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Abstract

Spam has become a major issue in computer security because it is a channel
for threats such as computer viruses, worms and phishing. More than 86%
of received e-mails are spam. Historical approaches to combating these mes-
sages, including simple techniques such as sender blacklisting or the use of
e-mail signatures, are no longer completely reliable. Many current solutions
feature machine-learning algorithms trained using statistical representations
of the terms that most commonly appear in such e-mails. However, these
methods are merely syntactic and are unable to account for the underly-
ing semantics of terms within messages. In this paper, we explore the use
of semantics in spam filtering by introducing a pre-processing step of Word
Sense Disambiguation (WSD). Based upon this disambiguated representa-
tion, we apply several well-known machine-learning models and show that
the proposed method can detect the internal semantics of spam messages.
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1. Introduction

Spam has become a significant problem for e-mail users over the past
decade; an enormous amount of spam arrives in peoples’ mailboxes every
day. At the time of writing, 86.6% of all e-mail messages are spam, accord-
ing to the Spam-o-meter website1. Spam is also a major computer security
problem: it is a medium for phishing (i.e., attacks that seek to acquire sen-
sitive information from end-users) (Jagatic et al., 2007) and for spreading
malicious software (e.g., computer viruses, Trojan horses, spyware and Inter-
net worms) (Bratko et al., 2006).

Nevertheless, different studies show that the effect of spam in worldwide
economy is notorious and prejudicial. Leung and Liang (2009) presented an
analysis of the impact of phising on the market value of global firms, which
showed that phising alerts pose significantly negative return on stock. In
a similar vein, Mostafa Raad et al. (2010) offer another study to assess the
influence and impact of spam in several companies whose email advertisement
was considered as spam. Both examples clearly show the necessity to detect
undesired messages, and, maybe more important, the need to restore the
confidence of users in their e-mail filtering systems.

The simplest methods for filtering junk e-mail are usually blacklisting or
signature-based (Carpinter and Hunt, 2006). Blacklisting is a simple tech-
nique that is broadly used in most filtering products; such systems filter out
e-mails from certain senders. In contrast, whitelisting systems (Heron, 2009)
deliver messages only from designated senders to reduce the number of mis-
classified legitimate e-mails (also known as ‘ham’ by the spam community).
Another popular variant of these so-called banishing methods entails DNS
blacklisting, in which the host address is checked against a list of networks or
servers known to distribute spam (Jung and Sit, 2004; Ramachandran et al.,
2006).

In contrast, signature-based systems create a unique hash value (i.e., a
message digest) for each known spam message (Ko lcz et al., 2004). The
main advantage of these methods is that they rarely produce false positives.
Examples of signature-based spam filtering systems are Cloudmark2, a com-
mercial implementation of a signature-based filter that is integrated with

1http://www.junk-o-meter.com/stats/index.php
2http://www.cloudmark.com
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the e-mail server, and Razor3, a filtering system that uses a distributed and
collaborative technique to spread signatures (Carpinter and Hunt, 2006).

However, these simplistic methods have several shortcomings. First,
blacklisting methods produce a high rate of false positives, making them
unreliable as a standalone solution (Mishne et al., 2005). Second, signature-
based systems are unable to detect spam messages until they have been
identified, properly registered and documented (Carpinter and Hunt, 2006).

A large amount of research has been dedicated to finding better spam
filtering solutions. Machine-learning approaches have been effectively ap-
plied to text categorisation problems (Sebastiani, 2002), and they have been
adopted for use in spam filtering systems. Consequently, substantial work
has been dedicated to näıve Bayes filtering (Lewis, 1998); several studies on
its effectiveness have been published (Androutsopoulos et al., 2000c; Schnei-
der, 2003; Androutsopoulos et al., 2000a,b; Seewald, 2007). Another broadly
embraced machine-learning technique is the Support Vector Machine (SVM)
method (Vapnik, 2000). The advantage of SVM is that its accuracy is not
diminished when a problem involves a large number of features (Drucker
et al., 1999). Several SVM approaches have been applied to spam filtering
(Blanzieri and Bryl, 2007; Sculley and Wachman, 2007). Likewise, deci-
sion trees, which classify samples using automatically learned rule-sets (i.e.,
tests) (Quinlan, 1986), have also been used for spam filtering (Carreras
and Márquez, 2001). All of these machine-learning-based spam filtering ap-
proaches are known as statistical content-based approaches (Zhang et al.,
2004).

Machine-learning approaches model e-mail messages using the Vector
Space Model(VSM) (Salton et al., 1975). The VSM is an algebraic approach
for Information Filtering (IF), Information Retrieval (IR), indexing and rank-
ing. This model represents natural language documents mathematically as
vectors in a multidimensional space where the axes are terms within mes-
sages. As in any other IR system, the VSM is affected by the characteristics
of the text, with one of those characteristics being word sense ambiguity
(Sanderson, 1994). The use of ambiguous words can confuse the model, per-
mitting spammers to bypass spam filters.

We propose here the application of WSD for spam filtering to recover the
filtering capabilities of content-based methods. Our approach pre-processes

3http://razor.sourceforge.net
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e-mails disambiguating the terms before constructing the VSM. Thereafter,
based on this representation, we train several supervised machine-learning
algorithms to detect and filter junk e-mails. In summary, we advance the
state of the art through the following contributions:

• We present a method to disambiguate terms in e-mail messages.

• We provide an empirical validation of our method with an extensive
study of several machine-learning classifiers.

• We show that the proposed method improves filtering rates; we discuss
the weakness of the model and explain possible enhancements.

The remainder of this paper is organised as follows. Section 2 addresses
the impact of electronic undesired mail on e-commerce. Section 3 describes
the problem of WSD and the effects that ambiguity has on spam filtering
systems. Section 4 introduces our method to improve detection rates by
using WSD. Section 5 provides an empirical evaluation of the experiments
performed and presents the results. Section 6 presents the main limitations of
the proposed method and proposes possible enhancements. Finally, Section
7 presents the conclusions and outlines the avenues for future work.

2. Impact of undesired e-mail on e-commerce

Spam is a serious issue in the e-commerce arena, affecting many actors
from the end users, to business offering commerce opportunities, to inter-
mediaries. Correctly identifying spam, can have an impact on e-commerce,
since false positives result the recipient not receiving legitimate e-mails (e.g.,
those used to conduct an advertising campaign chosen by the user itself),
while false negatives can leave the recipient susceptible to spam attacks such
as phishing.

On a thorough report back in 2004, Cashell et al. (2004) brought together
different statistics on the economic impact of cyber-attacks. This report
includes the analysis of a British firm, called Mi2g, which publishes analysis
from the collection of data from 7,000 hacker groups worldwide, providing
detailed monthly and year-to-date information on: digital attack hot spots,
emerging threats to digital security, economic damage estimates, top hacker
groups, most vulnerable operating systems and trends for vulnerabilities,
spam, malware and denial of service attacks. Under the economic damage
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analysis, they include the estimation of the incidence and cost of what they
call “overt digital attacks”4. Figure 1 shows the cost estimates for those
digital attacks, which include hacking, malware and spam, from 1996 to
2003.

Figure 1: Economic damage estimates for all forms of digital attacks worldwide, based
on business interruption, denial of service, data theft or deletion, loss of sensitive intelli-
gence or intellectual property, loss of reputation, and share price declines. Source: Mi2g,
Frequently Asked Questions: SIPS and EVEDA, v1.00.

Trying to break down the numbers, in another study, Hansell (2003) states
that in 2003 the volume of spam, which was growing rapidly, implied world-
wide costs exceeding 20 billion US dollars annually. And that is with “only”
an estimated volume of 50% of e-mail being spam. Nowadays more than 86%
of received e-mails are spam. In this way, although the numbers correspond

4Mi2g defines an overt digital attack as one in which a hacker group gains unauthorized
access to a computer network and modifies any of its publicly visible components. Overt
attacks may include either data attacks, where the confidentiality, authenticity, or integrity
of data is violated, or control attacks, where network control or administrative systems
are compromised. Overt attacks are those that become public knowledge, as opposed to
covert attacks, which are known only to the attacker and the victim.
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to some years back in time, the projections to current days, according to
the increase of users with access to new technologies and the growth that
electronic commerce has experienced, can be overwhelming.

Supporting that theory, in a more recent study, Smith et al. (2011) analyse
the impact of cybercrime on marketing activity and shareholder value. Their
results indicate that costs of cybercrime go beyond the tangible issues (e.g.,
stolen assets, business losses or damages on company reputation), having
significant negative effect on shareholder value. The explanation to that fact,
resides on the worries of users about security of their business transactions
with companies that fall prey to cyber criminals. Such vulnerabilities result
in a decrease of the trust from the user, causing the company to lose future
business and, hence, raising the concerns of financial analysts, investors and
creditors.

In a similar vein, other recent studies show the influence and impact
of spam in several companies that suffered from considering their e-mail
advertisement as a spam (Mostafa Raad et al., 2010) or the plague problem
that the, in words of the on-line market research company e-Marketer, “killer-
app of the on-line advertising world” (i.e., e-mail) is suffering as a result of
spam (Gopal et al., 2011).

3. The Problem of Disambiguation

The task of disambiguating word sense is the process of identifying the
most appropriate meaning of a polysemous word given a specific context.
The Word Sense Disambiguation (WSD) problem has been a topic of inter-
est and concern since the 1950s when Natural Language Processing (NLP)
tasks became a reality. Indeed, it was already conceived as a fundamental
task of Machine Translation (MT) in the late 1940s (Weaver, 1949). Very
soon it became clear that if would be extremely difficult to solve (Bar-Hillel,
1960) and would be one of the main problems of MT. Furthermore, WSD has
been described as ‘AI-complete’ (Mallery, 1988), that is, a problem that can
be solved only by first resolving all of the difficult problems in artificial intel-
ligence (AI), such as the representation of common sense and encyclopaedic
knowledge.

The difficulty with sense disambiguation is not limited to a single cause,
but arises from a variety of factors. First, the task lends itself to differ-
ent formalisations due to fundamental questions, such as the approach to
the representation of a word sense (ranging from an enumeration of a finite
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set of senses to a rule-based generation of new ones), the granularity of sense
inventories (from subtle distinctions to homonyms), the domain-oriented ver-
sus unrestricted nature of texts, and the set of target words to disambiguate
(one target word per sentence vs. an ’all-words settings) (Navigli, 2009).

Second, WSD has strong dependence on previously-acquired knowledge.
In fact, the skeletal procedure of any WSD system can be summarised as
follows: given a set of words (e.g., a sentence or a group of words), a technique
is applied that makes use of one or more sources of knowledge to associate
the most appropriate senses with the words in context (Navigli, 2009).

Knowledge dependence was a serious impediment before the release of
large-scale lexical resources to enable the automation of knowledge extraction
systems (Wilks et al., 1990). Nowadays, this task is more attainable owing to
the existence of resources such as WordNet (Fellbaum et al., 1998), a lexical
database for the English language that groups words into sets of synonyms
and records the semantic relations between the sets.

From the 1990s to the present, we have seen a large application of sta-
tistical methods for WSD systems (Ide and Véronis, 1998), and WSD has
become an increasingly popular area of computational linguistics research in
the past few years (Agirre and Edmonds, 2007). This is particularly due
to Senseval5, which has the purpose of evaluating the strengths and weak-
nesses of such applications with respect to different words, different varieties
of language, and different languages; and provides evaluation exercises and
standard datasets for the task.

Several studies have shown poor outcomes for the application of WSD to
IR (Sanderson, 1994; Voorhees, 1999). Nevertheless, works such as (Krovetz,
1997; Gonzalo et al., 1999; Krovetz, 2002) and the often-cited (Krovetz and
Croft, 1992), even though they have often been interpreted as saying the
opposite, support the potential for improved IR performance using WSD.

The extended use of IR in combination with näıve Bayesian classifiers
for spam filtering (Sahami et al., 1998; Androutsopoulos et al., 2000a,b,c;
Schneider, 2003; Zhang et al., 2004), presents an ambiguity problem for the
anti-spam solutions that should be taken into account. However, the problem
of a term ambiguity has not reached the security industry for spam-filtering
tasks.

5http://www.senseval.org
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4. Our Word Sense Disambiguation Approach

Today’s attacks against Bayesian spam filters attempt to keep the con-
tent of spam mail visible to humans, but obscured to filters. For instance,
attackers circumvent these filters by replacing suspicious words by innocuous
terms with the same meaning (Karlberger et al., 2007; Nelson et al., 2009;
Santos et al., 2012). In a similar vein, these spam-filtering systems do not
take into account the possible existence of ambiguous terms within e-mail
messages. This could lead to misclassified legitimate e-mails and spammers
evading filtering, since it is expected that incorrectly disambiguated words
may entail noise (Mavroeidis et al., 2005) and decrease the classification accu-
racy (Xu and Yu, 2010). To solve this issue, we apply WSD to spam filtering
a pre-processing procedure that is able to disambiguate confusing terms, to
improve the capabilities of anti-spam systems.

Our approach utilises SenseLearner (Mihalcea and Csomai, 2005), a state-
of-the-art minimally supervised WSD system that attempts to disambiguate
all content words in a text using WordNet senses. Because SenseLearner
needs a pre-processing stage in which the text is annotated with part-of-
speech (PoS) tags, our e-mail message dataset was previously tagged using
Freeling (Carreras et al., 2004), a suite of analysis tools based on the archi-
tecture of (Carreras and Padró, 2002).

While the PoS tagging had no special parameters worthy of comment, the
WSD task offered several options that should be mentioned. First, in cases
where the system was unable to make a prediction, we chose to mark the word
with the most frequent sense from WordNet (sense 1) by activating the default
option. This option improved the results (see Section 5) by generalising non-
clear terms’ meanings, avoiding the loss of their sense.

Second, the training data consisted of sense annotated texts, formatted
by following the SemCor XML format. We used for our experiments the
models provided with the distribution of SenseLearner, which were trained
on SemCor, and a separate training instance base was built for each model.
These models implement the following features:

1. For nouns:

• A contextual model that relies on the first noun, verb, or adjective
before the target noun and the corresponding PoS.

• A collocation model that implements collocation-like features based
on the first word to the left and the first word to the right of the
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target word.

2. For verbs:

• A contextual model that relies on the first word before and the
first word after the target verb and its PoS.

• A collocation model that implements collocation-like features based
on the first word to the left and the first word to the right of the
target word.

3. For adjectives:

• Contextual model 1, which relies on the first noun after the target
adjective.

• Contextual model 2, which relies on the first word before and the
first word after the target adjective and its PoS.

• A collocation model that implements collocation-like features based
on the first word to the left and the first word to the right of the
target word.

Finally, although SenseLearner offers two different input methods, Sem-
Cor (Miller et al., 1993) and PoS tagging, we chose the second due to its
simplicity. However, the use of SemCor for future experiments is discussed
in Section 6.

In this way, we formally define an e-mail M as a set composed of n
terms ti, M = {t1, t2, . . . , tn−1, tn}, where each term corresponds to a word
(although we are aware of the possibility of applying WSD to collocations,
we decided to leave this strength to future improvements of our system).
Each ti has a set of n senses si, s = {s1, s2, . . . , sn−1, sn}. WSD selects the
corresponding si for each term and generates a new relation of term-sense
ti,j, where i indicates the term and j denotes its corresponding sense.

Our method builds a model with term-sense relations, which we use to
train several machine-learning classification algorithms. In order to perform
this training, we first create an ARFF file (attribute relation file format)
(Holmes et al., 1994) that describes the shared attributes (e.g., term-sense)
for each instance (e.g., document). Secondly, we use the Waikato Envi-
ronment for Knowledge Analysis (WEKA) (Garner, 1995) to build the de-
sired classifiers. Finally, we test different machine-learning classification al-
gorithms with WEKA as described in Section 5.
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5. Empirical Evaluation

We employed the Ling Spam dataset6 and the TREC 2007 Public Cor-
pus7 separately, as the spam corpus in two different experiments, applying
our proposed approach to both of them. Ling Spam comprises both spam
and legitimate messages retrieved from the Linguistic list, an e-mail distri-
bution list focusing on linguistics. The dataset consists of 2,893 different
e-mails, of which 2,412 are legitimate e-mails obtained by downloading di-
gests from the linguistic list and 481 are spam e-mails retrieved from one of
the authors’ inbox (a more detailed description of the corpus is provided in
(Androutsopoulos et al., 2000a; Sakkis et al., 2003)). Stop Word Removal
(Wilbur and Sirotkin, 1992) and stemming (Lovins, 1968) were performed
on the e-mails, generating the following four different datasets:

1. Bare: In this dataset, HTML tags, separation tokens, and duplicate
e-mails were removed from messages.

2. Lemm: In addition to the removal pre-processing step, a stemming
phase was performed. Stemming reduces inflected or derived words to
their stem, base or root form.

3. Stop: For this dataset, a stop word removal task was performed. This
process removes all stop words (e.g., common words like ‘a’ or ‘the’ ).

4. Lemm stop: This dataset uses a combination of both stemming and
stop-word removal processes.

We did not use the lemm or lemm stop datasets. Additionally, instead of
using the stop dataset we used the bare dataset and performed a stop word
removal based on an external stop-word list8.

TREC 2007 Public Corpus (Cormack, 2007) contains all e-mail messages
delivered to a server from April 8 through July 6, 2007. The server contained
many accounts that had fallen into disuse but that continued receiving a lot
of spam. To these accounts were added a number of ‘honeypot’ accounts
published on the web and used to sign up for a number of services, some

6http://nlp.cs.aueb.gr/software and datasets/lingspam public.tar.gz
7http://plg.uwaterloo.ca/~gvcormac/spam
8http://www.webconfs.com/stop-words.php

Alternative link:
http://paginaspersonales.deusto.es/claorden/resources/
EnglishStopWords.txt
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legitimate and some not. The dataset contains 75,419 messages, of which
25,220 are legitimate e-mail and 50,199 are junk messages, divided into three
subcorpora (Cormack, 2007):

• trec07p/full/ - immediate, full feedback

• trec07p/delay/ - feedback only for the first 10,000 messages

• trec07p/partial/ - feedback only for 30,388 messages corresponding
to one recipient

For our experiments, we randomly extracted 30% (due to computational
limitations) of the full subcorpora, maintaining the spam-legitimate ratio. In
this way, our TREC dataset comprises 7,653 legitimate e-mails and 14,973
junk messages.

In both experiments, with Ling Spam and TREC, we modelled three
different datasets using the VSM (Salton et al., 1975). The first dataset
corresponded to the raw e-mails with no modification except for the stop word
removal. The second dataset had a pre-processing step of WSD without the
default option (see Section 4) that marked unpredictable senses for the word
with the most frequent sense from WordNet. Finally, the third dataset had
a WSD pre-processing step but with the default option activated. We also
used the Term Frequency – Inverse Document Frequency (TF–IDF) (Salton
and McGill, 1983) weighting schema, where the weight of the ith term in the
jth document, denoted by weight(i, j), is defined by:

weight(i, j) = tfi,j · idfi (1)

The term frequency tfi,j is defined as:

tfi,j =
ni,j∑
k nk,j

(2)

where ni,j is the number of times the term ti,j appears in a document d, and∑
k nk,j is the total number of terms in the document d. The inverse term

frequency idfi is defined as:

idfi =
|D|

|D : ti ∈ d|
(3)

where |D| is the total number of documents and |D : ti ∈ d| is the number
of documents containing the term ti.

11



We also extracted from the model the top 1,000 attributes using Infor-
mation Gain (Kent, 1983), an algorithm that evaluates the relevance of an
attribute by measuring the information gain with respect to the class:

IG(j) =
∑
vj∈R

∑
Ci

P (vj, Ci) ·
P (vj, Ci)

P (vj) · P (Ci)
(4)

where Ci is the ith class, vj is the value of the jth interpretation, P (vj, Ci)
is the probability that the jth attribute has the value vj in class Ci, P (vj)
is the probability that the jth interpretation has the value vj in the training
data, and P (Ci) is the probability that the training dataset belongs to class
Ci. Figures 2 and 3 show the frequency of senses for the 1,000 attributes
selected with IG for each of the datasets. Must be noted that some terms
have no sense because they correspond to abbreviations, URLs, brand names
or even to words that have suffered a transformation and can’t be identified
by WordNet. In the case of the TREC dataset, the number of terms without
a sense increases considerably, what leads us to believe that a further study
on the retrieval of the corpus, identifying errors or modifications in the words,
could improve significantly our obtained results.

After removing the less significant attributes, the resultant files are used
as training datasets for the classifiers. In this way, we obtained three datasets
corresponding to: a non-disambiguated set of e-mails, a disambiguated set
of e-mails with the default option set off, and a disambiguated set of e-mails
with the default option set on.

To assess the machine-learning classifiers, we used the following method-
ology:

• Cross validation: To evaluate the performance of machine-learning
classifiers, k-fold cross validation (Kohavi, 1995) is commonly used in
machine-learning experiments (Bishop, 2006).

For each classifier tested, we performed a k-fold cross validation with
k = 10. In this way, our datasets were split 10 times into 10 different
sets of learning sets (90% of the total dataset) and testing sets (10% of
the total data).

• Learning the model: For each fold, we perform the learning phase
of each algorithm with each training dataset, applying different param-
eters or learning algorithms depending on the concrete classifier. We
used four different models:
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Figure 2: Frequency of senses for all selected top IG scoring attributes for Ling Spam
dataset.

– Bayesian Networks: In order to train Bayesian networks, we used
different structural learning algorithms; K2 (Cooper and Her-
skovits, 1991), Hill Climber (Russell and Norvig, 2003) and Tree
Augmented Näıve (TAN) (Geiger et al., 1997). We also performed
experiments with Näıve Bayes (Lewis, 1998), a classifier that has
been widely used for spam filtering (Androutsopoulos et al., 2000c;
Schneider, 2003; Androutsopoulos et al., 2000a,b; Seewald, 2007).

– Decision Trees: In order to train decision trees, we used Random
Forest (Breiman, 2001) and J48 (Weka’s C4.5 (Quinlan, 1993)
implementation).

– K-Nearest Neighbour: For KNN, we performed experiments with
k from 1 to 5.
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Figure 3: Frequency of senses for all selected top IG scoring attributes for TREC dataset.

– Support Vector Machines: We used a Sequential Minimal Opti-
misation (SMO) algorithm (Platt, 1999) with a polynomial kernel
(Amari and Wu, 1999), a normalised polynomial kernel (Amari
and Wu, 1999), a Pearson VII function-based universal kernel
(Üstün et al., 2006), and a Radial Basis Function (RBF) based
kernel (Amari and Wu, 1999). In addition, we used LibSVM9

for the linear (i.e., hyperplane) and sigmoid kernel (Lin and Lin,
2003) implementation.

• Testing the models: To measure the processing overhead of the
model, we measure the required training and testing times:

9http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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– Training time: The overhead required for building the different
machine-learning algorithms.

– Testing time: The total time that the models require to evaluate
the testing instances in the dataset.

To evaluate the results, we measured the precision of the spam iden-
tification as the number of correctly classified spam e-mails divided
by the number of correctly classified spam e-mails and the number of
legitimate e-mails misclassified as spam:

SP =
Ns→s

Ns→s + Nl→s

(5)

where Ns→s is the number of correctly classified spam messages and
Nl→s is the number of legitimate e-mails misclassified as spam.

Additionally, we measured the recall of the spam e-mail messages,
which is the number of correctly classified spam e-mails divided by the
number of correctly classified spam e-mails and the number of spam
e-mails misclassified as legitimate:

SR =
Ns→s

Ns→s + Ns→l

(6)

We also computed the F-measure, which is the harmonic mean of both
the precision and recall, as follows:

F -measure =
2Ns→s

2Ns→s + Ns→l + Nl→s

(7)

In addition, we measured the accuracy, which is the number of the
classifier’s hits divided by the total number of classified instances:

Accuracy =
Ns→s + Nl→l

Ns→s + Ns→l + Nl→l + Nl→s

(8)

Finally, we measured the Area Under the ROC Curve (AUC), which es-
tablishes the relation between false negatives and false positives (Singh
et al., 2009). The ROC curve is represented by plotting the rate of
true positives (TPR) against the rate of false positives (FPR), where
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the TPR is the number of spam messages correctly detected divided by
the total number of junk e-mails:

TPR =
TP

TP + FN
(9)

and the FPR is the number of legitimate messages misclassified as spam
divided by the total number of legitimate e-mails:

FPR =
FP

FP + TN
(10)

Tables 1 and 2 show training and testing times for the different machine-
learning classifiers. The kNN algorithm needs almost no time for training
but is the slowest classifier in the testing phase. SVM lineal, SVM sigmoid
and SVM with polynomial kernel configurations for SVM were the fastest in
both the training and testing phases. Näıve Bayes performed well in both
phases, being the second fastest classifier after kNN in the training phase for
TREC and offering testing times of 0.34-0.36 nanoseconds for Ling Spam and
0.98-0.99 nanoseconds for TREC. The performance of the Bayesian networks
depended on the algorithm used. Overall, we found that K2 is the fastest
Bayesian classifier to train, while the testing times are quite similar for all of
them. Among the decision trees, Random Forest with 10, 50 and 100 trees
trained faster than J48 only when using the Ling Spam dataset, while in the
testing phase, the fastest one was J48 for both datasets.

Tables 3 and 4 show the results for the classifiers in terms of precision
and recall. The kNN algorithm showed generally similar behaviour regard-
ing precision with both the original model and the disambiguated models
when testing with Ling Spam, never reaching our approach in the accuracy
obtained with the original one, but showing statistically significant improve-
ments for each kNN configuration when testing with TREC. In terms of
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recall, it is noteworthy that the kNN algorithm improves in most cases with
Ling Spam when using the disambiguated models and always improves sig-
nificantly, when using the disambiguated model with the default option acti-
vated, maintaining the same values as the TREC dataset. The configurations
tested with the SVM algorithm for Ling Spam show the same precision for all
models, and significantly improve when testing with TREC and using the dis-
ambiguated model with the default option activated. The recall significantly
improves in four of the six configurations tested for Ling Spam, again with
the default option selected, but has significant degradation with TREC. Deci-
sion trees show similar behaviour with all models in both accuracy and recall
when testing the Ling Spam dataset. However, when testing with TREC,
experiments for each configuration show a significant improvement in terms
of precision while maintaining the same recall. Bayesian networks trained
with K2 and Hill Climber show significant degradation with the Ling Spam
dataset when applying disambiguation, for both precision and recall, only
maintaining the precision values for TREC. Instead, when training with the
TAN algorithm, the precision for Ling Spam is preserved, or improved with
the default option set on, also improving significantly for TREC, with the re-
call suffering no significant variation for either dataset. Finally, näıve Bayes
presents a vast improvement in precision when testing Ling Spam and main-
tains the improvement for TREC, using the model with the pre-processing
step of disambiguation and the default option activated, almost preserving
the same recall levels for Ling Spam but with significant degradation with
the TREC dataset.

Finally, Table 5 offers the results for the area under the ROC curve
(AUC), which indicates the classifiers with the best balance between correct
positives and false positives. The best balance is achieved by decision trees,
showing no significant variation between the different models when testing
Ling Spam, but with a significant improvement in the disambiguated model
with the default option activated when testing the TREC dataset. The kNN
algorithm shows significant improvements for both datasets tested with the
disambiguated model with the default option activated. SVM significantly
improved when compared to the original model, also with the default op-
tion selected, except for the Pearson VII kernel configuration for Ling Spam,
which suffered significant degradation. The Bayesian networks again signif-
icantly improved with the disambiguated model with the default option set
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on when testing the TREC dataset, but only maintaining the proper balance
of the original model with the TAN algorithm for Ling Spam. Finally, näıve
Bayes again shows an improvement, significant for TREC, when using the
disambiguated model.

We can make several observations from the experimental evaluation. First,
almost every classifier experienced an improvement for both datasets when
testing the disambiguated model with the default option activated, most
of them with statistically significant improvements. However, when testing
the model disambiguated with the default option deactivated, the results
suffered significant degradation. In this way, comparing the original model
with the disambiguated one with the default option activated, the results
show an overall improvement in the detection capabilities. In particular, the
most widespread among spam filtering systems, the näıve Bayes classifier,
experienced a substantial improvement for Ling Spam, when applied the dis-
ambiguation pre-processing. The Bayesian networks with the TAN learning
algorithm also offer an improvement when applying our model but this was
only significant for the TREC dataset. Furthermore, all of the SVM config-
urations obtained good results, which again show as statistically significant
improvement when applied the disambiguation of terms, with the only ex-
ception being SVM with Pearson VII for Ling Spam. Finally, the decision
trees, which show good results especially with the Random Forest algorithm
implementation, are only influenced by the use of our model when testing
with the TREC dataset.

6. Discussion

The results obtained during the evaluation of our approach show that the
pre-processing step of Word Sense Disambiguation, applied to a model that
represents electronic mail for anti-spam systems, improves filtering rates. In
addition, we keep the false positives (legitimate e-mails incorrectly classified
as spam) to a minimum, sometimes even reducing them, while detecting a
large number of junk e-mails. Regarding the results of each classifier, it is
noteworthy that the recall of the näıve Bayes classifier decreases substantially
for the TREC dataset, showing a weakness against larger and less domain-
oriented datasets than Ling Spam. On the other hand, decision trees with
the Random Forest algorithm implementation show themselves as the most
suitable to address the problem of spam both because of the level of spam
detection and, above all, their low levels of false positives. However, there
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are several important points to be discussed referring to the appropriateness
of using our proposed method.

First, we employ a very basic input format, PoS labelling, for the disam-
biguation process. There are more complex formats such as SemCor (Miller
et al., 1993) that can provide more information for this step and can result in
a richer disambiguation of terms. On the other hand, based on our results,
we see that labelling all the words with at least the most frequent Word-
Net sense (default option enabled), when the system is not able to make a
prediction, offers better filtering rates.

Second, by including Word Sense Disambiguation in spam filtering, there
is a problem derived from Information Retrieval and Natural Language Pro-
cessing when dealing with semantics: the dependence of language (Bates
and Weischedel, 1993). This language dependency complicates the acquisi-
tion of training datasets to feed the learning models. However, this problem
is enhanced by the continuous evolution and changing nature of spam. It
is almost impossible for a system with global aspirations to obtain current
samples that cover all natural languages used by spammers.

These limitations to our approach imply the need to find alternative meth-
ods for spam filtering. The Topic Detection and Tracking (TDT) method is
a technique that should be considered. The TDT method assumes multiple
sources of information and assumes that the information flowing from each
source is divided into a sequence of stories, which may provide information
on one or more topics (or events) (Allan et al., 1998). The general task is
to identify the events being discussed in these stories, in terms of the stories
that describe them. Stories that describe unexpected events will of course
follow the event, whereas stories on expected events can both precede and
follow the event. The application of this technique to spam filtering is clear
if we expect the evolution of spam to be cyclical in many cases (false Christ-
mas greetings in December) and to adapt well to different popular events of
great impact (spam over the World Cup in South Africa). For these reasons,
we believe it would be interesting to study the TDT method in detail, to
examine its applicability to future unsolicited bulk e-mail filtering systems.

7. Concluding Remarks

Electronic mail (e-mail) is a powerful communication channel. However,
as with any technology, electronic mail is vulnerable to malicious use. Spam
is not only unpleasant for e-mail users, but is a major problem for digital
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security and worldwide economy, having a great negative impact on mar-
ket value of global firms and influencing marketing campaigns of legitimate
companies that suffer from considering their e-mail advertisement as spam.

There is a great need to improve the undesired e-mail detection, in order
to restore the confidence of users in electronic commerce, since it is demon-
strated that the use of e-mail marketing is risky due to the spam problem
(Mostafa Raad et al., 2010). Despite their ability to detect spam, traditional
methods of spam filtering based on machine learning are not able to take
into account the semantic layer of e-mails.

In this paper, we have presented the application of Word Sense Disam-
biguation for spam filtering to improve the detection capabilities of content-
based methods. Our approach pre-processes the e-mail messages, disam-
biguating the terms before constructing the Vector Space Model. Our exper-
iments show that this approach provides high rates of spam filtering while
maintaining a low number of legitimate e-mails that are incorrectly classified.

Future versions of this filtering system will follow three main directions.
First, in the future, we will analyse a variety of existing disambiguation
techniques and study their advantages in applications of our model. Second,
we plan to improve the process of disambiguation using the SemCor format to
feed the disambiguation system. Finally, we will consider adding techniques
that detect and track events for spam filtering.
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Table 1: Training time results of machine-learning classifiers with and without disam-
biguation. The VSM columns correspond to the non-modified dataset, the WSD columns
correspond to the dataset pre-processed with WSD with the default option set off, and
the WSD def columns correspond to the pre-processed dataset with WSD and the default
option set on.

Training Time (ns)

Classifier
Ling Spam TREC

VSM WSD WSD def VSM WSD WSD def

DT: J48 116.37 107.24 118.02 88.78 88.21 90.35
DT: RF N=10 7.99 8.04 7.38 303.23 321.06 251.88
DT: RF N=50 39.81 40.49 37.10 1468.00 1650.09 1348.24
DT: RF N=100 80.36 82.10 74.22 3232.53 3591.30 2127.36
DT: RF N=150 120.70 122.99 112.28 3922.16 4861.16 2824.28
DT: RF N=200 162.26 166.36 151.98 5057.17 5879.32 3550.75
Näıve Bayes 8.21 10.60 8.58 38.03 36.83 36.49
BN: K2 14.98 15.69 19.01 81.58 79.49 79.64
BN: Hill Climber 1531.41 1439.85 1417.50 3502.05 3524.48 3519.06
BN: TAN 1330.79 1573.70 1544.56 3333.98 3282.99 3206.47
Knn K=1 0.00 0.00 0.00 0.03 0.04 0.03
Knn K=2 0.00 0.00 0.00 0.03 0.03 0.03
Knn K=3 0.00 0.00 0.00 0.03 0.03 0.03
Knn K=4 0.00 0.00 0.00 0.03 0.03 0.03
Knn K=5 0.00 0.00 0.00 0.03 0.03 0.03
SVM: Lineal 2.76 3.02 3.94 96.71 72.31 73.75
SVM: Sigmoid 3.89 3.85 3.87 72.67 70.92 66.62
SVM: Polynomial 1.36 1.65 1.54 145.88 149.89 153.92
SVM: Norm Polynom 42.98 43.47 41.02 1038.56 1010.57 1022.76
SVM: Pearson VII 87.19 89.01 101.85 1070.08 993.51 1009.98
SVM: RBF 14.81 14.37 15.85 1451.73 1443.26 1244.30
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Table 2: Testing time results of machine-learning classifiers with and without disam-
biguation. The VSM columns correspond to the non-modified dataset, the WSD columns
correspond to the dataset pre-processed with WSD with the default option set off, and
the WSD def columns correspond to the pre-processed dataset with WSD and the default
option set on.

Testing Time (ns)

Classifier
Ling Spam TREC

VSM WSD WSD def VSM WSD WSD def

DT: J48 0.00 0.00 0.00 0.05 0.11 0.08
DT: RF N=10 0.01 0.01 0.01 0.15 0.14 0.11
DT: RF N=50 0.04 0.04 0.04 1.03 1.08 0.95
DT: RF N=100 0.08 0.09 0.09 3.05 3.18 2.01
DT: RF N=150 0.12 0.13 0.14 4.27 4.33 3.57
DT: RF N=200 0.18 0.20 0.19 5.34 5.39 4.56
Näıve Bayes 0.36 0.33 0.34 0.99 0.98 0.98
BN: K2 0.23 0.23 0.25 0.68 0.71 0.69
BN: Hill Climber 0.19 0.17 0.18 0.65 0.67 0.67
BN: TAN 0.23 0.26 0.24 1.00 0.99 0.93
Knn K=1 4.34 4.41 5.48 23.61 22.02 22.75
Knn K=1 4.34 4.41 5.48 25.53 24.03 24.77
Knn K=2 5.25 5.45 6.32 26.93 24.99 26.20
Knn K=4 5.17 5.96 7.05 27.89 26.09 27.13
Knn K=5 5.96 6.35 7.63 28.87 26.86 27.94
SVM: Lineal 0.15 0.16 0.18 0.96 0.86 0.81
SVM: Sigmoid 0.24 0.26 0.29 6.63 6.67 6.43
SVM: Polynomial 0.02 0.02 0.02 0.08 0.07 0.08
SVM: Norm Polynom 1.02 1.10 1.12 16.54 16.34 16.65
SVM: Pearson VII 2.01 2.04 2.44 20.07 19.37 19.54
SVM: RBF 0.42 0.44 0.49 19.43 18.95 17.16
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Table 3: Precision evaluation of machine-learning classifiers. The VSM columns cor-
respond to the non-modified dataset, the WSD columns correspond to the dataset pre-
processed with WSD with the default option set off, and the WSD def columns correspond
to the pre-processed dataset with WSD and the default option set on.

Precision

Classifier
Ling Spam TREC

VSM WSD WSD def VSM WSD WSD def

DT: J48 0.88 0.86 0.88 0.86 0.86 X0.89
DT: RF N=10 0.98 0.98 0.98 0.91 x 0.91 X0.93
DT: RF N=50 0.99 0.99 0.99 0.91 x 0.91 X0.93
DT: RF N=100 0.99 1.00 1.00 0.91 x 0.91 X0.93
DT: RF N=150 1.00 1.00 1.00 0.91 x 0.91 X0.93
DT: RF N=200 1.00 1.00 1.00 0.91 x 0.91 X0.93
Näıve Bayes 0.64 0.63 X0.72 0.97 0.96 0.97
BN: K2 0.99 0.98 x 0.96 1.00 1.00 1.00
BN: Hill Climber 0.99 0.98 x 0.96 1.00 1.00 1.00
BN: TAN 0.94 0.94 0.96 0.88 x 0.88 X0.90
Knn K=1 1.00 0.99 0.97 0.91 x 0.91 X0.92
Knn K=2 0.98 0.91 x 0.64 0.90 0.90 X0.92
Knn K=3 1.00 0.99 0.99 0.90 0.90 X0.92
Knn K=4 0.99 0.94 0.97 0.90 0.90 X0.92
Knn K=5 1.00 0.99 1.00 0.90 0.90 X0.92
SVM: Lineal 0.99 0.99 0.99 0.89 x 0.88 X0.91
SVM: Sigmoid 1.00 1.00 1.00 0.87 x 0.86 X0.88
SVM: Polynomial 0.99 0.99 0.99 0.88 x 0.88 X0.90
SVM: Norm Polynom 1.00 1.00 1.00 0.89 x 0.89 X0.91
SVM: Pearson VII 1.00 1.00 1.00 0.89 x 0.89 X0.91
SVM: RBF 1.00 1.00 1.00 0.82 0.82 X0.85

X, x, statistically significant improvement or degradation (for a statistical
significance of 0.05).
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Table 4: Recall evaluation of machine-learning classifiers. The VSM columns correspond
to the non-modified dataset, the WSD columns correspond to the dataset pre-processed
with WSD with the default option set off, and the WSD def columns correspond to the
pre-processed dataset with WSD and the default option set on.

Recall

Classifier
Ling Spam TREC

VSM WSD WSD def VSM WSD WSD def

DT: J48 0.85 0.83 0.83 0.98 0.97 x 0.98
DT: RF N=10 0.92 0.91 0.91 0.98 0.98 0.98
DT: RF N=50 0.93 0.91 0.91 0.98 0.98 0.98
DT: RF N=100 0.93 0.92 0.91 0.98 0.98 0.98
DT: RF N=150 0.93 0.92 0.91 0.98 0.98 0.98
DT: RF N=200 0.93 0.92 0.91 0.98 0.98 0.98
Näıve Bayes 0.99 0.98 0.98 0.35 x 0.34 x 0.34
BN: K2 0.90 x 0.84 x 0.77 0.39 x 0.38 x 0.37
BN: Hill Climber 0.90 x 0.84 x 0.77 0.39 x 0.38 x 0.37
BN: TAN 0.98 0.99 0.98 0.98 0.98 0.97
Knn K=1 0.41 0.41 X0.45 0.97 0.97 0.97
Knn K=2 0.44 0.46 X0.58 0.98 0.98 0.98
Knn K=3 0.31 0.31 X0.42 0.97 0.97 0.97
Knn K=4 0.28 X0.39 X0.47 0.97 0.97 0.97
Knn K=5 0.24 0.30 X0.36 0.97 0.97 0.97
SVM: Lineal 0.95 0.95 X0.97 0.98 0.98 0.98
SVM: Sigmoid 0.91 0.90 X0.93 0.99 0.99 0.99
SVM: Polynomial 0.97 0.96 0.98 0.98 X0.99 0.98
SVM: Norm Polynom 0.85 0.86 X0.90 0.99 0.99 x 0.98
SVM: Pearson VII 0.20 x 0.18 0.18 0.99 0.99 x 0.99
SVM: RBF 0.92 0.92 X0.96 0.99 0.99 x 0.99

X, x, statistically significant improvement or degradation (for a statistical
significance of 0.05).
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Table 5: Area under de ROC curve (AUC) evaluation of the machine-learning classifiers.
The VSM column correspond to the non-modified dataset, the WSD column correspond
to the dataset pre-processed with WSD with the default option set off, and the WSD def
column correspond to the pre-processed dataset with WSD and the default option set on.

Area under de ROC curve (AUC)

Classifier
Ling Spam TREC

VSM WSD WSD def VSM WSD WSD def

DT: J48 0.92 0.91 0.90 0.90 X0.93 0.92
DT: RF N=10 1.00 1.00 1.00 0.96 x 0.96 X0.96
DT: RF N=50 1.00 1.00 1.00 0.96 x 0.96 X0.97
DT: RF N=100 1.00 1.00 1.00 0.96 x 0.96 X0.97
DT: RF N=150 1.00 1.00 1.00 0.96 x 0.96 X0.97
DT: RF N=200 1.00 1.00 1.00 0.96 x 0.96 X0.97
Näıve Bayes 0.94 0.94 X0.95 0.91 0.92 0.92
BN: K2 1.00 1.00 x 0.99 0.95 x 0.95 X0.96
BN: Hill Climber 1.00 1.00 x 0.99 0.95 x 0.95 X0.96
BN: TAN 1.00 1.00 1.00 0.95 x 0.94 X0.95
Knn K=1 0.70 0.71 X0.72 0.95 0.95 0.96
Knn K=2 0.64 X0.72 X0.77 0.95 0.95 X0.96
Knn K=3 0.75 0.74 X0.80 0.95 0.95 X0.96
Knn K=4 0.78 0.77 X0.84 0.95 0.95 X0.96
Knn K=5 0.81 0.82 X0.86 0.95 0.95 X0.96
SVM: Lineal 0.98 0.98 X0.99 0.87 x 0.86 X0.89
SVM: Sigmoid 0.95 0.95 X0.97 0.84 x 0.84 X0.86
SVM: Polynomial 0.98 0.98 X0.99 0.86 x 0.86 X0.89
SVM: Norm Polynom 0.93 0.93 X0.95 0.88 x 0.87 X0.90
SVM: Pearson VII 0.60 x 0.59 0.59 0.88 x 0.87 X0.90
SVM: RBF 0.96 0.96 X0.98 0.78 0.78 X0.82

X, x, statistically significant improvement or degradation (for a statistical
significance of 0.05).
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