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Abstract—Mechanical properties are the features that measure
the ability of a metal to withstand several loads and tensions.
Specifically, ultimate tensile strength is the force a material can
resist until it finally breaks. This property is one of the variables
controlled during the foundry process. The only way to examine
this feature is to apply destructive inspections that make the
casting invalid with the subsequent cost increment. Modelling
the foundry process using machine learning allows algorithms to
foresee the value of a certain variable, in this case, the probability
of a certain value of ultimate tensile strength for a foundry
casting. However, this approach needs to label every instance to
generate the model that will classify the castings. In this paper,
we present a new approach for detecting faulty castings through
collective classification to reduce the labelling requirements of
completely supervised approaches. Collective classification is a
type of semi-supervised learning that optimises the classification
of partially-labelled data. We perform an empirical validation
demonstrating that the system maintains a high accuracy rate
while the labelling efforts are lower than when using supervised
learning.

I. INTRODUCTION

Foundry production manufactures a huge number of castings
to be part of more complex systems e.g., the brake component
of a car, the propeller of a boat, components of the wings of an
aircraft and the trigger in a weapon and, therefore, foundry can
be considered as one of the axis of current economy. Indeed,
if one of the pieces is faulty, it can be detrimental to both
individuals and businesses activities. The casting production
or the foundry process is considered as one of the main
factors influencing the development of the world economy.
The capacity of the world’s casting production, which is higher
than 60 million metric tones per year, is strongly diversified
[1]. The last decade brought significant changes worldwide for
the greatest casting producers. Currently, the biggest producer
is China, closely followed by Europe.

The foundry process is subject to very strict safety controls
in order to be sure of the quality of the manufactured castings
because, as one may think, the tiniest defect may become
fatal. Exhaustive production control and diverse simulation
techniques [2] are applied for the assurance of failure-free
foundry processes. Many of the techniques used can only be
used once the casting production is finished. Hence, when a
defective casting is detected, it must be remelted, which can be
translated into a cost increment. In this paper, we focus on the
so-called Ultimate Tensile Strength (UTS). This mechanical
property is defined as the force a casting can resist until it

breaks; i.e., the maximum stress any material can withstand
when subjected to tension. Manufactured iron castings must
assure certain value (or threshold) of UTS to pass the tests.
Unfortunately, the only available approach to examine the UTS
is destructive inspection which breaks the piece.

Machine-learning methods are being increasingly used to
solve fault prediction problems. Artificial Neural Networks
(ANN) have been widely applied in order to solve other prob-
lems of foundry process e.g., on the prediction of the ferrite
number in stainless steel arc welds [3]. ANNs have also been
used for classifying foundry castings [4], optimising casting
parameters [5] and detection of causes of casting defects [6].
In a similar vein, there are successful experiments involving
the k-nearest neighbour algorithm include fault detection of
semiconductor manufacturing processes [7]. K-nearest neigh-
bour algorithm and artificial neural networks have been applied
for enhancing quality of steel [8]. Bayesian networks have
been applied as previous methods in Bayesian neural networks
methodology for forecasting the ferrite number in stainless
steel [9] and as the base to establish the level of microshrinkage
in iron castings [10].

These results encouraged us to tailor these approaches into
our concrete problem domain. Therefore, in our previous work
[11], [12], [13], we have tested the ability of several machine-
learning classifiers for the prediction of mechanical properties.
We used Bayesian networks, support vector machines, decision
trees, artificial neural networks and support vector machines,
to identify the best overall machine-learning classifier capable
of predicting the value of UTS and to reduce the noise in the
manual data-gathering process [14].

However, machine-learning classifiers (or supervised learn-
ing methods) require a high number of labelled castings for
each of the classes (i.e., faulty and not-faulty castings) to
train the different models. However, it is quite difficult to
acquire this amount of labelled data for a real-world problem
such as production control. To generate these data, a time-
consuming process of analysis is mandatory that renders in a
cost increment during the process.

Semi-supervised learning is a type of machine-learning
technique specially useful when a limited amount of labelled
data exists for each class [15]. In particular, collective classi-
fication [16] is an approach that uses the relational structure
of the combined labelled and unlabelled data-sets to enhance



the classification accuracy. With these relational approaches,
the predicted label of an example will often be influenced by
the labels of related samples. Collective classification has been
used with success in text classification [16], malware detection
[17] or spam filtering [18].

The idea underlying collective classification is that the
predicted labels of a test sample should also be influenced
by the predictions made for related test samples. Sometimes,
we can determine the topic of not just a single evidence but
to infer it for a collection of unlabelled evidences. Collective
classification tries to collectively optimise the problem taking
into account the connections present among the instances. In
summary, collective classification is a semi-supervised tech-
nique, i.e., uses both labelled and unlabelled data — typically a
small amount of labelled data and a large amount of unlabelled
data —, that reduces the labelling work.

Given this background, we present here the first approach
that employs collective classification techniques for classifying
castings and to foresee the value of ultimate tensile strength.
These methods are able to learn from both labelled and
unlabelled data to build accurate classifiers. We propose the
adoption of collective learning for the detection of invalid
values of ultimate tensile strength using features extracted from
the foundry production parameters as we did in previous work
[11], [14].

Summarising, our main contributions in this paper are: (i)
we describe how to adopt collective classification for detection
of invalid values of ultimate tensile strength, (ii) we empirically
determine the optimal number of labelled instances and we
evaluate how this parameter affects the accuracy of the model,
() and (iii) we demonstrate that labelling efforts can be reduced
in the fault prediction problem, while still maintaining a high
accuracy rate.

The remainder of this paper is organised as follows. Section
II details the casting production process and presents UTS
and several other related mechanical properties. Section III de-
scribes different collective classification methods and how they
can be adopted for fault prediction. Section IV describes the
experiments and presents results. Finally, Section V concludes
the paper and outlines avenues for future work.

II. FOUNDRY PROCESSES AND MECHANICAL PROPERTIES

Several factors, for instance the extreme conditions in which it
is performed, make the foundry process very complex. Starting
from the raw material to the manufactured item, this procedure
involves numerous stages, several of which may be performed
in parallel. When it comes to iron ductile castings, this process
presents the following phases:

Although all of the foundry processes are not equal, the
work flow performed in foundries is very similar to the work
flow shown in Fig. 1. The most important stages are the
following [19]:

• Pattern making: In this step, moulds (exteriors) or cores
(interiors) are produced in wood, metal or resin for being
used to create the sand moulds in which the castings will
be made.

• Sand mould and core making: The sand mould is the
most widely extended method for ferrous castings. Sand
is mixed with clay and water or other chemical binders.
Next, the specialised machines create the two halves of
the mould and join them together to provide a container
in which the metals are poured into.

• Metal melting: In this process (see 1 in Fig. 1), raw
materials are melt and mixed. Molten metal is prepared
in a furnace and depending on the choice of the furnace,
the quality, the quantity and the throughput of the melt
change.

• Casting and separation: Once the mixture is made,
the molten material is poured into the sand mould. It
can be done using various types of ladles or, in high
volume foundries, automated pouring furnaces. Later, the
metal begins to cool. This step (see 2 in Fig. 1) is
really important because the majority of the defects can
appear during this phase. Finally, when the casting has
been cooled enough to maintain the shape, the casting is
separated from the sand. The removed sand is recovered
for further uses.

• Removal of runners and risers: Some parts of the cast-
ing that had been used to help in the previous processes
are then removed. They can be detached by knocking off,
sawing or cutting.

• Finishing: To finish the whole process some actions are
usually performed, e.g., cleaning the residual sand, heat
treatment and rectification of defects by welding.

Fig. 1. Foundry process work flow showing the different phases castings
have to pass through. More accurately, in 1 it is performed the metal melting
step, and in 2 it is performed the casting preparation and separation step.

Once these phases finish, foundry materials are subject to
forces (loads). Engineers calculate these forces and how the
material deforms or breaks as a function of applied load, time
or other conditions. It is important to know how mechanical
properties affect to iron castings [20], because they directly
affect the final quality of the manufactured casting. The most
important mechanical properties of foundry materials are the
following ones [21]: strength, hardness, resilience, elasticity,
plasticity, brittleness, ductility and malleability. In this work,
we focus on Ultimate Tensile Strength (UTS) that is a type
of strength, which is the property that enables a metal to
resist deformation under load. The testing method of UTS is



conducted as follows (shown in Figure 2). First, a scientist
prepares a testing specimen from the original casting. Second,
the specimen is placed on the tensile testing machine. Finally,
this machine pulls the sample from both ends and measures
the force required to break the specimen apart and how much
the sample stretches before breaking.

Fig. 2. Ultimate Tensile Strength Test.

The complexity of UTS prediction of the resulting castings
arises mainly from the large number of variables involved in
the production process and, therefore, this variables influence
the final design of castings. The total number of variables we
focus on has been reduced to 24, and more specifically, the
control variables can be divided into metal-related variables
and variables related to the mould.

• Metal-related
– Composition: type of treatment, inoculation and

quantities.
– Thermal: Nucleation potential and quality of the

mixture, obtained by thermal analysis [22].
– Pouring: Pouring duration and temperature.

• Mould-related
– Sand: types of additives used for sand, the specific

characteristics of the sand.
– Mould: mould and machine parameters used.

Generally, the size and geometry of the casting play a very
important and, therefore, we also included several variables to
monitor these features. Similarly, the system takes into account
the parameters related to the configuration of each machine
working in the manufacturing process. Also, we added other
variables such as cooling rate and heat treatment applied to
the piece.

Although we have already obtained overall good results
using a machine-learning-based approach for predicting imper-
fections and mechanical properties [23], [11], [13], [24], [14],
[25], [26], [27], these approaches require a manual labour to
label every instance of the training dataset. This process can be
specially time-consuming and, also, means a cost increment.

Therefore, we present here a collective classification ap-
proach that requires fewer castings to be labelled. Such an
approach will indeed reduce the efforts of labelling castings,
working with less information available in beforehand.

III. COLLECTIVE CLASSIFICATION

Collective classification is a combinatorial optimisation
problem, in which we are given a set of castings, or nodes,
E = {e1, ..., en} and a neighbourhood function N , where
Ni ⊆ E \ {Ei}, which describes the underlying network
structure [28]. Being E a random collection of castings, it is
divided into two sets X and Y , where X corresponds to the
castings for which we know the correct values and Y are the
castings whose values need to be determined. Therefore, the
task is to label the nodes Yi ∈ Y with one of a small number
of labels, L = {l1, ..., lq}.

We use the Waikato Environment for Knowledge Analysis
(WEKA) [29] and its Semi-Supervised Learning and Collective
Classification plugin1. In the remainder of this section we re-
view the collective algorithms used in the empirical evaluation.

A. CollectiveIBK

This model uses internally WEKA’s classic IBK algorithm,
an implementation of the K-Nearest Neighbour (KNN), to
determine the best k instances on the training set and builds
then, for all instances from the test set, a neighbourhood
consisting of k instances from the pool of train and test set
(either a naı̈ve search over the complete set of instances or
a k-dimensional tree is used to determine neighbours). All
neighbours in such a neighbourhood are sorted according
to their distance to the test instance they belong to. The
neighbourhoods are sorted according to their ‘rank’, where
‘rank’ means the different occurrences of the two classes in
the neighbourhood.

For every unlabelled test instance with the highest rank,
the class label is determined by majority vote or, in case of a
tie, by the first class. This is performed until no further test
instances remain unlabelled. The classification terminates by
returning the class label of the instance that is about to be
classified.

B. CollectiveForest

It uses WEKA’s implementation of RandomTree as base
classifier to divide the test set into folds containing the same
number of elements. The first iteration trains the model using
the original training set and generates the distribution for all the
instances in the test set. The best instances are then added to
the original training set (being the number of instances chosen
the same as in a fold).

The next iterations train the model with the new training set
and generate then the distributions for the remaining instances
in the test set.

C. CollectiveWoods & CollectiveTree

CollectiveWoods works like CollectiveForest using Collec-
tiveTree algorithm instead of RandomTree.

Collective tree is similar to WEKA’s original RandomTree
classifier. It splits the attribute at a position that divides the
current subset of instances (training and test instances) into two

1Available at: http://www.scms.waikato.ac.nz/˜fracpete/
projects/collectiveclassification



halves. The process finishes if one of the following conditions
is met: (i) only training instances are covered (the labels for
these instances are already known); (ii) only test instances in
the leaf, case in which distribution from the parent node is
taken, and (iii) only training instances of one class, case in
which all test instances are considered to have this class.

To calculate the class distribution of a complete set or a
subset, the weights are summed up according to the weights
in the training set, and then normalised. The nominal attribute
distribution corresponds to the normalised sum of weights for
each distinct value and, for the numeric attribute, distribution
of the binary split based on median is calculated and then the
weights are summed up for the two bins and finally normalised.

D. RandomWoods

It works like WEKA’s classic RandomForest but using Col-
lectiveBagging (classic Bagging, a machine learning ensemble
meta-algorithm to improve stability and classification accuracy,
extended to make it available to collective classifiers) in
combination with CollectiveTree. RandomForest, in contrast,
uses Bagging and RandomTree algorithms.

IV. EMPIRICAL VALIDATION

In order to evaluate our faulty casting detector, we collected
a dataset from a foundry, which is specialised in safety and
precisions components for the automotive industry, principally
in disk-brake support with a production over 45,000 tons a
year. The experiments were focused exclusively on the UTS
prediction. Note that, as we have already mentioned, the only
way to examine the mechanical properties is the employment
of destructive inspections and, therefore, the evaluation must
be performed after the production is done.

The acceptance/rejection criterion of the studied models
resembles the one applied by the final requirements of the
customer. Pieces flawed with an invalid UTS must be rejected
due to the very restrictive quality standards (which is an
imposed practice by the automotive industry). To this extent,
we have defined two risk levels: Valid (more than 370 MPa)
and Invalid (less than 370 MPa).

We worked with two different references, in other words,
type of pieces and, in order to test the proposed method, with
the results of the destructive inspections of the 889 production
stocks performed in beforehand. More accurately, the dataset
comprises 645 correct castings and 244 faulty castings.

Next, we split the dataset into different percentages of
training and testing instances. In other words, we changed the
number of labelled instances to measure the effect of the num-
ber of previously labelled instances on the final performance
of collective classification in detecting faulty castings.

By means of this dataset, we conducted the following
methodology to evaluate the proposed method:

• Training and Test Generation. We constructed an ARFF
file [30] (i.e., Attribute Relation File Format) with the
resultant vector representations of the castings to build
the aforementioned WEKA’s classifiers.

We did not use cross-validation because in the evaluation
we did not want to test the performance of the classifier
when a fixed size of training instances is used iteratively.
Otherwise, we employed a variable number of training
instances and tried to predict the class of the remaining
ones using collective classification in order to determine
which is the best training set size. In this case, the training
instances are the labelled ones whereas the unlabelled
ones are the ones in the test dataset.
Therefore, we split the dataset into different percentages
of training and tested instances, changing the number
of labelled instances from 10% to 90% to measure the
effect of the number of labelled instances on the final
performance of collective classification in detecting faulty
castings.
As aforementioned, we used the collective classifica-
tion implementations provided by the Semi-Supervised
Learning and Collective Classification package for the
well-known machine-learning tool WEKA [29]. All the
classifiers were tested with their default parameters.

• Testing the Models. To test the approach, we measured
the True Positive Rate (TPR), i.e., the number of castings
affected with an invalid value of UTS correctly detected
divided by the total number of castings:

TPR =
TP

TP + FN
(1)

where TP is the number of faulty instances correctly
classified (true positives) and FN is the number of
faulty instances misclassified as correct castings (false
negatives).
We also measured the False Positive Rate (FPR), i.e.,
the number of not faulty castings misclassified as faulty
divided by the total number of correct castings:

FPR =
FP

FP + TN
(2)

where FP is the number of not faulty castings incorrectly
detected as faulty and TN is the number of correct
castings correctly classified.
Furthermore, we measured accuracy, i.e., the total num-
ber of hits of the classifiers divided by the number of
instances in the whole dataset:

Accuracy(%) =
TP + TN

TP + FP + TP + TN
(3)

Besides, we measured the Area Under the ROC Curve
(AUC), which establishes the relation between false neg-
atives and false positives [31]. The ROC curve is obtained
by plotting the TPR against the FPR. All these measures
refer to the test instances.

Fig. 3 shows the obtained results in terms of accuracy, TPR,
FPR and AUC. Our results outline that, obviously, the higher
the number of labelled castings in the dataset the better results
achieved. However, by using only the 60% of the available
data, with the exception of CollectiveIBK and RandomWoods,



(a) Accuracy results. The accuracy axis (Y axis) has been scaled
from 40% to 100% in order to appreciate better the evolution of
the classifier. The classifiers were sensitive to the increase of the
training dataset. With the exception of CollectiveIBK, the rest of
the classifiers obtained accuracies higher than 85% using only a
60% of labelled instances.

(b) TPR results. CollectiveIBK was the worst classifier with a
maximum TPR of 64% using the 90% of the dataset. The remainder
of the classifiers obtained a detection rate of more than 65% with
only a 60% of training size.

(c) FPR results. The FPR is scaled from 0.00% to 16% in order
to magnify the differences among the configurations. In general, the
higher the amount of labelled instances, the lower the FPR. The
FPR is always lower than 15%.

(d) AUC results. The AUC axis (Y axis) has been scaled from
50% to 100% in order to appreciate better the evolution of the
classifiers. As it happened with accuracy, CollectiveIBK was the
worst classifier. Anyhow, the rest of the classifiers obtained AUC
values higher than 80% using only a 20% of labelled instances.

Fig. 3. Results of our collective-classification-based UTS prediction method. Collective Woods was the overall classifier with the highest accuracy, TPR and
AUC.

the collective classifiers CollectiveWoods and CollectiveForest
were able to achieve TPRs higher than 65% and FPRs lower
than 10%. In particular, Collective Forest trained with the 60%
of the data obtained 85,26% of accuracy, 66,00% of TPR,
8.00% of FPR and 91% of AUC. Fig. 3(a) shows the accuracy
results of our proposed method. All the tested classifiers,
with the exception of CollectiveIBK, achieved accuracy results
higher than 85% with some labelling percentage. In particular,
CollectiveForest was overall the best, achieving an accuracy
of 81,48% using only a 20% of the instances for training
and 86,38%% with the 90% of the whole dataset. Fig. 3(b)
shows the obtained results in terms of correctly classified
faulty castings. In this way, Collective Woods was the best
detecting from 50% to 74% of the faulty castings in different

labelled percentage configurations. Fig. 3(c) shows the FPR
results. Every classifier obtained results lower than 14%. In
particular, the lowest FPR achieved was of 8%, achieved by
CollectiveIBK with the 10% of dataset as well as Collective
Forest and Collective Woods with the 80% of the dataset
Finally, regarding AUC, shown in Fig. 3(d), Collective Forest
was again the best, with results higher than 90% with a 60%
of labelled data or higher.

V. CONCLUSIONS

Foreseeing the value of UTS in ductile iron castings is one of
the most hard challenges in foundry-related research. Our work
in [11], [13] pioneered the application of artificial intelligence
methods to the prediction of the value of UTS.



In this paper, our main contribution is the collective-
classification-based approach employed for UTS prediction
detection. This method does not require as much labelling
of the castings as our previous supervised learning based
approach. In our experiments the results were a little bit lower
than the ones reported in our previous work using supervised
learning [23], [25], which renders collective classification as
the best learning procedure for UTS prediction, if we take into
account the labelling reduction.

Future work will be focused on three main directions. First,
we plan to extend our study of collective learning by applying
more algorithms to this issue. Second, we will use different
features for training these kinds of models. Finally, we will
focus on different defects in foundry production in order to
generate a global fault detector.
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