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Abstract—Malware writers usually employ several techniques
to evade detection. For the last years, the number of variants
detected each day has increased significantly. Traditional ap-
proaches such as signature scanning, one of the most common
techniques employed by anti-virus companies, are becoming inef-
ficient for the high amount of samples found in the wild. In order
to bypass this kind of filters, malware writers usually obfuscate
and transform the code of their creations. One of the methods
employed is executable packing, which consists in compressing
or ciphering the real malicious code, and injecting a decryption
routine into the executable that will load and decompress it
at run-time. Entropy is a common heuristic for the detection
of packed executables. High entropy values indicate a random
distribution of the bytes that compose the executable, a property
very common in compressed and ciphered data. Unfortunately,
this entropy measure can be altered by different techniques that
modify randomness. In this paper, we detail various attacks found
on real Zeus family samples, one of the most powerful and
spread malware families at this moment, which are protected
by custom made packers. In addition, we describe a method for
obtaining an alternative entropy measure more resilient to these
techniques, and evaluate it for the classification of packed/not-
packed executables, obtaining satisfactory detection and false
positive rates.

I. INTRODUCTION

Malicious software (or malware) is explicitly designed to
harm computers. In the past, malware authors pursued fame
and self-pride: a unique malware sample infected thousands
or millions of computers. As opposite, today, thousands of
malware samples are released everyday, and each of them
infects few computers. According to PandaLabs1, 73,000 new
malware samples where found each day during the first
quarter of 2011. The reason behind this fact is that malware
authors’ intentions have changed. For the last years, money is
their main motivation. There are complex and well-organised
networks of criminals that employ malicious software to obtain
profits illicitly. The success of this new malware depends on
its ability to bypass anti-virus tools and to stay undetected for
enough time.

One common technique to bypass anti-virus solutions is
packing. Packed executables store their malicious code as
ciphered or compressed data with the aim of hiding it and

1PandaLabs Quarterly Reports: Q1 2011. Available online:
http://pandalabs.pandasecurity.com/pandalabs-quarterly-report-q1-2011/

evading signature scanning. The executables contain routines
that load the original code at run-time and then execute it. A
report elaborated by McAfee2 claims that up to an 80 % of
the malware analysed is packed.

Traditional techniques, such as signature scanning have also
been applied to the detection of packed executables. Searching
for certain byte sequences can be specially effective for well
known tools such as UPX. PEiD3 is an application used
extensively, which is able to detect a wide range of packers.
As well, Faster Universal Unpacker (FUU) [1] identifies the
packer and then applies specific unpacking routines.

Unfortunately, the use of signatures, as for malware detec-
tion, are not effective with unknown or custom made packers.
In fact, some malware families such as Zeus use multiple-layer
packing techniques: the first layer of protection is performed
by a custom packer, and a second layer is provided by a well-
known packer [2]. What is more, according to Morgenstern
and Pilz [3], the 35 % of malware is packed by a custom
packer.

Static unpacking approaches analyse the executable without
executing it. This technique is more efficient, but the quantity
of data it can gather is limited due to the difficulty of some
problems involved (e.g., machine code disassembly [4]). In
contrast, dynamic unpacking approaches execute binaries in
isolated environments (e.g. virtual machines or emulators) [5],
to obtain the execution trace and observe their behaviour.

One typical technique commonly used by dynamic unpack-
ers (e.g., Universal PE Unpacker [6] and OllyBonE [7]) is
using heuristics. Nevertheless, since all the packers work in
very different manners, these heuristics are not applicable to
all of them. As opposite, other dynamic approaches are not so
highly heuristic-dependent (e.g., PolyUnpack [8], Renovo [9],
OmniUnpack [10] and Eureka [11]). Notwithstanding, these
methods can be resource-consuming, and present limitations
such as conditional execution of unpacking routines, a tech-
nique used for anti-debugging defense [12], [13], [14].

Besides, other approaches apply static techniques to detect
whether a file is packed or not. PE-Probe [15], classifies files

2McAfee Whitepaper: The Good, the Bad, and the Unknown. 2011.
Available online: http://www.mcafee.com/us/resources/white-papers/wp-good-
bad-unknown.pdf
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into packed and not-packed executables to extract different
features for malware detection in each case. Perdisci et al. [16]
proposed a method for the classification of packed executables
based on heuristics commonly used by malware analysts,
such as the number of standard sections, section permissions
or entropy, as a previous step to the actual unpacking pro-
cess. Similarly, we previously proposed several classification
models for packed executable filtering based on anomaly
detection and semi-supervised machine-learning techniques
[17], [18], [19]. Compressed or ciphered data presents a
higher randomness. For this reason, file entropy is a heuristic
very extended and it constitutes one of the first measures
checked in malware analysis to determine if an executable is
packed [20]. As an alternative, Sun proposed a novel method
for randomness analysis, generating randomness profiles to
identify the packers employed to protect files [21].

In consideration of this background, we describe some of
the attacks found on malware samples from the Zeus family,
one of the most spread malware families at this moment [2],
and propose a new method for detecting packed executable
files. To this end, we apply an static method based on entropy
analysis and byte histograms to generate alternative random-
ness profiles that allow an automatic analyser to ignore some
of the attacks described. This method improves significantly
the detection rates achieved by a simple file entropy analysis.

Summarising, our main contributions are: (i) we thoroughly
describe the attacks to entropy analysis found in malware
samples from the Zeus family, (ii) we propose a new method
for measuring executable randomness that combines entropy
analysis and byte histograms, (iii) we provide a method for
measuring a randomness value for each executable and estab-
lish empirically a threshold to classify samples in 2 groups
(packed and not-packed) by means of genetic algorithms, and
finally, (iv) we measure the ability of our method to classify
executable samples.

The remainder of this paper is organised as follows. Section
II describes the attacks found on some Zeus family malware
samples. Section III details the method designed. Section
IV describes the experiments and presents results. Section
V discusses the obtained results and their implications, and
outlines the avenues for future work.

II. ATTACK DESCRIPTION

Zeus or ZBot is one of the most notorious and wide-spread
trojans nowadays [2]. The anti-malware industry has a deep
experience identifying and detecting it, but new samples are
discovered everyday by analysts. In order to evade detec-
tion, these tools employ different techniques to avoid the
traditional tests performed by anti-malware solutions. In our
study, we found samples that implement different attacks to
trick entropy analysis. Entropy is one of the most common
checks malware analysts do to decide whether some code is
packed or not. For a random variable X with n outcomes,
{xi : i = 1, . . . , n} the Shannon entropy H(X) is calculated
as H(X) = −

∑n
i=1 p(xi) logb p(xi) where p(xi) is the

probability mass function of outcome xi and b is the number

of different symbols of the “ideal alphabet” used to measure
source alphabets. The source alphabet used for measuring
entropy is the set of 256 possible values that can be represented
in a byte. According to information theory, 2 symbols are
necessary and sufficient to encode data. Therefore, the entropy
of the source alphabet, which represents the maximum possible
randomness, is the number of symbols in the “ideal alphabet”
needed to encode a symbol in the source alphabet: 8.

Many tools, (e.g., PEiD4), measure the entropy of the whole
file and the sections of the executable in a coarse-grained style.
One simple way to evade this detection technique is to append
repeated bytes at the end of each section to modify the byte
distribution and, thus, make the entropy lower.

Real malware samples employ even more sophisticated
attacks. The techniques detailed below were found on Zeus
malware family samples by reverse engineering and visual
observation of byte histograms and randomness profiles in our
self-developed entropy analysis tool.

1) Random byte insertion
This technique consists in the strategic insertion of bytes
in the executable file. The bytes inserted are randomly
selected from a reduced set of bytes, in such a way
that a considerably high number of the bytes in the file
pertain to that group. In this way, although some parts
of the executable may be compressed or cyphered, if
we measure the entropy of the file in a coarse-grained
style (file entropy or section entropy), the computed
value will be the typical of not-packed executables. More
concretely, one of the samples found in our research
had the half of its bytes (odd positions) artificially set
to a value in the group {00, 20, 40, 60, 80, A0, C0,
E0}. In Figure 1 we can observe the bytes inserted: the
histogram shows that these bytes, represented as light
bars, are much more frequent than the rest.

2) Reduced source alphabet
The second technique found was aimed at reducing
the maximum possible entropy for the file either for
coarse-grained and fine-grained entropy analysis. This
technique consists in using only a subset of the symbols
in the source alphabet, in such a way that the number
of symbols necessary to represent the same information
is higher. Let S be the source alphabet with N = |S|
different possible symbols and R be a subset of the
symbols in S with M = |R| different possible symbols,
such that N > M . If we represent some information
encoded with S with the set of symbols R, we need
logM N symbols to represent the same information. As
N > M ⇒ logM N > 1, the number of symbols
needed to represent each symbol in the source alphabet
is higher (> 1). As we need a higher number of symbols
to represent the same information but we still use the
source alphabet, the number of symbols in the “ideal
alphabet” needed to represent the original information
is higher. Therefore, if the entropy is computed for the

4PEiD. Available online: http://www.peid.info/



Fig. 1. Byte histogram of the analysed sample. The light bars represent the bytes inserted in the attack 1, while the dark bars from 0 to 31 represent the
reduced set of bytes used for encoding the data, according to attack 2.

Fig. 2. Entropy profile of the analysed sample, that represents the randomness of the file in a fine-grained style.

complete source alphabet, the resulting value will be
inferior (a more typical value in not-packed executables).
In the histogram shown in Figure 1 we can see the dark
bars (bytes from 00 to 30) representing the subset R of
symbols (bytes) employed to represent the compressed
or cyphered data.

III. METHOD DESCRIPTION

Our approach is focused on making entropy analysis resilient
to the attacks described in Section II. To this end, we propose
a new method for the calculation of binary randomness based
on entropy profiles and fine-grained analysis. In addition,
we combine the information provided by byte histograms to
ignore byte insertion attacks.

A. Entropy profiles and entropy surface

Coarse-grained entropy analysis (file or section entropy) can
provide a general overview of the entropy of a file, but as we
have seen, in some cases it can bring to wrong conclusions
about the real contents of the file. To face this limitation,
we propose a method for calculating entropy profiles and for
measuring the Entropy Surface in such a way that the value
obtained is more resilient to these attacks.

1) File division. The strategy adopted to measure entropy
divides the file in overlapping regions. Each region is
defined by its size s in bytes and the offset o of its first
byte with respect to the first byte of the previous region.
By setting an offset o = s/2 it is possible to cover the
executable with overlapping regions.

2) Entropy. Once the executable is divided into regions, we
calculate the entropy of each region independently, ob-
taining an entropy profile that provides us with a visual

representation (shown in Figure 2) of the randomness of
each part of the executable.

3) Entropy Surface Over a Threshold (ESOT). In order
to decide whether the executable is packed or not, we
have to compute a value from the obtained profile. This
value, compared to a surface threshold (Ts), allows us to
classify a file into 2 categories: packed or not-packed. To
this end, we calculate the ESOT, defined as ESOT =∑n

i=0 A(Ri), where n is the number of regions, Ri is
the ith region of the file and

A(x) =

{
0 if H(x) ≤ Te

H(x)− Te if H(x) > Te

where Te is the entropy threshold selected. In this
manner, it is necessary to stablish 2 thresholds: Te

defines a line which divides the profile into 2 regions,
and Ts is compared against the ESOT value calculated,
which is equivalent to the area of the upper region.
If ESOT surpasses Ts the executable is considered as
packed. This value, on the opposite to the value obtained
by a coarse-grained analysis (entropy of the whole file),
is affected by highly entropic areas in the executable
that might not influence the final result when simpler
techniques are applied.

B. Byte histogram combination

The histogram of the executable provides the malware analyst
with some hints about the byte distribution of the executable.
Our approach tries to combine this valuable information to
generate a more representative entropy profile, solving the first
attack described in Section II.



To this end, we apply the k-medoids clustering algorithm
to generate 2 clusters of byte frequencies. This algorithm is a
variation of k-means and divides a set of points into k clusters
that, on the contrary to k-means, are centred around points in
the set. The result of this process is shown in the histogram
represented in Figure 1. The light bars represent the bytes
whose frequency is higher, while the dark bars represent the
bytes whose frequency is lower. This technique allows us to
identify the bytes which may be inserted with the aim to reduce
entropy of the executable (attack 1), and discard them when
measuring entropy. In this case, entropy is calculated for a
source alphabet with a lower number of symbols. Nevertheless,
our approach could discard bytes that, for any reason, are more
frequent either in packed or not-packed software not subject
to any entropy attack. To prevent this, we established a size
threshold for the cluster composed of highly frequent bytes. In
this way, if the number of points in the cluster surpasses the
threshold, the bytes belonging to it are not discarded from the
entropy calculation. In Section IV we evaluate the different
thresholds that can be applied.

Anyhow, the maximum value for the entropy of a region
with a reduced source alphabet will be lower than 8 (value
for 256 different symbols). In order to balance the entropy
profiles calculated for binaries with a different number of
bytes discarded, it is necessary to weight the entropy by a
value inversely proportional to the maximum possible entropy
for the reduced alphabet, obtaining values ranging from 0 to
8: H ′(x) = H(x) ∗ logb(N)/ logb(N − |B|), where H(x) is
the calculated entropy, N is the number of symbols in the
source alphabet, and |B| is the number of bytes ignored in
the calculation of H(x). This normalization is necessary to
obtain balanced values for Te and Ts for the different files,
independently of the number of bytes ignored in the entropy
profile calculation process.

IV. EMPIRICAL VALIDATION

To validate our approach, we performed an experiment with
a dataset composed of 1,000 not-packed executables, 1,000
executable files protected with known packers, and 1,000
samples protected with custom packers. Initially, we gath-
ered 1,000 malware executables from VxHeavens and 1,000
goodware executables from a clean installation of Microsoft
Windows XP, and checked the samples with PEiD to assure
that they were not-packed. Afterwards, we selected 1,000 (500
goodware and 500 malware) as not-packed executables, and
packed the other 1,000 with 10 different packers: Armadillo,
ASProtect, FSG, MEW, PackMan, RLPack, SLV, Telock,
Themida and UPX. The other 1,000 executables were Zeus
malware samples packed by custom made packers.

The experiment performed consisted of 2 phases:
1) Byte histogram and entropy profile computation for

each executable sample. Once the byte histogram is ex-
tracted, the k-medoid algorithm is applied. If the cluster
of highly frequent bytes has a number of elements lower
than a certain parameter, the bytes are discarded during
the computation of the entropy profile.

2) Variable parameter computation. Once the entropy
profiles are calculated, 2 parameters (i.e., entropy thresh-
old Te and surface threshold Ts) must be optimised
in order to establish a limit value. When a sample
surpasses that threshold, it can be labelled as packed.
The optimisation process must adjust the parameters to
minimise the samples incorrectly classified.

A. Experiment parameters

The experiment depends on certain parameters that must be
optimised in order to maximise the accuracy of the system
when classifying between packed and not-packed software.
Other parameters must be set to concrete values. Table I
shows the different experimental configurations tested. The
parameter Maximum Bytes to Ignore determines the maximum
size allowed for the cluster of bytes to be ignored. A value of
0 means that no byte will be ignored.

TABLE I
PARAMETERS FOR EACH EXPERIMENTAL CONFIGURATION.

Parameter Fixed/Variable Values
Region size Fixed 128,256,512

Region offset Fixed 64,128,256
Max. bytes to ignore Fixed 0,8,16,24
Entropy threshold Te Variable -
Surface threshold Ts Variable -

For the optimisation of the variable parameters in each
experimental configuration, we employed the AForge5 library
for the .NET Platform. The genetic algorithm employed had
the following configuration: each chromosome is composed
of 2 decimal values (i.e., entropy threshold Te and surface
threshold Ts). The evaluation function that must be maximised,
measures the samples correctly classified (accuracy) for the
specified thresholds. The mutation function sets one of the
two parameters to a random value. The crossover function
swaps the Te parameter of the two chromosomes. The initial
chromosome population is 50, the percentage of new chromo-
somes completely substituted in each generation is 30%. The
mutation rate is 10% and the crossover rate is 75%. Finally, the
chromosome selection rule is Roulette Wheel, which randomly
selects the remaining chromosomes, weighing up those that
return a higher evaluation result (classification accuracy).

B. Results

To compare our method, we measured the file entropy in a
coarse-grained style, and established a threshold to classify
samples into packed or not-packed software. To this end, we
employed the C4.5 algorithm and configured it to generate
only two branches to divide the space of executables into
two categories. The entropy limit calculated by the algorithm
was 6.608 and the accuracy obtained in the classification was
0.861.

The results obtained (shown in Table II) measure the
performance of our approach in terms of False Positive Rate
(FPR), False Negative Rate (FNR), and Accuracy, defined

5Available online: http://www.aforgenet.com/



as Acc = TP + TN/Total, where TP is the number of
files correctly classified as packed, TN is the number of
files correctly classified as not packed, and Total is the total
number of files. The best results were obtained for regions of
128 bytes with an offset of 64 bits and a limit of 16 bytes
to ignore: an accuracy of 0.952 was achieved. It is noticeable
that the experimental rounds which do not apply the technique
based on byte ignoring proposed in Section III-B achieved
inferior results than the ones that apply it, specially for FPR.

TABLE II
RESULTS FOR THE DIFFERENT EXPERIMENTAL CONFIGURATIONS.

Region size Max. bytes Te Ts Acc. FPR FNR
and offset to ignore
Coarse-grained analysis - - 0.861 0.171 0.075
128, 64 0 1.757 3.040 0.935 0.073 0.060
256, 128 0 2.546 2.532 0.926 0.142 0.040
512, 256 0 2.439 2.866 0.919 0.148 0.048
128, 64 8 3.628 1.803 0.949 0.068 0.043
256, 128 8 2.917 2.727 0.942 0.080 0.046
512, 256 8 3.301 1.680 0.952 0.075 0.034
128, 64 16 2.399 2.505 0.952 0.068 0.038
256, 128 16 3.581 1.834 0.946 0.070 0.046
512, 256 16 2.757 2.861 0.944 0.080 0.044
128, 64 32 4.471 0.744 0.949 0.069 0.041
256, 128 32 3.691 1.734 0.945 0.075 0.044
512, 256 32 3.561 2.227 0.941 0.065 0.056

V. DISCUSSION AND CONCLUSIONS

Malware writers design and implement methods to bypass
current filters and anti-virus systems. To achieve this, they
modify the values of certain features that have been considered
relevant to classify samples for a long time. Entropy is a
measure commonly used to determine whether an executable is
packed or not. This kind of file classification can be a previous
filtering step to a time-consuming dynamic unpacking process.

In this paper we provide a method for measuring executable
entropy more resilient to techniques focused on reducing ran-
domness. In addition, we document some of the attacks found
on real Zeus family malware samples. We test the method by
establishing a threshold for our alternative entropy measure,
obtaining better results than classic file entropy measure.

Nevertheless, there are some aspects that should be tackled
in future work. First, we describe an attack based on the
use of a reduced source alphabet, and propose a method for
measuring entropy in such conditions, but we do not propose
any method to identify which parts of the executable, if any,
implement this kind of attack. The identification of these
regions would help malware analysts to measure entropy more
reliably and to find the regions that hide the real code.

Secondly, binaries are rarely classified using entropy as a
single feature. It would be interesting to combine the repre-
sentation proposed here with other commonly used features to
train machine-learning classifiers.

Finally, the attacks described are only an example of what
malware writers can do to bypass current anti-malware so-
lutions. These kind of attacks should be studied in order
to enhance existing approaches and to design systems more
resilient to future or unknown techniques.
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