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Abstract. Spam has become a major issue in computer security be-
cause it is a channel for threats such as computer viruses, worms and
phishing. Many solutions to the spam problem feature machine-learning
algorithms that are trained using statistical representations of terms that
often appear in spam e-mails. However, these methods require a training
step with labelled data. Dealing with situations in which the availabil-
ity of labelled training instances is limited slows the filtering systems’
progress and offers advantages to spammers. Currently, many approaches
direct their efforts at Semi-Supervised Learning (SSL). SSL is a halfway
method between supervised and unsupervised learning. In addition to
using unlabelled data, SSL receives supervision information such as as-
sociations between targets and examples. Collective Classification for
Text Classification is an interesting method for optimising the classifi-
cation of partially-labelled data. Here, we propose for the first time the
use of Collective Classification algorithms for spam filtering to overcome
the amount of unclassified e-mails that are sent every day.
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1 Introduction

It has been reported that more than 85% of received e-mails are spam1; thus,
inboxes are flooded with annoying and time consuming messages.

Several approaches have been proposed by the academic community to solve
the spam problem.

Of these, the approaches referred to as statistical approaches [1] use machine-
learning techniques to classify e-mails. Statistical approaches have been proven
efficient at detecting spam and are the most fully developed technique used to
fight it. In particular, Bayes’ theorem is widely used by anti-spam filters (e.g.,
SpamAssasin2, Bogofilter3, and Spamprobe4).

1 http://www.spam-o-meter.com/stats/
2 http://spamassassin.apache.org/
3 http://bogofilter.sourceforge.net/
4 http://spamprobe.sourceforge.net/



Statistical approaches are usually supervised, i.e., they require a training
set of previously labelled samples. Because statistical techniques perform better
when more training instances are available, a significant amount of previous la-
belling effort is needed to increase the models’ accuracy. Due to the dimensions of
real-world datasets it is necessary to find alternatives to supervised approaches.
The area of security has evolved trying to reduce the dependency on labelled
samples by applying unsupervised and semi-supervised approaches to different
problems such as malware detection [2–4], intrusion detection systems [5, 6] or
spam filtering [3, 7]. In a similar vein, other approaches rely on knowledge shar-
ing, such as collaborative spam filtering [8–10]. This paradigm includes a set of
e-mail clients sharing their knowledge about recently received spam e-mails, pro-
viding a highly effective defence against a substantial fraction of spam attacks,
also alleviating the burdens of frequent training stand-alone spam filters [10].

Similarly, in the area of text categorisation, collective classification attempts
to collectively optimise the problem of topic determination by taking connections
present among the documents into account. Connections between documents
vary from the common citation graph formed when papers cite other papers or
when websites link to other websites, to the links constructed between relation-
ships (e.g., co-authors, co-citations, or co-appearances at a conference venue).
Combinations of these connections can be used to create interlinked collections
of text documents. This type of classification is a semi-supervised technique, i.e.,
it uses both labelled and unlabelled data (typically, a small amount of labelled
data and a large amount of unlabelled data); this reduces the work involved in
labelling.

Given this background, we propose the first spam filtering system that uses
collective classification to optimise classification performance. This approach
minimises the necessity of labelled e-mails without compromising the accuracy
of the filter.

In this paper, we (i) describe a method for adopting collective classifica-
tion in spam filtering; (ii) attempt to determine the optimal size of the labelled
dataset for collective classification-based spam filtering; (iii) compare our collec-
tive approach with commonly used supervised algorithms; and (iv) show that
this approach can reduce the effort of labelling e-mails while maintaining a high
accuracy rate.

2 Collective Classification for Spam Filtering

Collective classification is a combinatorial optimisation problem, in which we are
given a set of documents or nodes,D = {d1, ..., dn} and a neighbourhood function
N , where Ni ⊆ D\{Di}, which describes the underlying network structure [11].
D, a random collection of documents, is divided into two sets X and Y, where
X corresponds to the set of documents for which we know the correct class, and
Y represents the set of documents whose class values need to be determined.
Therefore, the task is to label the nodes Yi ∈ Y with one of a small number of
labels L = {l1, ..., lq}.



Because the spam problem can be tackled as a text classification problem,
we use the Waikato Environment for Knowledge Analysis (WEKA) [12] and its
Semi-Supervised Learning and Collective Classification plugin5. In the remainder
of this section we review the collective algorithms used in the empirical evaluation
of the method.

2.1 Collective IBk

Collective IBk uses internally WEKA’s classic IBk algorithm, its implementation
of the K-Nearest Neighbour (KNN) algorithm, to determine the best k in the
training set. It then builds a neighbourhood consisting of k instances for all
instances in the test set from the pool of train and test sets. Either a näıve search
of the complete set of instances or a k-dimensional tree is used to determine
neighbours. All neighbours in such a neighbourhood are sorted according to their
distances from the test instances to which they belong. The neighbourhoods are
sorted according to ‘rank’, where ‘rank’ indicates the different occurrences of the
two classes (i.e., spam and legitimate) in the neighbourhood.

For every unlabelled test instance ranked highest, class label is determined
by majority vote or, in the case of a tie, by the first class. This is performed
until no unlabelled test instances remain. Classification terminates by returning
the class label of the instance that is about to be classified.

2.2 Collective Forest

Collective Forest uses WEKA’s implementation of Random Tree as a base clas-
sifier to divide the test set into folds each of which contain the same number of
elements. The first iteration trains using the original training set and generates
the distribution for all the instances in the test set. The best instances are then
added to the original training set (being the number of instances chosen the
same as the number in a fold).

The next iterations train with the new training set and then generate the
distributions for the remaining instances in the test set.

2.3 Collective Woods and Collective Tree

Collective Woods works in a similar manner as Collective Forest but uses Col-
lective Tree instead of Random Tree.

Collective Tree is similar to WEKA’s original Random Tree classifier. It
splits each attribute at the position that divides the current subset of instances
(training and test instances) into two halves. The process is finished when one
of the following conditions is met:

– Only training instances are covered (the labels for these instances are already
known).

5 http://www.scms.waikato.ac.nz/~fracpete/projects/collective-classification



– Only test instances remain in the leaf, in which case distribution is taken
from the parent node.

– Training instances of only one class remain. In this case, all test instances
are considered to belong to this class.

To calculate the class distribution of a complete set or a subset, weights are
summed according to the weights in the training set, and then normalised. The
nominal attribute distribution corresponds to the normalised sum of weights for
each distinct value. For a numeric attribute, the distribution of the binary split
is calculated based on the median. The weights are summed for the two bins and
finally normalised.

2.4 Random Woods

Random Woods works like WEKA’s classic Random Forest but uses Collective
Bagging (a machine learning ensemble meta-algorithm for improving stability
and classification accuracy that has been extended so as to be available to collec-
tive classifiers) in combination with Collective Tree. Random Forest, in contrast,
uses Bagging and Random Tree.

3 Empirical Evaluation

To evaluate the collective algorithms we used the Ling Spam6, SpamAssassin7

and TREC 2007 Public Corpus8 datasets. Ling Spam consists of a mixture of
spam and legitimate messages retrieved from the Linguistic list, an e-mail dis-
tribution list about linguistics. The Ling Spam dataset comprises 2,893 different
e-mails, of which 2,412 are legitimate e-mails obtained by downloading digests
from the list and 481 are spam e-mails retrieved from one of the authors of the
corpus [13]. Each of the four datasets provided in Ling Spam makes use of differ-
ent pre-processing steps. We chose the Bare dataset, which has no pre-processing.
The SpamAssassin public mail corpus is a selection of 1,897 spam messages and
4,150 legitimate e-mails. Finally, the TREC 2007 Public Corpus [14] contains
all e-mail messages delivered to a particular server. The server contained many
accounts fallen into disuse and a number of ‘honeypot’ accounts published on
the web, which were used to sign up for a number of services, some legitimate
and some not. The TREC dataset contains 75,419 messages, of which 25,220 are
legitimate e-mail and 50,199 are junk messages; the messages are divided into
three subcorpora [14] and we used the full one.

Due to computational restrictions, in our experiments, we randomly ex-
tracted 20% of the full subcorpora while maintaining the spam-legitimate ratio.
As a result, our TREC dataset comprises 5,063 legitimate e-mails and 10,021
junk messages.

6 http://nlp.cs.aueb.gr/software and datasets/lingspam public.tar.gz
7 http://spamassassin.apache.org/publiccorpus/
8 http://plg.uwaterloo.ca/~gvcormac/spam



We also performed a Stop Word Removal [15] for all datasets based on an
external stop-word list9 and removed any non alpha-numeric characters.

We then used the Vector Space Model (VSM) [16], an algebraic approach
for Information Filtering (IF), Information Retrieval (IR), and indexing and
ranking, to create a model. This model represents natural language documents
in a mathematical manner through vectors in a multidimensional space. Then we
constructed an Attribute Relation File Format (ARFF) file [17] with the e-mails’
resultant vector representations to build the aforementioned WEKA classifiers
using the default parameters.

To evaluate the results, we applied the most frequently used measures for
spam; these are: precision, recall and Area Under the ROC Curve (AUC). We
defined and measured the precision of spam identification as the number of
correctly classified spam e-mails divided by the number of correctly classified
spam messages and the number of legitimate e-mails misclassified as spam, SP =
Ns→s/(Ns→s + Nl→s), where Ns→s is the number of correctly classified spam
and Nl→s is the number of legitimate e-mails misclassified as spam.

We also measured the recall of spam e-mail messages; recall was defined
as the number of correctly classified spam e-mails divided by the number of
correctly classified spam e-mails plus the number of spam e-mails misclassified
as legitimate, SR = Ns→s/(Ns→s + Ns→l).

Finally, we measured the AUC, which establishes the relationship between
false negatives and false positives [18]. The ROC curve is represented by plotting
the rate of true positives (TPR) against the rate of false positives (FPR). The
TPR is the number of spam messages correctly detected divided by the total
number of junk e-mails, TPR = TP/(TP + FN), and the FPR is the number
of legitimate messages misclassified as spam divided by the total number of
legitimate e-mails, FPR = FP/(FP + TN).

In our experiments we tested various configurations of the collective algo-
rithms with different sizes of the X set of known instances; the latter varied
from 10% to 90% of the instances used for training (i.e., instances known during
the test). It must be noted that, due to unknown issues with the implementation
of the algorithms, the TREC dataset could not be tested with Collective Woods
and Random Woods.

Fig. 1 shows the precision of identifying spam in individual datasets using
the different algorithms. Collective KNN shows significant improvements with
Ling Spam when the number of known instances increases (from 0.60 with 10%
to 0.84 with 90%), but remains constant with SpamAssassin and TREC. When
precision was evaluated, Collective Forest was the best collective algorithm, it
achieved a precision of between 0.99 and 1.00 for Ling Spam, of no less than
0.94 for SpamAssassin and of no less than 0.88 for TREC. In testing with Ling
Spam and SpamAssassin, Collective Woods and Random Woods showed some
improvement when the number of known instances was increased.

Fig. 2 shows the recall of the various algorithms. Again, Collective KNN
shows better results (although still not sufficiently accurate) when the number

9 http://www.webconfs.com/stop-words.php



Fig. 1. Precision of the evaluation of collective algorithms of spam filtering with differ-
ent sizes for the X set of known instances. Solid lines correspond to Ling Spam, dashed
lines correspond to SpamAssassin, and dotted lines correspond to TREC.

Fig. 2. Recall of the evaluation of collective algorithms for spam filtering with different
sizes of the X set of known instances. Solid lines correspond to Ling Spam, dashed lines
correspond to SpamAssassin and dotted lines correspond to TREC.

of known instances increases. With Collective KNN, recall increases from 0.34
with 10% to 0.78 with 90% for Ling Spam, from 0.18 with 10% to 0.84 with 90%
for SpamAssassin and from 0.19 to 0.91 for TREC. Collective Forest presents
poor recall of 0.77 for 10% with Ling Spam but behaves better with the remaining
configurations in all datasets, showing a minimum of 0.89 and a maximum of 0.97
recall for Ling Spam, recall between 0.92 and 0.99 for SpamAssassin and between
0.97 and 0.98 for TREC. Collective Woods and Random Woods demonstrate
similarly poor recall, achieving maxima with 90% of 0.16 and 0.22, respectively,
for Ling Spam and 0.70 and 0.74 for SpamAssassin.

Finally, Fig. 3 shows the Area Under the ROC Curve (AUC) corresponding to
the results obtained with the different algorithms. Once more, the performance
of Collective KNN increases with more known instances; the AUC increases from
0.64 with 10% to 0.87 with 90% for Ling Spam, from 0.58 to 0.90 for SpamAs-



Fig. 3. Area under the ROC curve (AUC) evaluation of collective algorithms for spam
filtering with different sizes of the X set of known instances. Solid lines correspond to
Ling Spam, dashed lines correspond to SpamAssassin and dotted lines correspond to
TREC.

sassin and from 0.56 to 0.85 for TREC. Collective Forest offers a perfect 1.00 for
every configuration with Ling Spam, a minimum of 0.99 with SpamAssassin and
a minimum of 0.95 for TREC, supporting Collective Forest as a suitable choice
for collective classification. Collective Woods and Random Woods achieve similar
results, increasing from 0.86 both to 0.92 and 0.91 respectively with Ling Spam
and increasing from 0.93 both to 0.97 and 0.96 respectively with SpamAssassin.

4 Comparison with Supervised Approaches

To evaluate the contribution of Collective Classification to spam filtering, we
compare the filtering capabilities of our approach with those of commonly used
machine-learning algorithms [19–24].

To assess the machine-learning classifiers, we used the same datasets as for
Collective Classification (i.e., Ling Spam, SpamAssassin and TREC) applying
the following methodology:

– Cross validation: To evaluate the performance of machine-learning clas-
sifiers, k-fold cross validation [25] is commonly used in machine-learning
experiments [26]. For each classifier tested, we performed a k-fold cross val-
idation with k = 10. In this way, our dataset was split 10 times into 10
different sets of learning sets (90% of the total dataset) and testing sets
(10% of the total data).

– Learning the model: For each fold, we perform the learning phase of
each algorithm with each training dataset and apply different parameters
or learning algorithms, depending on the concrete classifier. We used three
different models:
• Bayesian Networks: To train Bayesian Networks, we used K2 and Tree

Augmented Näıve (TAN) structural learning algorithms. We also con-



ducted experiments with Näıve Bayes, a classifier that has been used
widely for spam filtering [21, 22].

• Decision Trees: To train decision trees, we used Random Forest and J48
(Weka’s C4.5 implementation).

• Support Vector Machines: We used a Sequential Minimal Optimisation
(SMO) algorithm with a polynomial kernel, a normalised polynomial ker-
nel and a Radial Basis Function (RBF) based kernel. In addition, we
used LibSVM10 for the linear (i.e., hyperplane) and sigmoid kernel im-
plementation.

Table 1. Comparison of results for the best collective algorithm of our approach,
Collective Forest, with results obtained applying commonly used supervised algorithms.

LingSpam SpamAssassin TREC
Model Prec. Rec. AUC Prec. Rec. AUC Prec. Rec. AUC
BN: K2 0.91 0.98 1.00 0.91 0.89 0.98 1.00 0.40 0.96
BN: TAN 0.92 0.98 1.00 0.94 0.96 0.99 0.90 0.97 0.95
Näıve Bayes 0.97 0.94 1.00 0.83 0.92 0.96 0.92 0.39 0.88
SVM: Polynomial 0.97 0.97 0.98 0.97 0.97 0.98 0.91 0.97 0.90
SVM: Norm Polynom 1.00 0.94 0.97 0.98 0.98 0.99 0.92 0.98 0.90
SVM: RBF 0.99 0.93 0.96 0.98 0.97 0.98 0.81 1.00 0.76
SVM: Lineal 0.97 0.97 0.98 0.97 0.97 0.98 0.91 0.97 0.89
SVM: Sigmoid 1.00 0.47 0.73 0.96 0.89 0.93 0.86 0.99 0.84
DT: J48 0.88 0.84 0.93 0.92 0.93 0.95 0.86 0.98 0.88
DT: RF N=10 0.97 0.95 1.00 0.95 0.98 1.00 0.91 0.98 0.97

Collect. Forest (10%) 0.99 0.77 1.00 0.94 0.92 0.99 0.88 0.97 0.95
Collect. Forest (20%) 0.99 0.89 1.00 0.95 0.95 0.99 0.90 0.97 0.95
Collect. Forest (50%) 0.99 0.94 1.00 0.97 0.97 1.00 0.91 0.98 0.96

Table 1 shows a comparison between results obtained using the best collec-
tive algorithm of our approach, Collective Forest, and the most commonly used
supervised machine-learning algorithms. The results in Table 1 show that using
only 10% of labelled data, Collective Forest offers sound results with the sin-
gle drawback of a recall of 0.78 for Ling Spam that could be improved. When
20% of the labelled data is used, recall for the Ling Spam dataset is recovered,
and the rest of the results improve slightly. Finally, with 50% of the labelled
instances, Collective Forest outperforms most of the supervised configurations,
while considerably reducing the labelling efforts.

5 Discussion and Concluding Remarks

Collective Classification algorithms for spam filtering present a suitable approach
to optimising the classification of partially labelled data, thereby overcoming the
massive number of unclassified spam e-mails that are created every day.

Collective Forest shows strong results for every configuration of known in-
stances (i.e., different sizes of the X set of known instances), with precision values

10 http://www.csie.ntu.edu.tw/~cjlin/libsvm/



above 0.93, recall values above 0.90 (although offering only a poor recall of 0.78
with 10% of X ) and approaching 1.00 of AUC for all configurations.

Because precision and AUC are slightly affected by the variations of known
instances, recall should be taken into account in determining the optimal size of
labelled data, assuming that Collective Forest is the chosen algorithm. Moreover,
knowing that a high recall implies a low false positive rate, and that classification
costs in spam filtering are asymmetric (i.e., it is worse to block a legitimate email,
than to allow an spam email), reinforces the importance of recall to measure
the suitability of the different configurations. In our case, for a value of X =
50%, Collective Forest achieves the most balanced results between accuracy and
amount of labelled data, with only minimal improvements in some configurations
when compared to Collective Forest with X = 90%.

As the number of unsolicited bulk messages increases, the classification and
labelling steps used by common supervised methods become increasingly unattain-
able. To reverse this situation, we propose the first spam filtering system that
uses collective classification to optimise classification performance. The algo-
rithms introduced minimise the necessity of using labelled e-mails by 50% with-
out compromising detection capability.

Future work will follow three main directions. First, we plan to extend our
study of semi-supervised classification by applying additional algorithms to the
spam problem. Second, we will select different features as data to train the
models. Finally, we will perform a more complete analysis of the effects of the
degree of data labelling.
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