PUMA: Permission Usage to detect Malware in
Android

Borja Sanz', Igor Santos', Carlos Laorden!, Xabigr Ugarte-Pedrero!,
Pablo Garcia Bringas!, and Gonzalo Alvarez?

1S3Lab, University of Deusto
Avenida de las Universidades 24, 48007 Bilbao, Spain
{borja. sanz, isantos, claorden, xabier.ugarte,
pablo.garcia.bringas}@deusto.es

Instituto de Fisica Aplicada, Consejo Superior de Investigaciones Cientificas (CSIC)
Madrid, Spain

gonzalo@iec.csic.es

Abstract. The presence of mobile devices has increased in our lives of-
fering almost the same functionality as a personal computer. Android
devices have appeared lately and, since then, the number of applications
available for this operating system has increased exponentially. Google al-
ready has its Android Market where applications are offered and, as hap-
pens with every popular media, is prone to misuse. In fact, malware writ-
ers insert malicious applications into this market, but also among other
alternative markets. Therefore, in this paper, we present PUMA, a new
method for detecting malicious Android applications through machine-
learning techniques by analysing the extracted permissions from the ap-
plication itself.

Keywords: malware detection, machine learning, Android, mobile mal-
ware

1 Introduction

Smartphones are becoming increasingly popular. Nowadays, these small com-
puters accompany us everywhere, allowing us to check the email, to browse the
Internet or to play games with our friends. It is necessary a need to install ap-
plications on your smartphone in order to take advantage of all the possibilities
that these devices offer.

In the last decade, users of these devices have experienced problems when in-
stalling mobile applications. There was not a centralized place where users could
obtain applications, and they had to browse the Internet searching for them.
When they found the application they wanted to install, the problems began. In
order to protect the device and avoid piracy, several operating systems, such as
Symbian, employed an authentication system based on certificates that caused
several inconveniences for the users (e.g., they could not install applications
despite having bought them).

Nowadays there are new methods to distribute applications. Thanks to the
deployment of Internet connections in mobile devices, users can install any ap-
plication without even connecting the mobile device to the computer. Apple’s
AppStore was the first store to implement this new model and was very success-
ful, but other manufacturers such as Google, RIM and Microsoft have followed
the same business model developing application stores accessible from the de-
vice. Users only need now an account for an application store in order to buy
and install new applications.

These factors have drawn developers’ attention to these platforms. According
to Apple!, the number of available applications on the App Store is over 350,000,
whilst Android Market? has over 200,000 applications.

In the same way, malicious software has arrived to both platforms. There are
several applications whose behaviour is, at least, suspicious of trying to harm
the users. There are other applications that are definitively malware.

The platforms have used different approaches to protect against this type of
software. According to their response to the US Federal Communication Com-
mission’s July 20093, Apple applies a rigorous review process made by at least
two reviewers. In contrast, Android relies on its security permission system and
on the user’s sound judgement. Unfortunately, users have usually no security
consciousness and they do not read required permissions before installing an
application.

Although both AppStore and Android Market include clauses in the terms
of services that urge developers not to submit malicious software, both have
hosted malware in their stores. To solve this problem, they have developed tools
for removing remotely these malicious applications. Both models are insufficient
to ensure user’s safety and new models should have been included in order to
improve the security of the devices.

Machine learning techniques have been widely applied for classifying appli-
cations which are mainly focused on generic malware detection [1-5]. Besides,
several approaches [6,7] have been proposed to classify applications specifying
the malware class; e.g., trojan, worms, virus; and, even the malware family.

With regards to Android, the number of malware samples is increasing expo-
nentially and several approaches have been proposed to detect them. Shabtai et
al. [8] trained machine learning models using as features the count of elements,
attributes or namespaces of the parsed Android Package File (.apk). To evaluate
their models, they selected features using three selection methods: Information
Gain, Fisher Score and Chi-Square. They obtained 89% of accuracy classifying
applications into only 2 categories: tools or games.

There are other researches that use a dynamic analysis to detect malicious
applications. Crowdroid [9] is an earlier approach that analyse the behaviour

! http://www.apple.com/iphone/features/app-store.html

2 http://googleblog.blogspot.com/2011/05/android-momentum-mobile-and-
more-at.html

3 http://online.wsj.com/public/resources/documents/
wsj-2009-0731-FCCApple . pdf

of the applications. Blasing et al. [10] created AASandbox, which is an hybrid
approximation. Dynamic part is based on the analysis of the logs for the low-
level interactions obtained during execution. Shabtai et al. [11] also proposed a
Host-Based Intrusion Detection System (HIDS) which uses a machine learning
methods that determines if the application is malware or not.

On the other hand, Google has deployed a supervision framework, called
“Bouncer”, which analyses the applications before being published. Oberheide
and Miller [12] has revealed some features of this system. For example, the
systems is based in QEMU and make both static and dynamic analysis.

Given this background, we present PUMA, a new method for detecting mali-
cious Android applications employing the permission usage of the each applica-
tion. Using these features, we train a machine-learning models to detect whether
an applications is malware or not. Summarising, our main findings in this paper
are: (i) we describe the process of extracting features from the Android .apk files,
(ii) we propose a new representation for Android applications in order to develop
a malware detection approach, and (iii) we perform an empirical validation of
our approach and show that it can achieve high accuracy rates. The reminder of
this paper is organised as follows. Section 2 details the generation of the dataset.
Section 3 presents the permissions used in our approach. Section 4 describes the
empirical evaluation of our method. Finally, section 5 discusses the results and
shows the avenues of further work.

2 Description of the dataset

2.1 Benign software

To conform this dataset, we gathered a collection of 1811 Android applications
of different types. In order to classify them properly, we chose to follow the
same naming as the official Android market. To this end, we used an unofficial
Android Market API* to connect with the Android market and, therefore, obtain
the classification of the applications.

We selected the number of applications within each category according to
their proportions in the Android Market. There are several application types in
Android: native applications (developed with the Android SDK), web applica-
tions (developed mostly with HTML, JavaScript ad CSS) and widgets (simple
applications for the Android desktop, which are developed in a similar way to
web applications). To generate the dataset, we did not make distinctions be-
tween these types and every of them is represented in the final dataset. Once
we determined the number of samples for each category, we randomly selected
the applications. The number of samples obtained for each category is shown in
Table 1.

4 http://code.google.com/p/android-market-api/

Table 1. Number of benign software applications.

Category Number Category Number
Action and Arcade 33 Libraries and Demos 2
Races 3 Books and References 9
Casual 11 Medicine 2
Comics 1 Multimedia and Video 25
Shopping 3 Music and Audio 13
Communications 21 Business 2
Sports 4 News and Magazines 7
Education 1 Personalization 6
Companies 5 Productivity 30
Entertainment 16 Puzzles 16
Way of life 5 Health and Fitness 3
Accounting 2 Society 28
Photography 6 Weather 2
Tools 86 Transportation 2
Casino and card games 4 Sports and guides 9

Total: 357

2.2 Malicious software

Malware samples were gathered by means of VirusTotal® which is an analysis
tool for suspect files, developed by Hispasec Sistemas®, a company devoted to
security and information technologies. We have used their service called Virus-
Total Malware Intelligence Services, available for researchers to perform queries
to their database.

Using this tool, we gathered a total number of 4,301 samples. However, we
performed a duplication removal step, where we deleted from the dataset the
duplicates samples. Finally, we used a total number of 249, which according to
Lookout” represents the 54% of the total malware samples.

3 Permissions of Android Applications

We performed an study of the different permissions of the applications in or-
der to determine their suitability for malware detection. These permissions are
evaluated when installing the app, and must be approved by the user. We used
the Android Asset Packaging Tool (aapt) to extract and decrypt the data from
the AndroidManifest.xml file, provided by the Android SDK. Thereafter, we
dumped the result and processed it. From all the information available, we only

® http://www.virustotal.com

5 http://www.hispasec.com/

" https://www.mylookout . com/_downloads/lookout-mobile-threat-report-2011.
pdf

used the following features: (i) “uses-permission”, every permission that the ap-
plication needs to work is defined under this tag; and (ii) “uses-feature”, which
shows which are the features of the device the application uses.

We have removed the rest of the information that the AndroidManifest file
(shown in Figure 1) stores because of its dependency on specific devices.

<manifest>
<uses-permission />
<permission />
<permission-tree />
<uses-sdk />

</manifest>

Fig. 1. Example of AndroidManifest file.

Fig. 2 suggests that the most frequent permissions in both categories are the
same. Besides, it seems that there are not visible differences in the permissions
used in malware with respect to the ones used in benign applications, at least,
when we studyied separately. In other words, malicious applications do not need
different permissions than benign ones. This may indicate that the granular-
ity of the permissions system is not accurate enough to distinguish malicious
intentions.

On the other hand, we conducted a study regarding the number of permis-
sions of each application (shown in Fig. 3). The number of permissions required
for both malicious and benign applications is also nearly the same. However, we
noticed several differences in both classes: the chance of finding malware appli-
cations requiring only one permission is high while benign applications usually
present 2 or 3 permissions. This fact suggests that only one permission is needed
to behave maliciously on Android device.

4 Empirical Validation

To validate PUMA, we have employed supervised machine learning methods
to classify Android applications into malware and benign software. To this ex-
tent, we have used Waikato Environment for Knowledge Analysis (WEKA)3. In
particular, we have used the classifiers specified in Table 2. To evaluate the per-
formance of machine-learning classifiers, k-fold cross validation is usually used
[13]. Thereby, for each classifier we tested, we performed a k-fold cross validation
[14] with k& = 10. In this way, our dataset was split 10 times into 10 different
sets for learning (90% of the total dataset) and testing (10% of the total data).

8 http://www.cs.waikato.ac.nz/ml/weka/

Number of Samples
50 150 200 250

o

INTERNET
SEND_SMS
RECEIVE_SMS
READ_SMS
RECEIVE_BOOT_COMPLETED
WRITE_SMS
VIBRATE
ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION
READ_HISTORY_BOOKMARKS
CHANGE_WIFI_STATE
WRITE_APN_SETTINGS
CAMERA
INSTALL_SHORTCUT
WRITE_CALENDAR
WRITE_HISTORY_BOOKMARKS
CHANGE_NETWORK_STATE
MOUNT_UNMOUNT_FILESYSTEMS
DISABLE_KEYGUARD
CHANGE_CONFIGURATION
SET_WALLPAPER
CONTROL_LOCATION_UPDATES
READ_FRAME_BUFFER
DEVICE_POWER
RECORD_AUDIO
UNINSTALL_SHORTCUT
BLUETOOTH
ADD_SYSTEM_SERVICE
WRITE_OWNER_DATA
PERMISSION_NAME
ACCESS_LOCATION
ACCESS_CACHE_FILESYSTEM
ACCESS_DOWNLOAD_MANAGER
INJECT_EVENTS
ACCESS_LOCATION_EXTRA_COMMANDS
CHECK_LICENSE
INSTALL_DRM
READ_SYNC_SETTINGS
BILLING
WRITE_GMAIL
SET_PREFERRED_APPLICATIONS
BOOT_COMPLETED
BROADCAST_PACKAGE_ADDED
SEND_DOWNLOAD_COMPLETED_INTENTS
REORDER_TASKS
BROADCAST_SMS
WRITE_SECURE
mail
READ_ATTACHMENT
WRITE_INTERNAL_STORAGE
DUMP
CLEAR_APP_CACHE
GLOBAL_SEARCH_CONTROL
ACCESS_ALL_DOWNLOADS
READ_EXTERNAL_STORAGE

W Benign

u Malware

m"__________'______,,,,,,,.,....,,..mmrrmHHHHHFHHHI"” m

b

Fig. 2. Extracted permissions for the applications conforming the dataset.

To evaluate each classifier’s capability, we measured the True Positive Ratio
(TPR):

160

140

120

-
o
o

©Benign #-Malware

Number of applications
©
o

N
_%

N
o

4
o
BL&LAD.

_NFFIPOODLAOLAD L b s s s LS A AR

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
Number of permissions

o

Fig. 3. Number of permissions of benign and malware apps.

Table 2. Machine learning classifiers to used in the experiment.

Algorithm Used configuration
SimpleLogistic
NaiveBayes
BayesNet K2 and TAN
SMO PolyKernel y NormalizedPolyKernel
IBK Valores de K: 1, 3 and 5
J48
RandomTree

RandomForest Valor de I: 10, 50 and 100

TP

~ TP+FN M)
where T'P is the number of malware cases correctly classified (true positives) and
FN is the number of malware cases misclassified as legitimate software (false

TPR

negatives).
We also measured the False Positive Ratio (FPR):
FP
FPR= —— 2
FP+TN 2)

where F'P is the number of benign software cases incorrectly detected as malware
and TN is the number of legitimate executables correctly classified.

Furthermore, we measured the accuracy, i.e., the total number of the classi-
fier’s hits divided by the number of instances in the whole dataset:

TP+ TN
TP+FP+TP+TN

Accuracy = (TP +TN) - (3)

Besides, we measured the Area Under the ROC Curve (AUC) which estab-
lishes the relation between false negatives and false positives [15]. The ROC
curve is obtained by plotting the TPR against the FPR.

Table 3. Android malware detection results for the different classifiers.

Algorithm TPR FPR AUC Accuracy
SimpleLogistic 0.91 0.23 0.89 84.08%

NaiveBayes 0.50 0.15 0.78 67.64%
BayesNet K2 0.45 0.11 0.77 67.07%
BayesNet TAN 0.53 0.16 0.79 68.51%
SMO Poly 0.91 0.26 0.83 82.84%
SMO NPoly 0.91 0.19 0.86 85.77%
IBK 1 0.92 0.21 0.90 85.55%
IBK 3 0.90 0.22 0.89 83.96%
IBK 5 0.87 0.24 0.88 81.91%
IBK 10 0.85 0.27 0.87 78.94%
J48 0.87 0.25 0.86 81.32%
RandomTree 0.90 0.23 0.85 83.32%

RandomForest 10 0.92 0.21 0.92 85.82%
RandomForest 50 0.91 0.19 0.92 86.41%
RandomForest 100 0.91 0.19 0.92 86.37%

Table 3 shows the obtained results. With the exception of the Bayesian-based
classifiers, the methods achieved accuracy rates higher than 80%. In particular,
the best classifier, in terms of accuracy, was Random Forest trained with 50 trees
with a 86.41%. Regarding the TPR results, Random Forest trained with 10 trees
was the best classifier with a 0.92. The lowest FPR was obtained with Bayesian
networks trained with Tree Augmented Naive, however, its TPR results are lower
than 55%. In terms of AUC, Random Forest was the best classifier with a 0.92.

5 Discussion and Conclusions

Permissions are the most recognisable security feature in Android. User must
accept them in order to install the application. In this paper we evaluate the
capacity of permissions to detect malware using machine-learning techniques.

In order to validate our method, we collected 239 malware samples of An-
droid applications. Then, we extracted the aforementioned features for each ap-
plication and trained the models, evaluating each configuration using the Area
Under ROC Curve (AUC). We obtained a 0.92 of AUC using the Random Forest
classifier.

Nevertheless, there are several considerations regarding the viability of our
approach. Forensic experts are developing reverse engineering tools over Android

applications, from which researchers could retrieve new features to enhance the
data used to train the models. Furthermore, despite the high detection rate, the
obtained result has an high false positive rate. Consequently, this method can
be used as a first step before other more extensive analysis, such as a dynamic
analysis.

Future work of this Android malware detection tool is oriented in two main
directions. First, there are other features from the applications that could be
used to improve the detection ratio that do not require to execute the sample.
Forensics tools for Android applications should be developed in order to obtain
new features. Second, dynamic analysis provides additional information that
could improve malware detection systems. Unfortunately, smartphones resources
are limited and these kind of analysis usually consumes resources that these
devices don’t have.

References

1. Schultz, M., Eskin, E., Zadok, F., Stolfo, S.: Data mining methods for detection
of new malicious executables. In: Proceedings of the 2001 IEEE Symposium on
Security and Privacy. (2001) 38-49

2. Devesa, J., Santos, 1., Cantero, X., Penya, Y.K., Bringas, P.G.: Automatic
Behaviour-based Analysis and Classification System for Malware Detection. In:
Proceedings of the 12" International Conference on Enterprise Information Sys-
tems (ICEIS). (2010) 395-399.

3. Santos, I., Nieves, J., Bringas, P.G.: Semi-supervised learning for unknown malware
detection. In: Proceedings of the 4" International Symposium on Distributed
Computing and Artificial Intelligence (DCAI). 9th International Conference on
Practical Applications of Agents and Multi-Agent Systems (PAAMS). (2011) 415—
422

4. Santos, 1., Laorden, C., Bringas, P.G.: Collective classification for unknown mal-
ware detection. In: Proceedings of the 6" International Conference on Security
and Cryptography (SECRYPT). (2011) 251-256

5. Santos, 1., Brezo, F., Ugarte-Pedrero, X., Bringas, P.G.: Opcode sequences as
representation of executables for data-mining-based unknown malware detection.
Information Sciences ?(?) ?—? doi:10.1016/j.ins.2011.08.020, in press.

6. Rieck, K., Holz, T., Willems, C., Diissel, P., Laskov, P.: Learning and classification
of malware behavior. In: Proceedings of the 2008 Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA), Springer (2008)
108-125

7. Tian, R., Batten, L., Islam, R., Versteeg, S.: An automated classification system
based on the strings of trojan and virus families. In: Malicious and Unwanted
Software (MALWARE), 2009 4th International Conference on, IEEE (2009) 23-30

8. Shabtai, A., Fledel, Y., Elovici, Y.: Automated Static Code Analysis for Classifying
Android Applications Using Machine Learning. 2010 International Conference on
Computational Intelligence and Security (December 2010) 329-333

9. Burguera, 1., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based mal-
ware detection system for android. In: Proceedings of the 1st ACM workshop on
Security and privacy in smartphones and mobile devices, ACM (2011) 15-26

10.

11.
12.

13.
14.

15.

Blasing, T., Batyuk, L., Schmidt, A., Camtepe, S., Albayrak, S.: An android
application sandbox system for suspicious software detection. In: Malicious and
Unwanted Software (MALWARE), 2010 5th International Conference on, IEEE
(2010) 55-62

Shabtai, A., Elovici, Y.: Applying behavioral detection on android-based devices.
Mobile Wireless Middleware, Operating Systems, and Applications (2010) 235-249
Oberheide, J., Miller, J.: Dissecting the android bouncer (2012)

Bishop, C.: Pattern recognition and machine learning. Springer New York. (2006)
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: International Joint Conference on Artificial Intelligence.
Volume 14. (1995) 1137-1145

Singh, Y., Kaur, A., Malhotra, R.: Comparative analysis of regression and machine
learning methods for predicting fault proneness models. International Journal of
Computer Applications in Technology 35(2) (2009) 183-193

