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Abstract. Malware is any computer software potentially harmful to
both computers and networks. The amount of malware is growing every
year and poses a serious global security threat. Signature-based detection
is the most extended method in commercial antivirus software, however,
it consistently fails to detect new malware. Supervised machine learning
has been adopted to solve this issue. There are two types of features
that supervised malware detectors use: (i) static features and (ii) dyna-
mic features. Static features are extracted without executing the sample
whereas dynamic ones requires an execution. Both approaches have their
advantages and disadvantages. In this paper, we propose for the first
time, OPEM, an hybrid unknown malware detector which combines the
frequency of occurrence of operational codes (statically obtained) with
the information of the execution trace of an executable (dynamically ob-
tained). We show that this hybrid approach enhances the performance
of both approaches when run separately.
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puter security

1 Introduction

Machine-learning-based malware detectors (e.g., [1–4]) commonly rely on data-
sets that include several characteristic features for both malicious samples and
benign software to build classification tools that detect malware in the wild (i.e.,
undocumented malware). Two kind of features can be used to face obfuscated
and previously unseen malware: statically or dynamically extracted characteris-
tics. Static analysis extract several useful features from the executable in ins-
pection without actually executing it, whereas dynamic analysis executes the
inspected specimen in a controlled environment called ‘sandbox’ [5]. The main
advantages of static techniques are that they are safer because they do not exe-
cute malware, they are able to analyse all the execution paths of the binary, and
the analysis and detection is usually fast [5]. However, they are not resilient to
packed malware (executables that have been either compressed or cyphered) [6]



or complex obfuscation techniques [7]. On the contrary, dynamic techniques can
guarantee that the executed code shows the actual behaviour of the executable
and, therefore, they are the preferred choice when a whole understanding of the
binary is required [8]. However, they have also several shortcomings: they can
only analyse a single execution path, they introduce a significant performance
overhead, and malware can identify the controlled environments [9].

Given this background, we present here OPEM, the first machine-learning-
based malware detector that employs a set of features composed of both static
and dynamic features. The static features are based on a novel representation
of executables: opcode sequences [10]. This technique models an executable as
sequences of operational codes (i.e., the action to perform in machine code lan-
guage) of a fixed length and computes their frequencies to generate a vector of
frequencies of opcode sequences. On the other hand, the dynamic features are
extracted by monitoring system calls, operations, and raised exceptions on an
execution within an emulated environment to finally generate a vector of binary
characteristics representing whether a specific comportment is present within an
executable or not [11]. In summary, our main contributions to the state of the art
are the following ones: (i) we present a new hybrid representation of executables
composed of both statically and dynamically extracted features, (ii) based upon
this representation, we propose a new malware detection method which employs
supervised learning to detect previously unseen and undocumented malware and
(iii) we perform an empirical study to determine which benefits brings this hybrid
approach to the standalone static and dynamic representations.

2 Overview of OPEM

2.1 Statically Extracted Features

To represent executables using opcodes, we extract the opcode-sequences and
their frequency of appearance. Specifically, we define a program ρ as a set of
ordered opcodes o, ρ = (o1, o2, o3, o4, ..., o`−1, o`), where ` is the number of ins-
tructions I of the program ρ. An opcode sequence os is defined as a subset of
opcodes within the executable file where os ⊆ ρ; it is made up of opcodes o,
os = (o1, o2, o3, ..., om1, om) where m is the length of the sequence of opcodes
os. Consider an example code formed by the opcodes mov, add, push and add;
the following sequences of length 2 can be generated: s1 = (mov,add), s2 = (add,
push) and s3 = (push, add).

Afterwards, we compute the frequency of occurrence of each opcode sequence
within the file by using term frequency (tf) [12] that is a weight widely used in
information retrieval: tfi,j =

ni,j∑
k nk,j

where ni,j is the number of times the

sequence si,j (in our case opcode sequence) appears in an executable e, and∑
k nk,j is the total number of terms in the executable e (in our case the total

number of possible opcode sequences)
We define the Weighted Term Frequency (WTF) as the result of weighting

the relevance of each opcode when calculating the term frequency. To calculate



the relevance of each individual opcode, we collected malware from the VxHea-
vens website1 to assemble a malware dataset of 13,189 malware executables and
we collected 13,000 executables from our computers. Using this dataset, we di-
sassemble each executable and compute the mutual information gain for each

opcode and the class: I(X;Y ) =
∑
yεY

∑
xεX p(x, y) log

(
p(x,y)
p(x)·p(y)

)
where X is

the opcode frequency and Y is the class of the file (i.e., malware or benign soft-
ware), p(x, y) is the joint probability distribution function of X and Y , and p(x)
and p(y) are the marginal probability distribution functions of X and Y . In our
particular case, we defined the two variables as the single opcode and whether or
not the instance was malware. Note that this weight only measures the relevance
of a single opcode and not the relevance of an opcode sequence.

Using these weights, we computed the WTF as the product of sequence fre-
quencies and the previously calculated weight of every opcode in the sequence:

wtfi,j = tfi,j ·
∏
ozεS

weight(oz)
100 where weight(oz) is the calculated weight, by

means of mutual information gain, for the opcode oz and tfi,j is the sequence
frequency measure for the given opcode sequence. We obtain a vector v compo-
sed of weighted opcode-sequence frequencies, v = ((os1, wtf1), ..., (osn, wtfn)),
where osi is the opcode sequence and wtfi is the weighted term frequency for
that particular opcode sequence.

2.2 Dynamically Extracted Features

Behaviour monitoring is a dynamic analysis technique in which the suspicious file
is executed inside a contained and secure environment, called sandbox, in order
to get a complete and detailed trace of the actions performed in the system. There
are two different approaches for dynamic analysis [13]: (i) taking a snapshot of
the complete system before running the suspicious program and comparing it
with another snapshot of the system after the execution in order to find out
differences and (ii) monitoring the behaviour of the executable during execution
with specialised tools.

For our research we have chosen a sandbox [11] that monitors the behaviour
of the executable during execution. The suspicious Windows Portable Executable
(PE) files are executed inside the sandbox environment, and relevant Windows
API calls are logged, showing their behaviour. This work is a new approach of
sandbox using both emulation (Qemu) and simulation (Wine) techniques, with
the aim of achieving the greatest transparency possible without interfering with
the system.

We describe now the two main platforms of our sandbox solution:

– Wine is an open-source and complete re-implementation (simulation) of the
Win-32 Application Programming Interface (API). It allows Windows PE fi-
les to run as-if-natively under Unix-based operating systems. However. there
are still some limitations in the implementation, which hinders some pro-
grams from working properly.

1 http://vx.netlux.org/



– Qemu is an open-source pure software virtual machine emulator that works
by performing equivalent operations in software for any given CPU instruc-
tion. Unfortunately, there are several malicious executables aware of being
executed in a contained environment exploiting different bugs within this vir-
tual machine. However, they can be fixed easily [14]. As Peter Ferrie stated
[14], only pure software virtual machine emulators can approach complete
transparency, and it should be possible, at least in theory, to reach the point
where detection of the virtual machine is unreliable.

Every call done by a process (identified by its PID) to the Windows API
(divided in families, e.g., registry, memory or files) is stored into a log, specifying
the state of the parameters before (IN ) and after (OUT ) in the body of the
functions. Thereby, we can obtain a complete and homogeneous trace with all
the behaviour of the processes, without any interference with the system.

For each executable analysed in the sandbox, we obtain a complete in-raw
trace with its detailed behaviour. To automatically extract the relevant informa-
tion in a vector format from the traces, we developed several regular expression
rules, which define various specific actions performed by the binary, and a par-
ser to identify them. Most of the actions defined are characteristic of malicious
behaviour but there are both benign and malicious behaviour rule definitions.
We have classified them into seven different groups:

– Files: Every action involving manipulation of files, like creation, opening or
searching.

– Protection: Most of malware avoid execution if they are being debugged
or executed in a virtual environment.

– Persistence: Once installed in the System, the malware wants to survive
reboots, e.g., by adding registry keys or creating toolbars.

– Network: Actions regarding to network connectivity, e.g., creation of a RPC
pipe or accessing an URL.

– Processes: Manipulation of processes and threads, like creation of multiple
threads.

– System Information: Retrieving information about the System, e.g., get-
ting the web browsing history.

– Errors: Errors raised by Wine, like error loading a DLL, or an unhandled
page fault.

The behaviour of an executable is a vector made up of the aforementioned
features. We represent an executable as a vector v composed by binary charac-
teristics c, where c can be either 1 (true) or 0 (false), v = (c1, c2, c3, ..., cn−1, cn)
and n is the number of total monitored actions.

In this way, we have characterised the vector information as binary digits,
called features, each one representing the corresponding characteristic of the
behaviour. When parsing a report, if one of the defined actions is detected by a
rule, the corresponding feature is activated. The resulting vector for each pro-
gram’s trace is a finite sequence of bits, a proper information for classifiers to



effectively recognize patterns and correlate similarities across a huge amount of
instances [15]. Likewise, both in-raw trace log and feature sequence for each
analysed executable are stored in a database for further treatment.

3 Experimental Validation

To validate our proposed method, we used two different datasets to test the
system: a malware dataset and a benign software dataset. We downloaded several
malware samples from the VxHeavens website to assemble a malware dataset of
1,000 malicious programs. For the benign dataset, we gathered 1,000 legitimate
executables from our computers.

We extracted the opcode-sequence representation for every file in that dataset
for a opcode-sequence length n = 2. The number of features obtained with an
opcode-length of two was very high: 144,598 features. To deal with this, we
applied a feature selection step using Information Gain [16] and we selected the
top 1,000 features. We extracted the dynamic characteristics for the malware and
benign by monitoring it in the emulated environment. The number of features
was 63. We combined this two different datasets into one, creating thus a hybrid
static-dynamic dataset. To compare our method, we have also kept the datasets
with only the static features and only the dynamic features. To validate our
approach, we performed the following the steps:

– Cross validation: To evaluate the performance of machine-learning classi-
fiers, k-fold cross validation is usually used in machine-learning experiments
[17].
Thereby, for each classifier we tested, we performed a k-fold cross validation
[18] with k = 10. In this way, our dataset was split 10 times into 10 different
sets of learning (90% of the total dataset) and testing (10% of the total
data).

– Learning the model: For each validation step, we conducted the lear-
ning phase of the algorithms with the training datasets, applying different
parameters or learning algorithms depending on the concrete classifier. Spe-
cifically, we used the following four models:
• Decision Trees: We used Random Forest [19] and J48 (Weka’s C4.5 [20]

implementation).
• K-Nearest Neighbour: We performed experiments over the range k = 1

to k = 10 to train KNN.
• Bayesian networks: We used several structural learning algorithms; K2

[21], Hill Climber [22] and Tree Augmented Näıve (TAN) [23]. We also
performed experiments with a Näıve Bayes classifier [24].

• Support Vector Machines: We used a Sequential Minimal Optimization
(SMO) algorithm [25], and performed experiments with a polynomial
kernel [26], a normalised polynomial kernel [26], Pearson VII function-
based universal kernel [27], and a Radial Basis Runction (RBF) based
kernel [26].



Table 1. Accuracy results (%).

Classifier
Static Dynamic Hybrid

Approach Approach Approach
KNN K=1 94.83 77.19 96.22
KNN K=2 93.15 76.72 95.36
KNN K=3 94.16 76.68 94.63
KNN K=4 93.89 76.58 94.46
KNN K=5 93.50 76.35 93.68
KNN K=6 93.38 76.34 93.52
KNN K=7 92.87 76.33 93.51
KNN K=8 92.89 76.31 93.30
KNN K=9 92.10 76.29 92.94
KNN K=10 92.24 76.24 92.68
DT: J48 92.61 76.72 93.59
DT: Random Forest N=10 95.26 77.12 95.19
SVM: RBF Kernel 91.93 76.75 93.25
SVM: Polynomial Kernel 95.50 76.87 95.99
SVM: Normalised Polynomial Kernel 95.90 77.26 96.60
SVM: Pearson VII Kernel 94.35 77.23 95.56
Näıve Bayes 90.02 74.36 90.11
Bayesian Network: K2 86.73 75.73 87.20
Bayesian Network: Hill Climber 86.73 75.73 87.22
Bayesian Network: TAN 93.40 75.47 93.53

– Testing the model: To evaluate each classifier’s capability, we measured
the True Positive Ratio (TPR), i.e., the number of malware instances co-
rrectly detected, divided by the total number of malware files:

TPR =
TP

TP + FN
(1)

Table 2. TPR results.

Classifier
Static Dynamic Hybrid

Approach Approach Approach
KNN K=1 0.95 0.88 0.95
KNN K=2 0.96 0.88 0.97
KNN K=3 0.94 0.88 0.94
KNN K=4 0.95 0.89 0.96
KNN K=5 0.92 0.89 0.90
KNN K=6 0.93 0.89 0.94
KNN K=7 0.90 0.89 0.92
KNN K=8 0.91 0.89 0.93
KNN K=9 0.88 0.89 0.91
KNN K=10 0.90 0.89 0.91
DT: J48 0.93 0.95 0.94
DT: Random Forest 0.96 0.85 0.96
SVM: RBF Kernel 0.89 0.95 0.90
SVM: Polynomial Kernel 0.96 0.93 0.97
SVM: Normalised Polynomial Kernel 0.94 0.94 0.96
SVM: Pearson VII Kernel 0.95 0.89 0.93
Näıve Bayes 0.90 0.57 0.90
Bayesian Network: K2 0.83 0.63 0.83
Bayesian Network: Hill Climber 0.83 0.63 0.83
Bayesian Network: TAN 0.91 0.85 0.91



Table 3. FPR results.

Classifier
Static Dynamic Hybrid

Approach Approach Approach
KNN K=1 0.05 0.34 0.03
KNN K=2 0.10 0.35 0.06
KNN K=3 0.05 0.35 0.05
KNN K=4 0.07 0.36 0.07
KNN K=5 0.05 0.36 0.05
KNN K=6 0.06 0.36 0.07
KNN K=7 0.04 0.36 0.07
KNN K=8 0.05 0.36 0.07
KNN K=9 0.04 0.36 0.07
KNN K=10 0.05 0.36 0.06
DT: J48 0.08 0.34 0.01
DT: Random Forest N=10 0.06 0.31 0.06
SVM: RBF Kernel 0.05 0.42 0.03
SVM: Polynomial Kernel 0.05 0.39 0.05
SVM: Normalised Polynomial Kernel 0.02 0.40 0.03
SVM: Pearson VII Kernel 0.06 0.34 0.01
Näıve Bayes 0.10 0.09 0.10
Bayesian Network: K2 0.09 0.12 0.09
Bayesian Network: Hill Climber 0.09 0.12 0.09
Bayesian Network: TAN 0.04 0.34 0.04

where TP is the number of malware cases correctly classified (true positives)
and FN is the number of malware cases misclassified as legitimate software
(false negatives).

We also measured the False Positive Ratio (FPR), i.e., the number of benign
executables misclassified as malware divided by the total number of benign
files:

Table 4. AUC results.

Classifier
Static Dynamic Hybrid

Approach Approach Approach
KNN K=1 0.95 0.89 0.96
KNN K=2 0.96 0.88 0.97
KNN K=3 0.97 0.88 0.98
KNN K=4 0.97 0.88 0.98
KNN K=5 0.97 0.88 0.98
KNN K=6 0.98 0.88 0.98
KNN K=7 0.98 0.88 0.98
KNN K=8 0.98 0.88 0.98
KNN K=9 0.98 0.88 0.98
KNN K=10 0.97 0.88 0.98
DT: J48 0.93 0.78 0.93
DT: Random Forest N=10 0.99 0.89 0.99
SVM: RBF Kernel 0.92 0.77 0.93
SVM: Polynomial Kernel 0.95 0.77 0.96
SVM: Normalised Polynomial Kernel 0.96 0.77 0.97
SVM: Pearson VII Kernel 0.94 0.77 0.96
Näıve Bayes 0.93 0.85 0.93
Bayesian Network: K2 0.94 0.86 0.94
Bayesian Network: Hill Climber 0.94 0.86 0.94
Bayesian Network: TAN 0.98 0.87 0.98



FPR =
FP

FP + TN
(2)

where FP is the number of benign software cases incorrectly detected as
malware and TN is the number of legitimate executables correctly classified.
Furthermore, we measured the accuracy, i.e., the total number of the classi-
fier’s hits divided by the number of instances in the whole dataset:

Accuracy(%) =
TP + TN

TP + FP + TP + TN
· 100 (3)

Besides, we measured the Area Under the ROC Curve (AUC) that establis-
hes the relation between false negatives and false positives [28]. The ROC
curve is obtained by plotting the TPR against the FPR.

Tables 1, 2, 3 and 4 show the obtained results in terms of accuracy, TPR,
FPR and AUC, respectively. For every classifier, the results were improved when
using the combination of both static and dynamic features. In particular, the
best overall results were obtained by SVM trained with Polynomial Kernel and
Normalised Polynomial Kernel.

The obtained results validate our initial hypothesis that building an unknown
malware detector based on opcode-sequence is feasible. The machine-learning
classifiers achieved high performance in classifying unknown malware. Nevert-
heless, there are several considerations regarding the viability of this method.

First, regarding the static approach, it cannot counter packed malware. Pac-
ked malware is the result of cyphering the payload of the executable and de-
ciphering it when the executable is finally loaded into memory. A way to solve
this obvious limitation of our malware detection method is the use of a generic
dynamic unpacking schema such as PolyUnpack [6], Renovo [29], OmniUnpack
[30] and Eureka [31].

Second, with regards to the dynamic approach, in order to take advantage
over antivirus researchers, malware writers have included diverse evasion tech-
niques [14, 32] based on bugs on the virtual machines implementation to fight
back. Nevertheless, with the aim of reducing the impact of these countermea-
sures, we can improve the Qemu’s source code [14] in order to solve the bugs
and not to be vulnerable to the above-mentioned techniques. It is also possible
that some malicious actions are only triggered under specific circumstances de-
pending on the environment, so relying on a single program execution will not
manifest all its behaviour. This is solved with a technique called multiple execu-
tion path [33], making the system able to obtain different behaviours displayed
by the suspicious executable.

4 Concluding remarks

While machine-learning methods are a suitable approach for unknown malware,
they use either static or dynamic features to train the algorithms. A combination



of both approaches can be useful in order to improve the results of static and
dynamic approaches. In this paper, we have presented OPEM which is the first
combination of both static and dynamic approaches to detect unknown malware.

The future development of this malware detection system will be concentra-
ted in three main research areas. First, we will focus on facing packed executables
using a dynamic unpacker. Second, we plan to extend both the dynamic analysis
and the static dynamic in order to improve the results of this hybrid malware
detector. Finally, we will study the problem of scalability of malware databases
using a combination of feature and instance selection methods.
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