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Abstract—The presence of mobile devices has increased in
our lives offering almost the same functionality as a personal
computer. Android devices have appeared lately and, since then,
the number of applications available for this operating system
have increased exponentially. Google already has its Android
Market where applications are offered and, as happens with every
popular media, is prone to misuse. A malware writer may insert
a malicious application into this market without being noticed.
Indeed, there are already several cases of Android malware
within the Android Market. Therefore, an approach that can
automatically characterise the different types of applications can
be helpful for both organising the Android Market and detecting
fraudulent or malicious applications. In this paper, we propose
a new method for categorising Android applications through
machine-learning techniques. To represent each application, our
method extracts different feature sets: (i) the frequency of
occurrence of the printable strings, (ii) the different permissions
of the application itself and (iii) the permissions of the application
extracted from the Android Market. We evaluate this approach
of automatically categorisation of Android applications and show
that achieves a high performance.

I. INTRODUCTION

Smartphones are becoming increasingly popular. They have
evolved into small and portable personal computers that allow
users to browse the Internet, send e-mails or connect to a
remote desktop. These small computers are able to perform
complex computing tasks and communicate through different
methods (e.g., GPRS, WiFi or Bluetooth).

In the last decade, users of these devices had been expe-
riencing problems when installing mobile applications. They
had to download an application from a website and then, install
it on the device. In order to protect the device and avoid
piracy, several operating systems, such a Symbian, employ an
authentication system based on certificates that causes several
inconveniences for the users (e.g., they cannot install applica-
tions despite having bought them). Nowadays, thanks to the
deployment of Internet connections in mobile devices, there
are new methods to distribute applications. Users can install
any application without even connecting the mobile device to
the computer. They only need an account of an application
store in order to buy and install new applications. Apple’s
AppStore was the first store to implement this new model

and was very successful. Other manufacturers such as Google,
RIM and Microsoft have followed the same business model
developing application stores accessible from the device.

These facts have increased the number of developers for
mobile platforms and the number of mobile applications.
According to Apple1, the number of available applications on
the App Store is over 350,000, whilst Android Market2 has
over 200,000 applications.

Regarding the application stores, while for Apple devices
the AppStore is the single official way to obtain applications,
Android allows users to install applications that have been
downloaded from alternative markets or directly from Internet.

According to their response to the US Federal Commu-
nication Commission’s July 20093, Apple applies a rigorous
review process made by at least two reviewers. In contrast,
Android relies on its security permission system and on the
user’s sound judgement. Unfortunately, users have usually
no security consciousness and they do not read required
permissions before installing an application.

Although both AppStore and Android Market include
clauses in the terms of services that urge developers not to
submit malicious software, both have hosted malware in their
stores. To solve this problem, they have developed tools for
removing remotely these malicious applications. Both models
are insufficient to ensure user’s safety and new models should
have been included in order to improve the security of the
devices.

Machine learning techniques have been widely applied for
classifying applications mainly focused on generic malware
detection [1], [2], [3], [4], [5]. Besides, several approaches
[6], [7] have been proposed to try to classify applications
specifying the malware class; e.g., trojan, worms, virus; and,
even the malware family.

With regards to Android applications, there is a lack of mal-
ware samples. Anyway, the number of samples is increasing

1http://www.apple.com/iphone/features/app-store.html
2http://googleblog.blogspot.com/2011/05/android-momentum-mobile-and-

more-at.html
3http://online.wsj.com/public/resources/documents/

wsj-2009-0731-FCCApple.pdf



TABLE I
DESCRIPTION OF THE CATEGORIES.

Name Description of the category

Communication Applications which use the communication capabilities the device offers
(e.g., Browsers, VoIP Programs)

Entertainment Users install these small applications to personalise the device or enjoy
with features of the device. Some examples are live wallpapers or ringtone makers.

Tools These applications provide tools for a wide range of problems. FTP Clients,
system monitors or application managers are some applications that are classified in this category.

Multimedia and Video Users install these applications to use multimedia capacities
of the devices. Video and music players or remote controllers are some examples.

Productivity Applications that enhance productivity are classified here.
Some examples of this category are task killers, application launchers or calendars.

Puzzles and brain games These simple games seek to test user’s capabilities
through simple tests.

Society Applications that connect the user with social networks
(e.g., Twitter or Facebook).

exponentially and several approaches have been proposed to
detect Android Malware. Shabtai et al. [8] trained machine
learning models using as features the count of elements,
attributes or namespaces of the parsed apk. To evaluate their
models, they selected features using three selection methods:
Information Gain, Fisher Score and Chi-Square. They obtained
89% of accuracy classifying applications into only 2 cate-
gories: tools or games.

In light of this background, we propose here a new method
for classifying Android applications into several categories
(e.g., entertainment, society, tools or productivity) using the
features extracted both from the Android Market and the
application itself.

Summarising, our main findings in this paper are: (i) we
describe the process of extracting features from the Android
.apk files, (ii) we propose a new representation for Android
applications in order to develop an automatic categorisation
approach and (iii) we perform an empirical validation of our
approach and show that it can achive high accuracy rates.

The reminder of this paper is organised as follows. Section
II details the representation method and shows how to extract
features from the applications. Section III shows a brief
introduction of the machine-learning methods we used. Section
IV describes the empirical evaluation of our method. Finally,
section V discusses the results and shows the avenues of
further work.

II. APPS FEATURE EXTRACTION

We retrieve several features from the applications: (i) strings
contained in the application, (ii) permissions of the applica-
tions and other features extracted from the Android Market:
(i) rating, (ii) number of ratings and (iii) size of application.

We extract strings from the application because they have
been previously used to identify desktop malware [1]. We also
gather the permissions required by the application in order to
be executed. The Android platform facilitates the identification
of these permissions because they are stored in an XML file
inside each application, named “AndroidManifest.xml”. This
file declares the execution requirements of the application,

amongst other features and other requirements such as the
version of the operating system that requires or the libraries
used.

We also use Android Market features to add another kind
of information to the model. The Android Market contains
information about the behaviour of an application and, besides,
information users provide, such as the application rating or
the number of ratings, which according to the results of
the computation of the Information Gain method [9], are
significant features.

To obtain the permissions of the application, we use both
the Android Market and the configuration file “AndroidMani-
fest.xml”. Although they may seem redundant information, in
some cases, there are several changes between permissions
from the application and the Market (e.g., differences in
the versions). In these cases, Android Market provides the
permissions of the last version of the application.

TABLE II
NUMBER OF SAMPLES OF EACH CATEGORY.

Category Number of samples
Entertaiment 83
Puzzle and brain games 84
Comunication 111
Multimedia and video 123
Society 137
Productivity 151
Tools 160

Total 820

We consider that both strings and permissions are significant
to classify apps. Whereas strings are a feature commonly used
malware detection on desktop applications, permissions show
for requirements in order to be executed succesfully. On the
other hand, we use features extracted from Android Market
to enhanced detection. Despite these features are inefficient to
avoid malware to be uploaded into market, these features can
prevent installation of malware in the smartphone.

We developed a model to classify each Android Package
File (.apk) in several categories. In particular, we have omitted
arcade games because they they usually have a very large



files with multimedia material (e.g., music, photos and 3D
models.). On the other hand, we have included a category
called “Puzzles and brain games” that classify some games
in which multimedia material is minimal (e.g, quiz-games
or educative games). Table I shows in further detail the list
of categories. To build the model, we have collected 820
applications, that have been classified in 7 categories. Each
category has a different number of samples. The number of
the samples within each category is shown in Table II.

Features extraction method

In this section, we describe the process we followed to
obtain data from both the Android Market and the file. The
general steps we have followed for each application are:

1) We extract the permissions and the resources from the
application.

2) We disassemble the sample.
3) We extract the strings from the disassembled sample.
4) We obtain data from the Android Market.
5) We build an ARFF [10] file with the extracted data.
First, we decompress the .apk file to retrieve the content.

During the first three steps we retrieve the information from
this source. We process the Android Manifest file to extract
these data (a snippet of the structure of the AndroidManifest
file is shown in Listing 1).

We use the Android Asset Packaging Tool (aapt) tool to
extract the information from the file. This tool, provided by
Android SDK, decrypts the file. Thereafter, we dump the result
and process it. From all the information available, we only use
the following features:

• “uses-permission”: All the permissions that the applica-
tion needs to work are defined under this tag.

• “uses-feature”: This tag shows which are the features of
the device the application uses.

We have removed the rest of the information that the
AndroidManifest file stores because of its dependency on
specific devices.

Listing 1. AndroidManifest.xml example.
<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>
<m a n i f e s t>

<uses−p e r m i s s i o n />
<p e r m i s s i o n />
<p e r m i s s i o n− t r e e />
<uses−sdk />
. . . .

< / m a n i f e s t>

Subsequently, we decompile the file, using the dedexer
decompiler4. This tool reads DEX format files (i.e., binary
format of Android applications) and turns them into Java’s
bytecode. This tool generates a directory structure with the
classes that has identified. To extract every string, we search
the operational code “const-string”, that identifies the strings
of the application.

4http://dedexer.sourceforge.net/

We process the strings using Term Frequency (TF) and
Inverse Document Frecuency (IDF) [11]. TF is a weight widely
used in information retrieval and text mining that measures
how important each word is to a document in a collection of
documents, and it is compensated by the frequency of the word
in the collection, which is IDF. The importance of each word
increases proportionally to the number of times that appears
in the document but is compensated by the frequency of the
word in the collection.

To extract the information from the market, we used an
open-source non-official API, called android-market-api5. We
gather the following features from the market:

• Number of ratings the application has obtained.
• Size of applications installed. Developers provide this

value.
• Rating that users give to the application.

III. MACHINE LEARNING CLASSIFIERS

Machine-learning is an active research area within Artificial
Intelligence (AI) that focuses on the design and development
of new algorithms that allow computers to reason and decide
based on data [12].

Machine-learning algorithms can commonly be divided into
three different types depending on the training data: supervised
learning, unsupervised learning and semi-supervised learning.
For supervised algorithms, the training dataset must be labelled
(e.g., the category of an application) [13]. Unsupervised learn-
ing algorithms try to determine how data are organised into
different groups named clusters. Therefore, data do not need
to be labelled [14]. Finally, semi-supervised machine-learning
algorithms use a mixture of both labelled and unlabelled data
in order to build models, improving the accuracy of solely
unsupervised methods [15].

Because android applications can be properly labelled, we
use supervised machine-learning; however, in the future, we
would also like to test unsupervised methods for automatic
categorisation of applications.

A. Bayesian Networks

Bayesian Networks [16], which are based on the Bayes
Theorem, are defined as graphical probabilistic models for
multivariate analysis. Specifically, they are directed acyclic
graphs that have an associated probability distribution function
[17]. Nodes within the directed graph represent problem
variables (they can be either a premise or a conclusion) and
the edges represent conditional dependencies between such
variables. Moreover, the probability function illustrates the
strength of these relationships in the graph [17].

The most important capability of Bayesian Networks is their
ability to determine the probability that a certain hypothesis is
true (e.g., the probability of an application to be of a certain
category) given a historical dataset.

5http://code.google.com/p/android-market-api/



B. Decision Trees

Decision Tree classifiers are a type of machine-learning
classifiers that are graphically represented as trees. Internal
nodes represent conditions regarding the variables of a prob-
lem, whereas final nodes or leaves represent the ultimate
decision of the algorithm [18].

Different training methods are typically used for learning the
graph structure of these models from a labelled dataset. We
use Random Forest, an ensemble (i.e., combination of weak
classifiers) of different randomly-built decision trees [19], and
J48, the WEKA [20] implementation of the C4.5 algorithm
[21].

C. K-Nearest Neighbour

The K-Nearest Neighbour (KNN) [22] classifier is one of
the simplest supervised machine learning models. This method
classifies an unknown specimen based on the class of the
instances closest to it in the training space by measuring
the distance between the training instances and the unknown
instance.

Even though several methods to choose the class of the
unknown sample exist, the most common technique is to
simply classify the unknown instance as the most common
class amongst the K-nearest neighbours.

D. Support Vector Machines (SVM)

SVM algorithms divide the n-dimensional space represen-
tation of the data into two regions using a hyperplane. This
hyperplane always maximises the margin between those two
regions or classes. The margin is defined by the farthest dis-
tance between the examples of the two classes and computed
based on the distance between the closest instances of both
classes, which are called supporting vectors [23].

Instead of using linear hyperplanes, it is common to use
the so-called kernel functions. These kernel functions lead to
non-linear classification surfaces, such as polynomial, radial
or sigmoid surfaces [24].

IV. EMPIRICAL VALIDATION

To validate our method for automatic categorisation of
applications, we used the previously described dataset. We
extracted the different features of the instances and then
performed a feature selection step using Information Gain (IG)
[9]. We discarded any feature with an IG value of 0. In this
way, we compose the final dataset with the reduced number
of features.

To evaluate the performance of machine-learning classifiers,
k-fold cross validation is usually used [12]. This technique
assesses how the results of the predictive models will gener-
alise to an independent data set. It involves partitioning the
sample of data into subsets, performing the training step with
one subset (called the training set) and validating with the
remaining dataset (called the test set). To reduce the variability,
cross validation performs multiple iterations with different
partitions, which are defined with the parameter k. The results
of each round are averaged to estimate the global measures of

Fig. 1. The results in terms of AUC.

the tested model. Thereby, for each classifier we tested, we
performed a k-fold cross validation [25] with k = 10. In this
way, our dataset was split 10 times into 10 different sets for
learning (90% of the total dataset) and testing (10% of the
total data).

For each validation step, we conducted the learning phase of
each algorithm with each training dataset, applying different
parameters or learning algorithms depending on the concrete
classifier. The algorithms used the default parameters in the
well-known machine-learning tool WEKA [20]. Specifically,
we used the following four models:

• Decision Trees (DT): We used Random Forest [19] and
J48 (Weka’s C4.5 [21] implementation).

• K-Nearest Neighbour (KNN): We performed experiments
for k = 1, k = 2 and k = 5 to train KNN.

• Bayesian networks (BN): We used several structural
learning algorithms; K2 [26], Hill Climber [27] and
Tree Augmented Naı̈ve (TAN) [28]. We also performed
experiments with a Naı̈ve Bayes classifier [29].

• Support Vector Machines (SVM): We used a Sequential
Minimal Optimization (SMO) algorithm [30] and per-
formed experiments with a polynomial kernel [24] and
a normalised polynomial kernel [24].

To evaluate each classifier’s capability, we measured the
Area Under the ROC Curve (AUC), which establishes the
relation between false negatives and false positives [31]. The
ROC (Receiver Operator Characteristics) curve is obtained by
plotting the TPR against the FPR.

Figure 1 shows the obtained results for the different classi-
fiers. Specifically, Bayes TAN was the best classifier obtaining
an Area Under the ROC Curve of 0.93. Random Forest was
the second best classifier with an AUC of 0.9. The worst
classifier was the Decision Tree trained with the J48, which
only obtained a 0.64 of AUC.

V. DISCUSSION AND CONCLUSIONS

In this conference we propose a method for classifying
Android applications using machine-learning techniques. To



generate the models, we extract several features from several
applications: (i) data from “AndroidManifest.xml”, where all
the permissions and features that an application needs to
work are defined; (ii) data from Android Market, where users
evaluate and comment the applications and (iii) the strings
contained in applications.

In order to validate our method, we have collected 820
samples of Android applications classified into 7 different
categories. Then, we have extracted the aforementioned fea-
tures for each application and we have trained the models
which have been evaluated using the Area Under ROC Curve
(AUC). We have obtained a 0.93 of AUC using the Bayesian
TAN classifier. Nevertheless, there are several considerations
regarding the viability of our approach.

First, a better classification of the applications used for
training should be done. Despite we use the category provided
in the Android Market, there may be applications that belong
to multiple categories. Applications are categorised according
to the developers’ criterion, that sometimes prefer categories
that have more visibility (e.g, “tools” category rather than
“communication”).

Second, although Market features enhance the results, they
introduce a processing overhead that may be avoidable using
other features available within the .apk file. This may allow
us to improve the performance overhead of our approach.

Finally, there are other features from the applications that
could be used to improve the detection ratio. Forensic experts
are developing reverse engineering tools over Android appli-
cations, from which researchers could retrieve new features to
enhance the data used to train the models.

As future work, despite our dataset is composed of benign
software, similar methods using machine-learning techniques
trained with extracted features from the binary have been
successfully applied on PC environments [1], [4]. Therefore,
we will train models with both goodware and malware samples
as soon as we obtain enough samples of malicious software.
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