before they are executed and once executed they encode them again. In this way,
the whole malicious code is never loaded in memory at the same time [10].

In contrast, not so highly heuristic-dependent approaches have been proposed
for generic dynamic unpacking (e.g., PolyUnpack [11], Renovo [12], OmniUnpack
[13] and Eureka [14]). Nonetheless, these methods are time-consuming and can-
not counter conditional execution of unpacking routines, a technique used for
anti-debugging and anti-monitoring defense [15-17].

PE-Miner [18] extracts characteristics from the PE file header and builds
classifiers that determine if an executable is malicious or not. PE-Probe [19],
an improvement of PE-Miner, previously determines if the executable is packed
and then applies a different classifier in each case. Perdisci et al. proposed in
[20] a method for the classification of packed executables using certain heuristics



extracted from the PE structural data, as a previous step to the actual unpacking
process.

In previous work [21], we proposed a method based on anomaly detection
to filter executables that are not packed in order to avoid the processing over-
head caused by generic unpackers. Our system calculated vectors composed of
certain structural and heuristic features and compared the samples against a
set of vectors representing not packed executables. If the sample was different
enough, then it was considered as packed. Although the results obtained were
significant enough to validate our method, the number of comparisons needed
to analyse each sample was considerably high and consequently, it presented a
high processing overhead.

In consideration of this background, we propose here an enhancement of our
previous method [21], that applies partitional clustering to the dataset in order
to reduce the number of vectors in the knowledge base. This improvement boosts
the scalability of the system, reducing the processing time. The results obtained
for the reduced dataset and the time saved by this technique reaffirms our initial
hypothesis: A fast and efficient initial filtering step can improve generic and
dynamic unpacking systems’ performance by reducing the amount of executables
to be analysed.

Summarising, our main contributions are:

— We propose a method for dataset reduction based on the partitional clus-
tering algorithm Quality Threshold (QT) clustering, and generate reduced
datasets of different sizes.

— We evaluate our system for different reduction rates, testing its accuracy
results and comparing them to previous work.

— We prove that a unique sample synthetically generated from not-packed
executables is sufficiently representative to implement an anomaly detection
system without compromising accuracy results.

The remainder of this paper is organised as follows. Section 2 details our
anomaly-based method. Section 3 describes the experiments and presents results.
Section 4 discusses the obtained results and their implications, and outlines
avenues for future work.

2 Method Description

The method described in this paper is based on our previous work, a packed
executable detector based on an anomaly detection system [21]. Our approach
consisted in the measurement of the distance from binary files to a set of binaries
not packed. Any sample that deviates sufficiently from a representation of nor-
mality (not packed executables) is classified as packed. Contrary to supervised
learning approaches, this method does not need a model training phase, and thus
it does not require labelled packed executables, reducing the efforts needed to
find and label a set of packed binaries. Nevertheless, it is necessary to compute
as many distance values as executables in the not packed set.
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Fig. 1. Architecture of the proposed system. The QT clustering algorithm transforms
the original dataset into a new reduced synthetic dataset. It requires 2 parameters: the
distance measure and the threshold. The comparison system compares samples against
the reduced dataset obtained, applying a distance measure, a distance threshold, and
a selection rule. Finally the system is classifies the sample as packed or not packed.

In this paper, we improve the efficiency of our system by designing a data
reduction phase capable of boosting the detector’s scalability. Fig. 1 shows the
architecture of our proposed system. The first objective of our method is to
improve its efficiency by applying data reduction. The data reduction phase
consists in the application of the QT clustering algorithm to the original dataset
to obtain a reduced version that conserves the original dataset’s features. In
this way, the number of comparisons performed, and thus, the comparison time
required for the analysis of each sample are much lower.

The second objective is to measure the precision of our system when the
training set is incrementally reduced, in order to evaluate the trade-off between
efficiency and accuracy. In addition, this data reduction approach enables us to
test the performance of the system when a unique representation of a 'normal’
executable is used, and to determine if it can to correctly classify packed and
not packed executables.

2.1 Structural features

In previous work [21], we selected a set of 211 structural features of the PE
executables from the conclusions obtained in previous research in the area [18-
20]. Some features are extracted directly from the PE file header, while others
are calculated values based on heuristics commonly used for detecting packers.
Farooq et al. [18] and Perdisci et al. [20] used PE executable structural features,
as well as heuristics like entropy analysis or certain section characteristics to
determine if an executable is packed or not, as a previous step to a second
analysis phase. To select the set of features we combined both points of view,
structural characteristics and heuristics, and analysed their individual relevance



by statistical methods to determine how they impact on the classification of
packed and not packed executables.

A second issue to consider in the feature selection was extraction time, since
the system is aimed at becoming a filter to reduce the amount of executables
analysed in dynamic environments that can be much more time consuming.
Therefore, we selected a set of features that, unlike techniques such as code dis-
sassembly, string extraction or n-gram analysis [20], do not require a significant
processing time.

Features are classified into four main groups: 125 raw header characteristics
[19], 33 section characteristics (i.e., number of sections that meet certain prop-
erties), 29 characteristics of the section containing the entry point (the section
which will be executed first once the executable is loaded into memory) and,
finally, 24 entropy values. For each feature, we calculated the Information Gain
(IG) value [22]. IG provides a ratio for each feature that outlines its impor-
tance in order to classify a sample as packed or not packed. To calculate these
weight values, we used a dataset comprised of 1,000 packed and 1,000 not packed
executables.

— DOS header characteristics (31). The first bytes of the PE file header
correspond to the DOS executable header fields. IG results showed that
these characteristics are not specially relevant, having a maximum IG value
of 0.23, corresponding to a reserved field, which intuitively may not be a
relevant field. 15 values range from 0.10 to 0.16, and the rest present a
relevance bellow 0.10.

— File header block (23). This header block (also named COFF header) is
present in both image files (executable files), and object files. From a total
of 23 characteristics, 14 have an IG value greater than 0, and only 2 of them
have an IG value greater than 0.01: the number of sections (0.3112) and the
time stamp ( 0.1618).

— Optional Header Block (71). This block is present in image files but not
in object files, and contains data about how the executable must be loaded
into memory. The data directory is located at the end of this structure and
provides the address and size for very useful data structures. 37 features have
an IG value over 0, but the most relevant ones are: the address of entry point
(0.5111), the Import Address Table (IAT) size (0.3832) and address (0.3733)
(relative to the number of imported DLLs), the size of the code (0.3011),
the base of the data (0.2817), the base of the code (0.2213),the major linker
version (0.1996), checksum (0.1736), the size of initialised data (0.1661), the
size of headers (0.1600), the size of relocation table (0.1283) and the size of
image (0.1243).

— Section characteristics (33). From the 33 characteristics that conform
this group, 22 have an IG value greater than 0. The most significant ones
are: the number of non-standard sections (0.7606), the number of executable
sections (0.7127); the maximum raw data per virtual size ratio (0.5755)
(rawSize/virtual Size, where rawSize is defined as the section raw data
size and virtualSize is the section virtual size, both expressed in bytes),



the number of readable and executable sections (0.5725) and the number of
sections with a raw data per virtual size ratio lower than 1 (0.4842).

— Section of entry point characteristics (29). This group contains char-
acteristics relative to the section which will be executed once the executable
is loaded into memory. 26 characteristics have an IG value greater than 0,
from which 11 have a significant relevance: the characteristics field in its
raw state (0.9757), its availability to be written (0.9715), the raw data per
virtual size ratio (0.9244), the virtual address (0.7386), whether is a pointer
to raw data or not (0.6064), whether is a standard section or not (0.5203),
the virtual size (0.4056), whether it contains initialised data (0.3721), the
size of raw data (0.2958) and its availability to be executed (0.1575).

— Entropy values (24). We have selected 24 entropy values, commonly used
in previous works [20], from which 22 have an IG value greater than 0, and
9 have a relevant IG value: max section entropy (0.8375), mean code sec-
tion entropy (0.7656), mean section entropy (0.7359), file entropy (0.6955),
entropy of the section of entry point (0.6756), mean data section entropy
(0.5637), header entropy (0.1680), number of sections with an entropy value
greater than 7.5 (0.7445), and number of sections with an entropy value
between 7 and 7.5 (0.1059).

After the extraction, every feature has to be normalised: each value is divided
by the maximum value for that feature in the whole dataset. In this way, each
executable is represented as a vector of decimal values that range from 0 to
1. Finally, each feature value is multiplied by its relevance IG value to obtain
the final vector that will be used in the next steps. These weights are used to
compute a better distance measure among samples and to reduce the amount of
features selected, given that only 151 of them have an IG value greater than 0.

2.2 Data reduction

Dataset reduction is a step that has to be faced in very different problems that
have to work with large datasets. In our work [21], the experiments were per-
formed with a base of 900 not packed executables, which means that every sample
analysed had to be compared 900 times to classify it as packed or not. Now, we
propose a data reduction algorithm based on partitional clustering. Cluster anal-
ysis divides data into meaningful groups [23]. These techniques usually employ
distance measures to compare instances in datasets to make groups with those
which appear to be similar. We can identify several types of clustering, but
most common ones are hierarchical clustering and partitional clustering. The
first approach generates clusters in a nested style, which means that the clusters
generated from the dataset are related hierarchically. In contrast, partional clus-
tering techniques create a one-level (unnested) partitioning of the data points
[23]. We are interested in this last technique to validate our initial hypothesis: it
is possible to divide a big set of executables that represent normality (i.e., not
packed executables) into a reduced set of representations.



input : The original dataset V, the distance threshold for each cluster
threshold, and the minimum number of vectors in each cluster
minimumovectors

output: The reduced dataset R

// Calculate the distance from each vector (set of executable
features) to the rest of vectors in the dataset.
foreach {v;|v; € V} do
foreach {v;|v; € V} do
// If a vector v;’s distance to v; is lower than the specified
threshold, then v; is added to the potential cluster A,
associated to the v; vector
if distance(v;,v;) > threshold then
L Ai.add(’l}]’)

// In each loop, select the potential cluster with the highest
number of vectors
while 3A4; € A: | A;| > minimumuectors and VA; € A:|A;| > |Aj| and i # j
do
// Add the centroid vector for the cluster to the result set
R .add(centroid(A4;))
// Discard potential clusters associated to vectors v; € A;
foreach {v;lv; € A;} do
A.remove (A;)

V.remove (v;)

// Remove vectors v; € A; from the clusters Ay remaining in A
foreach {A;| A, € A} do
L foreach {v;|v; € A; and v; € A;} do

| Ag.remove(v;)

// Add the remaining vectors to the final reduced dataset
foreach {v;|v; € V} do
| R.add(v;)

Fig. 2. QT Clustering based dataset reduction algorithm.

Quality Threshold (QT) clustering algorithm was proposed by Heyer et al.
[24] to extract useful information from large amounts of gene expression data.
K-means is a classic algorithm for partitional clustering, but it requires to spec-
ify the number of clusters desired. In contrast, QT clustering algorithm does
not need this specification. Concretely, it uses a similarity threshold value to
determine the maximum radial distance of any cluster. This way, it generates a
variable number of clusters that meet a quality threshold. Its main disadvantage
is the high number of distance calculations needed. Nevertheless, in our case,
this computational overhead is admissible because we only have to reduce the
dataset once, (we employ an static representation of normality that only varies
from platform to platform).



Our algorithm, shown in Fig. 2, is based on the concepts proposed by Heyer
et al. [24], but it is adapted to our data reduction problem and it is implemented
iteratively, instead of recursively.

Let A = {Ap, Ay, ..., An} be the set of potential clusters. For each vector v;
in the dataset V, there is potential cluster A; € A. A potential cluster A; is
composed of the set of vectors at a distance respect to v; not higher than the
threshold previously specified.

Once the potential clusters are calculated, we select the cluster with the
highest number of vectors as a final cluster. Then, we calculate its centroid,
defined as ¢ = 1 + 29+ - - - + % /k where x1, 29, - , 2 are points in the feature
space. The resultant centroid is added to the final reduced dataset. Afterwards,
each vector v; present in the selected cluster A; is removed from the original
dataset V (as they will be represented by the previously calculated centroid).
Moreover, the potential clusters A; € A associated to each vector v; previously
removed are also discarded. When there are not more clusters available with a
number of vectors higher than the parameter minimumuvectors, the remaining
vectors in V are added to the final reduced dataset and the algorithm finishes and
returns the resulting reduced dataset. The final result is a dataset composed of
one centroid representing each cluster and all the vectors that were not associated
to any cluster by the QT clustering algorithm (i.e., outliers).

2.3 Anomaly Detection

The features described represent each executable as a point in the feature space.
Our anomaly detection system analyses points in the feature space and classifies
executables based on their similarity. The analysis of an executable consists of
3 different phases:

— Extraction of the features from the executable file.

— Computation of calculated values.

— Measurement of the distance from the point representing the executable file
to the points that symbolise normality (i.e., not packed executables) that
conform the knowledge base.

As a result, any point at a distance from normality that surpasses an estab-
lished threshold is considered to be an anomaly and thus, a packed executable.
In this study, we have considered 2 different distance measures:

— Manhattan Distance. This distance between two points x and y is the
sum of the lengths of the projections of the line segment between the points
onto the coordinate axes:

n

da,y) =3 e — i)

=0

where z is the first point; y is the second point; and z; and y; are the it"
component of first and second point, respectively.



— Euclidean Distance. This distance is the length of the line segment con-
necting two points. It is calculated as:

n
d(z,y) = Z \/ x? - yzQ
i=0
where z is the first point; vy is the second point; and z; and y; are the it*
component of first and second point, respectively.

In previous work [21] we noticed that the cosine similarity measure, (i.e.,
a distance measure computationally more expensive), does not produce better
results.

Since we have to compute this measure with a variable number of points
representing not packed executables, a combination metric is required in order
to obtain a final distance value which considers every measure performed. To
this end, we employ 3 simple rules:

— Mean rule. Select the average distance value.
— Max rule. Select the highest distance value.
— Min rule. Select the lowest distance value.

In this way, when an executable is analysed, the final distance value calculated
depends on the distance measure and the combination rule selected.

3 Empirical Validation

To evaluate the performance of our method, we have conducted an experiment
consisting of 2 phases: firstly, we reduce the set of vectors corresponding to not
packed executables that represent normality, and secondly we start the anomaly
detection step to measure accuracy and efficiency.

3.1 Experimental Configuration

The experiment designed to evaluate this system was performed using an ex-
ecutable collection comprising 1,000 packed and 1,000 not packed executables.
Initially, 1,000 goodware executables were extracted from a common Microsoft
Windows XP installation, and 1,000 malicious executables were gathered from
the website VxHeavens [25]. All the executables where analysed with PEiD to
assure that they were not packed. To generate the packed dataset, we employed
1,000 not packed executables (500 benign and 500 malicious) and we packed
them using 10 different packing tools with different configurations: Armadillo,
ASProtect, FSG, MEW, PackMan, RLPack, SLV, Telock, Themida and UPX.
The not packed dataset was comprised of the remaining 1,000 executables.

The experimental method used was 10-fold cross validation [26], dividing the
whole dataset into 10 different divisions. In this way, each fold is composed of
900 not packed executables as knowledge base and 1,100 testing executables,
from which 100 are not packed and 1,000 are packed executables.



In order to test the dataset reduction algorithm proposed, 4 experimental
configurations were selected for each distance measure. The threshold param-
eter values for our QT clustering based algorithm were selected by empirical
observation. In particular, the thresholds for Manhattan distance were set as
the double of the thresholds selected for Euclidean distance. While Manhattan
distance sums the lengths of the projections of the line segment between the
points onto the different coordinate axes, the Euclidean distance measures the
line between two points, that is always shorter. Table 1 shows the results ob-
tained in the process. Reduction ratio varies from 76.12% for Euclidean distance
and threshold 0.25 to 99.88% for both Euclidean and Manhattan distance and
an infinite threshold (in practice, this threshold is set to the maximum value
allowed for a 64-bit double variable). The result obtained for this configuration
is a unique centroid of the whole dataset that represents the arithmetic mean
vector, or a single representation of normality. In this case, selection rules do not
influence the final result because it is only performed one single comparison for
each sample.

Table 1. Number of vectors that conform the reduced dataset for the different re-
duction parameters. The initial dataset is in all cases comprised of 900 not packed
vectors.

Distance Quality % Average Number of vectors in each fold
measure threshold reduction 1 2 3 4 5 6 7 8 9 10

0.25 76.12% 217 215 214 218 216 208 216 219 206 220
Euclidean 0.50 95.35% 44 42 39 44 41 44 42 42 39 41
1.00 99.12% 7 8 8 8 8 8 8 8 8 8
00 99.88% 11 1 1 1 1 1 1 1 1
0.50 83.63% 153 148 150 149 151 145 147 143 141 146
Manhattan 1.00 95.42% 41 41 41 43 40 42 40 43 38 43
2.00 98.98% 7 10 11 10 8 10 9 10 8 8
00 99.88% 11 1 1 1 1 1 1 1 1

3.2 Efficiency results

During our experimental evaluation, we measured the times employed in each
different phase. In this way, we can distinguish 3 different phases in the experi-
ment:

— Feature extraction and normalization. The first step in the experiment
was to extract the characteristics from the executables and to calculate values
such as entropy or size ratios. Once extracted, these features were normalised
to obtain a value ranging from 0 to 1 for each point in the feature space.
This stage was performed in a virtual machine to keep all malware samples
isolated from the host system and to prevent any possible infection. The
virtual machine used was VMWare[27], hosted in an Intel Core i5 650 clocked



at 3.20 GHz and 16 GB of RAM memory. The guest machine specification
was the following: 1 processor, 1 GB of RAM memory and Windows XP SP3
as operative system. Fig. 3 shows the time required by the feature extraction
and normalization process for each file. This step took an average time of
28.57 milliseconds for each file analysed (93.66 useconds/KB). Although the
extraction of certain features such as PE executable header fields should
require a similar amount of time for all the executables, some other values
such as entropy are calculated using all the bytes present in the file: the
higher the file size, the higher the time it takes to analyse it. Once extracted,
feature vectors were saved into CSV files for further use.

Extraction and normalization time (ms)
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Fig. 3. Time required to extract and normalize the selected features from each exe-
cutable file. The X axis represents the file size, expressed in bytes, while the Y axis
shows the time taken by the extraction process, expressed in milliseconds.

— Data reduction. The second step was data reduction. In this phase, we
reduced the original datasets, composed of 900 vectors for each fold, which
were previously saved into CSV files. In this way, we used 8 different config-
urations to reduce each different dataset: Euclidean distance (0.25, 0.50, 1,
and oo) and Manhattan distance (0.50, 1, 2, and oo). This stage was con-
ducted directly in the host machine. Fig. 4 shows the time employed in the
data reduction phase. It can be observed that times do not vary considerably
for the different thresholds used for each distance measure. This occurs be-
cause the operations that take a higher processing overhead are the distance
measure calculations, and the algorithm proposed in Fig. 2 calculates all the
distances between points before starting the clustering step. Consequently,



the data reduction algorithm performs the same heavy calculations indepen-
dently of the threshold specified. The average processing time consumed to
reduce each fold is 97.83 seconds for Euclidean distance and 65.05 seconds
for Manhattan distance. Note that this process, in spite of being very time
consuming, is executed only once and does not interfere in the performance
of the system.

Clustering time (ms)

105000

100000 —o\."_‘

95000

90000

85000

80000

75000

70000

65000 OO0y -

60000 _—

.93 ?)Q (\'\ & ?JQ N 9 &

g§§a S§§9 o'géb é£§§‘ <$$Q é§§¥$§§§§$é§§§$

S &S ¢ ¢ Q;@fgb W

Fig. 4. Time required to reduce the original dataset composed of 900 not packed exe-
cutables. The X axis shows the different experimental configurations selected for the
data reduction step. The Y axis shows the time required by each clustering process
performed, expressed in milliseconds.

— Sample comparison. Finally, the last step was the comparison of samples.
For each experimental configuration employed in the data reduction stage,
the samples under test (1,000 packed samples and 100 not packed samples)
were compared against the reduced dataset. The total number of compar-
isons depends exclusively on the number of vectors present in the reduced
datasets, so it is straightforward that the time employed in this step is in-
versely proportional to the threshold value used in the clustering process. As
the previous phase, the sample comparison process was performed in the host
machine. Fig. 5 shows the average time employed by the comparison step for
each executable file. It can be noticed that the time required for comparison
is lower when fewer vectors are utilised. For Euclidean distance the average
comparison time varies from 25.62 ms for a 0.25 clustering threshold value,
to 0.13 ms for an oo threshold (single vector representation). In the case of
Manhattan distance, performance overhead is lower due to the simplicity of
the calculations, and varies from 11.62 ms for a 0.50 clustering threshold
value, to 0.08 ms for an co threshold.
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Fig. 5. Time required by the comparison phase for each reduced dataset. The X axis
represents the reduction rate for each dataset once the clustering step was applied. The
higher the reduction rate, the lower the number of vectors utilised for comparison. The
Y axis represents the average comparison time for each executable file, expressed in
milliseconds.

Subsequently, once the reduced datasets are obtained, the analysis of an exe-
cutable file depends on extraction, normalization and comparison time. The
times obtained highlight the conclusion that our system is able to compute
between 1,000 and 2,000 executables in a minute.

3.3 Efficacy results

Hereafter, we extracted the selected features from the executables and reduced
the dataset using the 2 different distance measures and 4 different threshold
values (resulting into 8 different reduced datasets). Afterwards, we employed
the same 2 distance measures and the 3 combination rules described in Section
2.3 to test the datasets and obtain a final measure of deviation for each testing
executable. For each measure and combination rule, we established 10 different
thresholds to determine whether an executable is packed or not, and selected the
one which conducted to the best results in each case in terms of False Negative
Rate and False Positive Rate.

We evaluated accuracy by measuring False Negative Rate (FINR), False Pos-
itive Rate (FPR), and the Area Under the ROC Curve (AUC).

In particular, FNR is defined as:

FN

FNRO) = 557



where TP is the number of packed executable cases correctly classified (true
positives) and F'N is the number of packed executable cases misclassified as not
packed software (false negatives).

As well, FPR is defined as:

_FP
~ FP+TN

where F'P is the number of not packed executables incorrectly detected as packed
while T'N is the number of not packed executables correctly classified.

Finally, the AUC is defined as the area under the curve formed by the union of
the points representing F'PR and T PR for each possible threshold in a plot where
the X axis represents the F'PR and the Y axis represents the T PR. To calculate
the AUC we used the points corresponding to the 10 thresholds selected. The
lowest and the highest thresholds were selected in such a way that they produced
a 0% FNR and a 0% F PR respectively. The rest of thresholds were selected
by equally dividing the range between the first and the last threshold. The
area under the curve formed by that points was calculated dividing it into 9
trapezoidal subareas and computing them independently:

FPR(«)

=9

AUC = Z ((mi+1 —xi) -y + (@it1 — @) - (Yir1 = yz))

‘ 2
=0

Table 2 shows the obtained results. To simplify the results presented, we only
show the performance that corresponds to the best possible threshold for each
configuration. Despite Euclidean distance is more time consuming than Man-
hattan distance, both distance measures achieve similar results for each dataset
configuration. In particular, our anomaly-based packed executable detector is
able to correctly detect more than 99 % of packed executables while maintaining
the rate of misclassified not packed executables lower than 1 %. As it can be
observed, mean combination rule presents slightly better results both for FNR
and FPR.

Nevertheless the most important issue to consider is data reduction. We
propose 4 different data reduction configurations for each distance measure. We
can observe in Table 2 that results slightly get worse when a higher threshold is
applied (higher reduction rate). Fig. 6 shows 6 different plots for each distance
measure and selection rule. Each plot shows 4 ROC curves corresponding to the
4 different reduced datasets. We can observe that in most of the cases the ROC
curves show inferior results as the threshold increases (and thus, the number of
vectors to compare with, decreases). Fig. 8 represents this evolution. In each case,
as the number of vectors is reduced, the system looses accuracy. Nevertheless,
when the executables are compared against the mean vector, the results obtained
improve and in some occasions are even better than the ones achieved for the
less reduced dataset (Euclidean distance with Max selector, in Fig. 6(c), and
Manhattan distance with Max and Min selectors in Fig. 6(d) and Fig. 6(f)).
This behaviour is more noticeable for Max and Min selectors, owing to the fact
that this selectors are more sensitive to outlier vectors (i.e., vectors distant from



Table 2. Results for the different reduced datasets, combination rules and distance
measures. Our method is able to detect more than 99 % of the packed executables
while maintaining FPR lower than 1 %.

Dataset Selection rule Threshold FNR FPR AUC
Prev. Mean 1.54000 0.00200 0.00800 0.99676
work Max 2,20000  0,00200 0,01400 0.99887
Min 0.62000 0.00180 0.01400 0.99815
Mean 1.36667 0.00100 0.00500 0.99820
0.25 Max 2.06667 0.01860 0.01000 0.99874
Min 0.58889  0.00370 0.00700 0.99845
Mean 1.46667 0.00100 0.00400 0.99821
Euclidean 0.50 Max 2.02222  0.01720 0.02100 0.99784
Min 0.64444  0.00560 0.00800 0.99808
Mean 1.42222 0.01170 0.01300 0.99786
1 Max 1.97778  0.03420 0.02200 0.99383
Min 0.70000 0.01090 0.03800 0.99448
%) - 1.33333  0.00100 0.00400 0.99830
Prev. Mean 4.05000 0.00160 0.01000 0.99819
work Max 7.40000 0.00820 0.01800 0.99808
Min 1.55000 0.00180 0.00800 0.99914
Mean 3.75556  0.00110 0.00500 0.99898
0.50 Max 6.33333  0.00780 0.01900 0.99829
Min 1.22222  0.00100 0.00400 0.99925
Mean 3.87778 0.00110 0.00500 0.99921
Manhattan 1 Max 6.33333  0.00890 0.01500 0.99850
Min 1.36667  0.00200 0.00800 0.99858
Mean 3.84444  0.00740 0.01700 0.99853
2 Max 5.94444  0.06440 0.04700 0.98612
Min 1.60000 0.01220 0.02300 0.99782
) - 3.47778 0.00200 0.00500 0.99901

the normality representation) and can affect in a negative way as they alter the
distance value obtained. Fig. 7 visually represents this effect. In the clustering
process, 3 clusters are generated. Unfortunately, 2 clusters correspond to 2 outlier
vectors that do not match with the majority of the not packed vectors. Arrows in
Fig.7(b) show how the final distance value is very high for the not packed sample
under analysis when Max selector is chosen. At the same time, the packed sample
is misclassified if the Min selector is applied, due to the proximity of a not packed
sample. In contrast, as Fig. 7(c) shows, mean vector is the representation of the
whole dataset and the negative effects caused by distant vectors over the single
centroid are smoothed by the rest of the vectors in the group.

The results obtained indicate that it is not necessary to renounce to accuracy
in order to improve the efficiency of our anomaly detection approach. Although



accuracy is reduced when a higher reduction rate is applied, when the samples
are compared to a single representation (centroid of the group), results improve.
This is the configuration that should be considered to implement an efficient and
accurate packed executable filter.
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Fig. 6. ROC curves for the different experimental configurations. Each figure shows
4 ROC curves corresponding to the different reduced datasets. The scale selected for
the X and Y axes has been reduced to 0.00 to 0.04 for X axis (false positive rate)
and 0.95 to 1.00 for Y axis (true positive rate), to facilitate legibility and to represent
precisely the differences among the different datasets tested. Unfortunately, the curve
for Manhattan reduction with a threshold of 2 is out of the scope of the scale shown
in the plot in 6(d). Note that in 6(a) and 6(b), some of the curves represented slightly

overlap.
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Fig. 7. Visual representation of the comparison process in two different scenarios. In
7(a) it is shown the initial situation. Crosses represent not packed executables, circles
are packed files and question marks stand for samples to classify. In particular, bold
question marks symbolise not packed vectors whereas flat ones are packed vectors.
Finally, asterisks represent the centroid vectors generated for each cluster after the
clustering process is performed. In 7(b) we show the vectors generated in the clustering
process for a low threshold, and the effects over the distance measures obtained in the
comparison phase. Similarly, 7(b) shows the unique centroid generated for the clustering
with infinite threshold, and the distance measures obtained with this configuration.
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Fig. 8. Dataset reduction rate and accuracy achieved with each reduced dataset. The
continuous line represents the increasing reduction rate (the higher the rate, the lower
the number of samples in the reduced dataset), while the dotted lines represent the
area under the ROC curve (AUC) obtained with each reduced dataset.

4 Discussion and Conclusions

The method proposed in this paper was focused on executable pre-filtering, in
order to distinguish between packed and not packed executables. More specif-
ically, it improves our previous work [21] by providing a new method for data
reduction that boosts scalability in the anomaly detection process, enabling a
much more efficient comparison of executable characteristics. As opposite to
other approaches, anomaly detection systems do not need previously labelled
data about packed executables or specific packers, as they measure the devia-
tion of executables respect to normality (not packed executables). In contrast to
signature scanning methods, this approach is packer independent.

Furthermore, accuracy results are not compromised by the dataset reduc-
tion process. It can be observed that the AUC varies slightly as the number
of vectors in the dataset decreases. Nonetheless, when a single centroid vector
is used, results are still sound, or even better than the ones obtained with no
reduction. This fact brings us to the conclusion that it is possible to determine
a single representation for not-packed executables, and that this single point
is sufficiently representative to correctly classify executables as packed or not
packed. Although anomaly detection systems tend to produce high false positive
rates, our experimental results show very low values in all cases. These results, in
addition to the time results presented in section 3.2 show that this method is a
valid pre-process step for a generic unpacking schema. Since the main limitation
of these unpackers is their performance overhead, a packed executable detector
like our anomaly-based method with data reduction can improve their workload,
acting as a filter.



Nevertheless, there are some limitations that should be focused in further
work. First, the features selected by their IG value for the executable compar-
ison are subject to attacks in order to bypass the filter. Malware writers can
avoid certain suspicious field values or can program malware in such a way that
the characteristics analysed by the proposed filter are more similar to the ones
that correspond to not packed executables. For instance, DLL imports, section
number, certain flags and patterns in executable headers can be modified with
this intention. In addition, heuristic approaches can be evaded by using standard
sections instead of not standard ones, or filling sections with padding data to
unbalance byte frequency and obtain lower entropy values.

Secondly, the system is not aimed at identifying the packer used to protect
the executable. However, this information is useful for the malware analyst and
anti-virus systems in order to apply specific unpacking routines for each packer,
avoiding the execution on time consuming dynamic analysis environments.

Finally, the dataset we employed was composed of executables protected
with only 10 known packers. Some other packers, as well as custom packers,
may implement some of the mentioned evasion techniques to bypass our filter.

In further work we will study different characteristics and alternative repre-
sentations of executables to obtain an static detection system capable of provid-
ing more information about the packer used, if any. In addition, characteristics
subject to attacks should be considered, in order to make the system resilient to
new techniques employed by malware writers.
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