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Abstract. Malware is any software with malicious intentions. Commer-
cial anti-malware software relies on signature databases. This approach
has proven to be effective when the threats are already known. However,
malware writers employ software encryption tools and code obfuscation
techniques to hide the actual behaviour of their malicious programs. One
of these techniques is executable packing, which consists of encrypting
the real code of the executable so that it is decrypted in its execution.
Commercial solutions to this problem try to identify the packer and
then apply the corresponding unpacking routine for each packing algo-
rithm. Nevertheless, this approach fails to detect new and custom pack-
ers. Therefore, generic unpacking methods have been proposed which ex-
ecute the binary in a contained environment and gather its actual code.
However, these approaches are very time-consuming and, therefore, a fil-
ter step is required that identifies whether an executable is packed or not.
In this paper, we present the first packed executable detector based on
anomaly detection. This approach represents not packed executables as
feature vectors of structural information and heuristic values. Thereby,
an executable is classified as packed or not packed by measuring its de-
viation to the representation of normality (not packed executables). We
show that this method achieves high accuracy rates detecting packed
executables while maintaining a low false positive rate.

Key words: malware, anomaly detection, computer security, packer

1 Introduction

Malware (or malicious software) is defined as computer software that has been
explicitly designed to harm computers or networks. The amount, power and va-
riety of malware programs increases every year, as does its ability to overcome
all kinds of security barriers [1]. Currently, malware writers use executable pack-
ing techniques (cyphering or compressing the actual malicious code) to hide the
actual behaviour of their creations. Packed programs have a decryption routine
that extracts the real payload from memory and then executes it. Currently, up
to the 80 % of the detected malware is packed [2].



Signatures have been applied for the detection of packed executables (e.g.,
PEID [3] and Faster Universal Unpacker (FUU) [4]). However, this approach
has the same shortcoming as signatures for malware detection: it is not effective
with unknown obfuscation techniques or custom packers. Indeed, according to
Morgenstern and Pilz [5], the 35 % of malware is packed by a custom packer.

Dynamic unpacking approaches monitor the execution of a binary in order to
extract its actual code. These methods execute the samples inside an isolated en-
vironment that can be deployed as a virtual machine or an emulator [6]. Several
dynamic unpackers use heuristics to determine the exact point where the exe-
cution jumps from the unpacking routine to the original code and once reached,
bulk the memory content to obtain an unpacked version of the malicious code
(e.g., Universal PE Unpacker [7] and OllyBonE [8]). Notwithstanding, concrete
heuristics cannot be applied to all the packers in the wild, as all of them work
in very different manners. In contrast, not so highly heuristic-dependant ap-
proaches have been proposed for generic dynamic unpacking (e.g., PolyUnpack
[9], Renovo [10], OmniUnpack [11] and Eureka [12]). Nonetheless, these methods
are very tedious and time-consuming, and cannot counter conditional execution
of unpacking routines, a technique used for anti-debugging and anti-monitoring
defense [13–15]. Another common approach is using the structural information
of the PE executables to determine if the sample under analysis is packed or if
it is suspicious of containing malicious code (e.g., PE-Miner [16], PE-Probe [17]
and Perdisci et al. [18]).

In light of this background, we propose here the first method that applies
anomaly detection to packed executable filtering as a previous phase to dynamic
and generic unpacking. This approach is able to determine whether an executable
is packed or not by comparing some structural features with a dataset composed
only of not packed executables. If the executable under inspection presents a
considerable deviation to what it is considered as usual (not packed executables),
it is considered suspicious and is isolated for a further analysis. This method does
not need updated data about packed executables, and thus, it reduces the efforts
of labelling executables manually.

Summarising, our main contributions are: (i) we select a set of structural
characteristics extracted from PE executables to determine whether a sample is
packed or not and provide a relevance measure for each characteristic based on
information gain, (ii) we propose an anomaly-detection-based architecture for
packed executable filtering, by means of weighted comparison against a dataset
composed of only not packed executables and (iii) we evaluate the method using
three different deviation measures.

2 Structural Features of the Portable Executable Files

Given the conclusions obtained in previous work [16–18], we selected a set of 211
structural features from the PE executables. Some of the features were obtained
directly from the PE file header while the rest are calculated values based on
certain heuristics commonly used by the research community. Shafiq et al. [17]



used PE executable structural features were used to determine if an executable is
benign or malicious but it was not considered if the executable was packed or not.
Perdisci et al. [18] and later Farooq et al. [16] used some heuristics like entropy,
or certain section characteristics to determine whether an executable is packed
or not, as a previous step to a deeper analysis. In this paper, we combine both
points of view, structural characteristics and heuristics, providing a statistical
analysis to determine their true relevance for determining the packed state of an
executable.

We consider that one of the main requisites of our anomaly detection sys-
tem is speed, as it constitutes a filtering step for a heavier unpacking process.
Therefore, we selected a set of features whose extraction does not require a sig-
nificant processing time, and avoided techniques such as code disassembly, string
extraction or n-gram analysis [18], which slow down the sample comparison.

Features can be divided into four main groups: 125 raw header characteristics
[17], 33 section characteristics (i.e., number of sections that meet certain prop-
erties), 29 characteristics of the section containing the entry point (the section
which will be executed first once the executable is loaded into memory) and,
finally, 24 entropy values. We apply relevance weights to each feature based on
Information Gain (IG) [19]. IG provides a ratio for each feature that measures its
importance to consider if a sample is packed or not. These weights were calcu-
lated from a dataset composed of 1,000 packed and 1,000 not packed executables,
and are useful not only to obtain a better distance rating among samples, but
also to reduce the amount of selected features, given that only 151 of them have
a non-zero IG value.

– DOS header characteristics (31). The first bytes of the PE file header
correspond to the DOS executable header fields. IG results showed that
these characteristics are not specially relevant, having a maximum IG value
of 0.23, corresponding to a reserved field, which intuitively may not be a
relevant field. 15 values range from 0.10 to 0.16, and the rest present a
relevance bellow 0.10.

– File header block (23). This header block is present in both image files
(.EXE) and object files. From a total of 23 characteristics, 14 have an IG
value greater than 0, and only 2 of them have an IG value greater than 0.01:
the number of sections (0.3112) and the time stamp ( 0.1618).

– Optional Header Block (71). This optional block is only present in im-
age files and contains data about how the executable must be loaded into
memory. 37 features have an IG value over 0, but the most relevant ones are:
the address of entry point (0.5111), the Import Address Table (IAT) size
(0.3832) and address (0.3733) (relative to the number of imported DLLs),
the size of the code (0.3011), the base of the data (0.2817), the base of the
code (0.2213),the major linker version (0.1996), checksum (0.1736), the size
of initialized data (0.1661), the size of headers (0.1600), the size of relocation
table (0.1283) and the size of image (0.1243).

– Section characteristics (33). From the 33 characteristics that conform
this group, 22 have an IG value greater than 0. The most significant ones



are: the number of non-standard sections (0.7606), the number of executable
sections (0.7127); the maximum raw data per virtual size ratio (0.5755)
(rawSize/virtualSize, where rawSize is defined as the section raw data
size and virtualSize is the section virtual size, both expressed in bytes),
the number of readable and executable sections (0.5725) and the number of
sections with a raw data per virtual size ratio lower than 1 (0.4842).

– Section of entry point characteristics (29). This group contains char-
acteristics relative to the section which will be executed once the executable
is loaded into memory. 26 characteristics have an IG value greater than 0,
from which 11 have a significant relevance: the characteristics field in its
raw state (0.9757), its availability to be written (0.9715), the raw data per
virtual size ratio (0.9244), the virtual address (0.7386), whether is a pointer
to raw data or not (0.6064), whether is a standard section or not (0.5203),
the virtual size (0.4056), whether it contains initialized data (0.3721), the
size of raw data (0.2958) and its availability to be executed (0.1575).

– Entropy values (24). We have selected 24 entropy values, commonly used
in previous works [18], from which 22 have an IG value greater than 0, and
9 have a relevant IG value: max section entropy (0.8375), mean code sec-
tion entropy (0.7656), mean section entropy (0.7359), file entropy (0.6955),
entropy of the section of entry point (0.6756), mean data section entropy
(0.5637), header entropy (0.1680), number of sections with an entropy value
greater than 7.5 (0.7445), and number of sections with an entropy value
between 7 and 7.5 (0.1059).

In this way, every feature is represented as a decimal value and then normal-
ized, dividing each value by the maximum value for that feature in the whole
dataset. This way, we can represent each executable as a vector of decimal values
that range from 0 to 1. The final step is to apply the relevance obtained from
IG, and it consists of multiplying each value in the normalized vector by its
relevance.

3 Anomaly Detection

Through the features described in the previous section, our method represents
unpacked executables as points in the feature space. When an executable is being
inspected our method starts by computing the values of the point in the feature
space. This point is then compared with the previously calculated points of the
unpacked executables.

To this end, distance measures are required. In this study, we have used the
following distance measures:

– Manhattan Distance. This distance between two points v and u is the
sum of the lengths of the projections of the line segment between the points
onto the coordinate axes: d(x, i) =

∑n
i=0 |xi − yi| where x is the first point;

y is the second point; and xi and yi are the ith component of first and second
point, respectively.



– Euclidean Distance. This distance is the length of the line segment con-
necting two points. It is calculated as: d(x, y) =

∑n
i=0

√
v2

i − u2
i where x is

the first point; y is the second point; and xi and yi are the ith component of
first and second point, respectively.

– Cosine Similarity. It is a measure of similarity between two vectors by
finding the cosine of the angle between them [20]. Since we are measuring
distance and not similarity we have used 1−Cosine Similarity as a distance
measure: d(x, y) = 1− cos (θ) = 1− v·u

||v||·||u|| where v is the vector from the
origin of the feature space to the first point x, u is the vector from the origin
of the feature space to the second point y, v · u is the inner product of v
and u. ||v|| · ||u|| is the cross product of v and u. This distance ranges from
0 to 1, where 1 means that the two executables are completely different and
0 means that the executables are the same (i.e., the vectors are orthogonal
between them).

By means of these measures, we are able to compute the deviation of an
executable respect to a set of not packed executables. Since we have to compute
this measure with the points representing not packed executables, a combination
rule is required in order to obtain a final value of distance which considers every
measure performed. To this end, our system employs 3 simple rules: (i) select the
mean value, (ii) select the lowest distance value and (iii) select the highest value
of the computed distances. In this way, when our method inspects an executable
a final distance value is acquired, which will depend on both the distance measure
and the combination rule.

4 Empirical Validation

To evaluate our anomaly-based packed executable detector, we collected a dataset
comprising 500 not packed executables and 1,000 packed executables. The first
one is composed of 250 benign executables and 250 malicious executables gath-
ered from the VxHeavens [21] website. The packed dataset is composed of 500
benign executables and 500 malicious executables from VxHeavens [21]. To gen-
erate the packed dataset, we employed not packed executables and we packed
them using 10 different packing tools with different configurations: Armadillo,
ASProtect, FSG, MEW, PackMan, RLPack, SLV, Telock, Themida and UPX.

Then, using this dataset we performed a 5-fold cross-validation to divide the
not packed dataset into 5 different divisions of 400 executables for representing
normality and 100 for measuring deviations. In this way, each fold is composed of
400 not packed executables that will be used as representation of normality and
1,100 testing executables, from which 100 are not packed and 1,000 are packed.

Hereafter, we extracted their structural characteristics and employed the 3
different measures and the 3 different combination rules described in Section 3 to
obtain a final deviation measure for each tested executable. For each measure and
combination rule, we established 10 different thresholds to determine whether
an executable is packed or not.



Table 1. Results for different combination rules and distance measures. The results in
bold are the best for each combination rule and distance measure. Our method is able
to detect more than 99 % of the packed executable while maintaining FPR lower than
1 %.

1− Cosine Similarity EuclideanDistance ManhattanDistance
Combination Threshold FNR FPR Threshold FNR FPR Threshold FNR FPR

Mean

0.05000 0.000 0.332 0.70000 0.000 0.816 1.70000 0.000 0.544
0.08400 0.001 0.166 0.84000 0.001 0.288 2.17000 0.001 0.260
0.11800 0.001 0.126 0.98000 0.001 0.172 2.64000 0.001 0.150
0.15200 0.001 0.018 1.12000 0.001 0.130 3.11000 0.001 0.048
0.18600 0.001 0.012 1.26000 0.001 0.014 3.58000 0.001 0.012
0.22000 0.042 0.010 1.40000 0.001 0.010 4.0500 0.002 0.010
0.25400 0.532 0.010 1.54000 0.002 0.008 4.52000 0.017 0.008
0.28800 0.625 0.006 1.68000 0.096 0.006 4.9900 0.086 0.006
0.32200 0.728 0.004 1.82000 0.298 0.006 5.4600 0.247 0.002
0.35600 0.888 0.000 1.96000 0.568 0.000 5.93000 0.379 0.000

Maximum

0.36300 0.000 0.262 1.90000 0.000 0.768 5.90000 0.000 0.570
0.38200 0.003 0.138 1.96000 0.000 0.594 6.20000 0.000 0.340
0.40100 0.004 0.118 2.02000 0.000 0.232 6.50000 0.000 0.194
0.42100 0.020 0.108 2.08000 0.00 0.050 6.80000 0.001 0.048
0.43900 0.085 0.100 2.14000 0.001 0.024 7.10000 0.002 0.028
0.45800 0.102 0.098 2.20000 0.002 0.014 7.40000 0.008 0.018
0.47700 0.122 0.086 2.26000 0.004 0.012 7.70000 0.033 0.008
0.49600 0.195 0.012 2.32000 0.020 0.008 8.00000 0.077 0.004
0.51500 0.329 0.010 2.38000 0.061 0.008 8.30000 0.239 0.004
0.53400 0.509 0.000 2.44000 0.146 0.000 8.60000 0.378 0.000

Minimum

0.00032 0.000 0.682 0.06000 0.000 0.736 0.06000 0.000 0.736
0.01962 0.003 0.012 0.20000 0.001 0.396 0.20000 0.001 0.396
0.03892 0.107 0.008 0.34000 0.001 0.106 0.34000 0.001 0.106
0.05822 0.189 0.004 0.48000 0.001 0.030 0.48000 0.001 0.03
0.07752 0.213 0.004 0.62000 0.002 0.014 0.62000 0.002 0.014
0.09682 0.374 0.004 0.76000 0.032 0.006 0.76000 0.032 0.006
0.11612 0.477 0.002 0.90000 0.054 0.004 0.90000 0.054 0.004
0.13542 0.692 0.002 1.04000 0.163 0.004 1.04000 0.163 0.004
0.15472 0.792 0.002 1.18000 0.262 0.002 1.18000 0.262 0.002
0.17402 0.860 0.000 1.32000 0.386 0.000 1.32000 0.386 0.000

We evaluated accuracy by measuring False Negative Ratio (FNR) and False
Positive Ratio (FPR). FNR is defined as: FNR(β) = FN

FN+TP where TP is the
number of packed executable cases correctly classified (true positives) and FN is
the number of packed executable cases misclassified as not packed software (false
negatives). FPR is defined as: FPR(α) = FP

FP+TN where FP is the number of
not packed executables incorrectly detected as packed while TN is the number
of not packed executables correctly classified.

Table 1 shows the obtained results. Euclidean and Manhattan distances, de-
spite of consuming less processing time, have achieved better results than cosine-
similarity-based distance for the tested thresholds. In particular, our anomaly-
based packed executable detector is able to correctly detect more than 99 %
of unknown packers while maintaining the rate of misclassified not packed exe-
cutable lower than 1 %. As it can be observed, mean combination rule presents
slightly better results both for FNR and FPR. These results show that this
method is a valid pre-process step for a generic unpacking schema. Since the
main limitation of these unpackers is their performance overhead, a packed ex-
ecutable detector like our anomaly-based method can improve their workload,
acting as a filter for these systems.



5 Discussion and Conclusions

Like the previous work, our method is focused on executable pre-filtering, as
an initial phase to decide whether to analyse samples on a generic unpacker or
not. Our main contribution is the anomaly-detection-based approach employed
for packed executable identification. In contrast to previous approaches, this
method does not need previously labelled packed and not packed executables,
as it measures the deviation of executables respect to normality (not packed
executables). Moreover, as it does not use packed samples for comparison, it is
independent of the packer used to protect the executables. Although anomaly
detection systems tend to produce high false positive rates, our experimental
results show very low values in all cases. This fact proofs the validity of our
initial hypothesis.

Anyway, it presents some limitations that should be studied in further work.
First, it cannot identify the packer nor the family of the packer used to protect
the executable. Such information would help the malware analyst in the task
of unpacking the executable. Sometimes, generic unpacking techniques are very
time consuming or fail and it is easier to use specific unpacking routines, created
for most commonly used packers.

Secondly, the features extracted can be modified by malware writers in order
to bypass the filter. In the case of structural features, packers could build ex-
ecutables using the same flags and patterns as common compilers, for instance
importing common DLL files or creating the same number of sections. Heuris-
tic analysis, in turn, can be evaded by using standard sections instead of not
standard ones, or filling sections with padding data to unbalance byte frequency
and obtain lower entropy values. What is more, our system is very dependant
on heuristics due to the relevance values obtained from IG, making it vulnerable
to such attacks.

Finally, it is important to consider efficiency and processing time. Our system
compares each executable against a big dataset (400 vectors). Despite Euclidean
and Manhattan distances are easy to compute, cosine distance and more complex
distance measures such as Mahalanobis distance may take too much time to
process every executable under analysis. For this reason, in further work we will
emphasize on improving the system efficiency by clustering not packed vectors
and reducing the whole dataset to a limited amount of samples.
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