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Abstract—Foundry is one of the activities that has contributed
to evolve the society; however, the manufacturing process is car-
ried out in the same manner as it was many years ago. Therefore,
several defects may appear in castings when the production
process is already finished. One of the most difficult defect to
detect is the microshrinkage: tiny porosities that appear inside the
casting. Another important aspect that foundries have to control is
the attributes that measure the faculty of the casting to withstand
several loads and tensions, also called mechanical properties. Both
cases need specialised staff and expensive machines to test the
castings and, in the case of mechanical properties, destructive
inspections that render the casting invalid are also required. In
our previous research, we have modelled the foundry process
to apply machine-learning techniques to foresee these defects
before making the castings. Nevertheless, these approaches do
not correct what is happening in the plant. In this paper, we
extend our approach proposing a genetic algorithm that employs
meta-classifiers and cosine similarity measure to find the optimal
parameters that allow us to change the foundry production,
avoiding the aforementioned defects on-line.

I. INTRODUCTION

The manufacturing process is an important part of the

current society. It is considered as one of the main axes

that has allowed the society to evolve. Thanks to it, cur-

rently, consumers can have different products and services.

Specifically, the casting production, also known as foundry

process, is considered one of the main factors that influences

the development of the world economy.

The result of this process is the input for other industries.

The manufactured castings end up being part of other complex

systems. In fact, the actual capacity of the casting production

of the world, which is higher than 60 million metric tons per

year, is strongly diversified [1]. In the year 2010, China, which

is the biggest producer of castings in the world, produced 39.6

million tons of castings and Europe, the second producer, made

14.29 million tons of castings.

Due to current manufacturing trends, it is really easy to

produce castings and suddenly discover that every single one

is faulty. Currently, the techniques to assure the failure-free

process are expensive and they only achieve good results in a
posteriori manner. Taking into account the amount of casting

produced by the countries, these techniques are incapable of

preventing the defects, which means an extra cost. If ex-ante
methods were developed to foresee several defects and the way

of managing the manufacturing parameters to avoid them, the

quality of the final castings will be improved and the process

of remaking faulty parts will be removed.

Two of the most difficult targets to detect in ductile iron

castings are the microshrinkages and the mechanical proper-
ties. The first one, also called secondary contraction, consists in

tiny porosities that appear inside the casting when it is cooling

down. For the second one, the mechanical properties, we have

selected the ultimate tensile strength that is the force, which a

casting can withstand until it breaks, in other words, it is the

maximum stress any material can withstand when is subjected

to tension.

In previous research, we employed machine-learning clas-

sifiers to predict the results of the castings [2], [3], [4], [5], [6],

[7], [8]. We decided to apply these ideas due to they have been

successfully applied in similar domains, for instance, for fault

diagnosis [9], malware detection [10] or for cancer diagnosis

[11]. Nevertheless, this task is very difficult because: (i) a huge

amount of data, not prioritised or categorised in any way, is

required to be managed, (ii) it is very hard to find cause-effect

relationships between the variables of the system, and (iii)

the human knowledge used in this task usually tends to be

subjective, incomplete and not subjected to any test.

Despite the fact that with our previous approach we over-

came the aforementioned problems and achieving sound re-

sults, several topics of discussion appear and remain unsolved.

In particular, by using the classifiers as a stand-alone solution:

(i) we cannot be completely sure that the selected classifier

is the best one to generalise the manufacturing process, (ii)

the learning algorithms employed for creating some of the

machine-learning classifiers only find a local maximum and,

hence, the final result is not optimal and (iii) by using a

single classifier, we should generate a classifier close to the

process nature (linear or non-linear). Hence, we solved all

these problems developing and testing several methods to

combine heterogeneous classifiers [8]. This new approach was

safer because we used all the classifiers instead of selecting one

of them and we can approximate their behaviour to the optimal

one. Once finished this research, we were able to detect the

defects in an ex-ante method, but we were not able to modify

the parameters of the plant to solve them online.

Against this background, we present here our approach

that makes use of a genetic algorithm to search the optimal

parameters that avoid the predicted defect without changing a

huge amount of variables. Specifically, our genetic algorithm

is supported by the previous research. The fitness function,

which quantifies how good the parameters are, is based on: (i)

the previously tested meta-classifiers [8], which are responsible
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for discovering whether the generated solution is faulty or not,

and (ii) the cosine similarity, a measure that shows how close 2

vectors are taking into account the angle between them and the

method to assure that the final solution is the one that changes

less variables of the process.
Our contributions are: (i) we describe how to adapt evolu-

tionary programming to generate the data that we are going to

use as feedback to the plant, (ii) we provide a genetic algorithm

with concurrent calculations for the fitness function, (iii) we

show how to combine the meta-classification process and the

cosine similarity to calculate the suitability of each proposed

solution and, finally, (iv) we evaluate empirically our approach.

II. HIGH PRECISION FOUNDRY AND DEFECTS

A. Foundry Process
The foundry, as it is defined in Cambridge Dictionary, is a

factory where metal is melted and poured into specially shaped

containers to produce objects such as wheels and bars. In this

research we focus on foundries which produce ‘near-net shape’

components. In order to obtain the final casting, metals, in our

case iron metals, have to pass through several stages in which

raw materials are transformed [12]:

• Pattern making. In this step, moulds (exteriors) or cores

(interiors) are produced in wood, metal or resin for being

used to create the sand moulds.

• Sand mould and core making. The specialised machines

create the two halves of the mould (sand mixed with

clay and water or other chemical binders) and join them

together to provide a container in which the metals are

poured into.

• Metal melting. Raw materials are molten and mixed

in a furnace. Depending on the choice of the furnace,

the quality, the quantity and the throughput of the melt

change.

• Casting and separation. The molten material is poured

onto the sand mould. Later, the metal begins to cool.

Finally, the casting is separated from the sand recovering

it for further uses.

• Removal of runners and risers. Some parts of the cast-

ing that had been used to help in the previous processes

are removed.

• Finishing. Some actions are usually performed to finish

the process, e.g., cleaning the residual sand, heat treatment

and rectification of defects by welding.

The complexity of optimising this process avoiding several

defects stems from the huge amount of variables to manage

along the whole foundry process and, therefore, the way in

which these variables influence the final design of a casting.

In consequence, we have simplified the manufacturing process

to solve this problem. In this way, the main variables to control

can be classified into the following categories:

• Metal-related variables
– Composition: Type of treatment, inoculation and

charges [13].

– Nucleation potential and melt quality: Obtained by

means of a thermal analysis program [14], [15], [16].

– Pouring: Duration of the pouring process and tem-

perature.

• Mould-related variables
– Sand: Type of additives used, sand-specific features

and carrying out of previous test or not.

– Moulding: Machine used and moulding parameters.

Furthermore, we included several variables to control the

dimension and geometry of the casting. In addition, we took

into account other parameters regarding the configuration of

each machine working in the manufacturing process [17].

Therefore, we can represent the castings with 24 different

variables [2].

B. Microshrinkages

Michroshrinkage is a defect that usually appears during the

cooling phase of the metal. This defect cannot be discovered

until the casting is finished. Particularly, this flaw consists of

a filamentary shrinkage in which the cavities are very small

but large in number. This imperfection commonly appears due

to metals are less dense as a liquid than a solid. Hence, along

the solidification process, the volume of the casting decreases

and the density of the metal increases in parallel, this might

be rendered in the apparition of microscopically undetectable

interdendritic voids.

The most widely techniques that allow us to analyse cast-

ings in order to detect the microshrinkages are X-rays and

ultrasonic emissions. Although these methods are not destruc-

tive, unfortunately, they require suitable devices, specialised

staff and quite a long time to analyse all the parts. Therefore,

post-production inspection is not an economical alternative to

the pre-production detection of microshrinkages.

Although we have already obtained overall significant re-

sults through a supervised machine-learning-based approach

predicting those imperfections [2], [5], [6], [8], these ap-

proaches do not completely solve the fault and a correction

step is required.

C. Mechanical Properties

When the casting is finished and is placed in a more com-

plex system, it will be subject to several forces (loads). There-

fore, it is important to recognise how mechanical properties

influence iron castings [14]. Specifically, the most important

mechanical properties of foundry materials are the following

ones [18]: strength (there are many kinds of strength such

as ultimate strength and ultimate tensile strength), hardness,

toughness, resilience, elasticity, plasticity, brittleness, ductility

and malleability.

Currently, there are several standard procedures for measur-

ing the performance of the materials regarding the mechanical

properties; unfortunately, the only way is employing destruc-

tive inspections. In addition, this complex process also requires

suitable devices, specialised staff and quite a long time to

analyse the materials.

Actually, the ultimate tensile strength, on which we focus

here on, is examined as follows. First, a scientist prepares

a testing specimen from the original casting. Second, the
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specimen is placed on the tensile testing machine. Finally, the

machine pulls the sample from both ends and measures the

force required to pull the specimen apart and how much the

sample stretches before breaking.

We have already presented several work applying machine-

learning-based classifiers with the aim of predicting these

features [5], [8], [3], [4], [7]. Nevertheless, as for the mi-

croshrikages, these approaches only allow us to know that

our production is going to be spoiled before doing it and no

intervention or suggestion is given by the systems.

III. EVOLUTIONARY PROGRAMMING

Evolutionary programming, through the employment of

evolutionary algorithms, tries to solve problems that require

an adaptation, search or optimisation. To this end, evolutionary

programming is based on well-established laws of the biology,

such as the Darwin’s Theory Of Evolution [19].

The evolutionary algorithms [20], hereafter referred to as

genetic algorithms, is an iterative process of evolution, which

keeps constantly a population between tens and hundreds

individuals created, originally, in a random manner or under

a known heuristic. Along each iteration, called generation, the

individuals are evaluated to determine how closer are to the

solution of the initial problem. To generate a new generation,

they are selected with a probability proportional to their fitness

to the solution. In this way, the number of times that a

individual is chosen is approximately proportional to their

relative performance in the population. The best individuals

are more likely to reproduce and generate the new generation.

The algorithm ends when it reaches a predefined number of

generations or when the optimal solution is found.

The genetic algorithm developed in this work is based

on these fundamentals. However, the selected domain, the

foundry, adds some constraints to the problem. The most

important one is the available time to find the optimal solution.

In order to reduce the execution time, we employed the

next evolution of genetic algorithms: Evolutionary Parallel
Algorithms [21].

Hence, we detected that the fitness calculation was the

bottleneck of our algorithm. To solve it, we chose to eval-

uate simultaneously all the individuals splitting them into the

different cores of our computer1. In our case, we selected a

population of 10 individuals to evaluate 10 fitness functions at

the same time and keep 2 cores to process other tasks.

Below we explain each of the tasks of the genetic algorithm.

Specifically, we will extend the information of the initialization

process of the genomes, the generation of new individuals and

the selected way for the evaluation of their fitness.

A. Initialisation

This task allows us to create the initial population that is

going to be evolved by the genetic algorithm and in which

will be the final solution. As in every genetic algorithm, the

initialisation is done through a random process. Nevertheless,

1Intel R© CoreTM i7-3930 CPU 3,20 GHz, 24GB of RAM, Operating
System: Windows 7 (64 bits)

we have tuned this process to avoid the apparition of values out

of the constraints defined in the foundry process. Then, when

we start the process, the constructor employs the prediction

models to extract the lower and the upper bounds. This means

that we are not going to give the feedback to the plant outside

the prefixed limits and these will be updated when we change

the prediction models.

Furthermore, there are some variables that cannot be

changed. Hence, we set the value of the variable and during

the initialisation stage these values can only achieve one value.

B. Creating New Generations

The process for generating new individuals is one of the

most important in genetic algorithms. In this section we detail

how each of the genetic operations works in the method

adopted in our approach.

1) Crossover: This is the first operation. For this operation,

given 2 known individuals, we will generate 2 new individuals,

who will be members of the next generation. This process will

be performed if a number generated randomly exceeds a fixed

crossover rate, which, in our case, is 80%.

When the rate is surpassed, one of the simplest methods is

applied [22]. In this way, given 2 parents, we select one gene

randomly and we swap the genes from that point to the end

in both parents.

2) Mutation: The second operation is the mutation. This

operation is required because if we work only combining the

population, we will always generate solutions of the same

space and we will find a local optimum. Nevertheless, if we

change some genes randomly, we will expand the solution area

allowing us to find the final solution.

A mutation will be produced if a randomly generated

number surpasses the mutation rate of 5%. A mutation for

us is a change of one gene modifying its value via the random

number generation but fulfilling the constraints defined by the

foundry process.

3) Selecting the individuals: This task is focused on se-

lecting the best individuals to combine their genes, allowing

finding the optimal solution. In our approach, we have selected

the Fitness Proportionate Selection, also known as Roulette-
wheel selection. In this method, each of the fitness values

has assigned one probability of selection tightly related to its

fitness value.

This selecting method has a high probability of choosing

the best individuals, but without rejecting the worst ones

because this fact might be useful to generate a better solution.

We combine this method with the elitism, keeping the best

individual between generations.

C. Calculating the Fitness of each Individual

This operation allows us to assess how close the solution is

to the final solution. The evaluation is done through the fitness
function [23]. Our calculation is carried out as is defined below.

For the predictions, we employed the best meta-classifiers

for each defect [8] (i.e., stacking with Bayesian Networks

learnt with Tree Augmented Naı̈ve (TAN) for the structural
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Algorithm 1: Fitness function evaluation.

Input: Current genome, Gn
Input: Faulty genome, Gne

Output: Fitness value, f ∈ [0, 1]
prediction ← PredictStationaryState(Gn)

if ErrorExists(prediction) then
f ← 0;

end
else−→v1 ← GetVector(Gn)−→v2 ← GetVector(Gne)

f ← CosineSimilarity(−→v1 , −→v2)
end
return f

learning to predict the microshrinkages and grading with

Bayesian Networks learnt with TAN as structural learning

algorithm to foresee the ultimate tensile strength) and the

cosine similarity [24] for measuring the proximity between

solutions and the current state of the plant, in order to modify

the fewest number of variables.

IV. EXPERIMENTAL RESULTS

To test our approach, we have collected data from a real

foundry specialised in safety and precision components for

the automotive industry, principally in disk-brake support with

a production over 45, 000 tons a year. These experiments

are focused exclusively on finding new parameters to solve

the aforementioned targets: (i) microshrinkages and (ii) the

ultimate tensile strength.

Specifically, we have conducted the next methodology in

order to evaluate properly our genetic algorithm:

• Evaluation of instances through predictive models.
In this step, each evidence has been analysed by the

predictive model. If the meta-classifier discovered a defect

in the casting, we would employ our genetic algorithm to

solve it.

• Finding the optimal solution. Once the system detected

the faulty casting, we run the genetic algorithm. As we

said before, our genetic algorithm has a crossover rate

of 80%, a mutation rate of 5%, our population has 10

individuals and it will finish when it accomplishes 2,000

generations. We also maintain the best of the individuals,

using the elitism. The genetic algorithm is the same for

both defects; the only difference is that we employed a

different prediction model for each defect.

• Evaluation of results. Finished the execution of the

searching process, we evaluated the results achieved. In

this case we have focused in the followings:

– System accuracy.
– Number of modified variables.
– Process of genetic algorithm.
– Execution time.

After applying the aforementioned methodology, we have

obtained the following results. In order to make easier the

readability, we have divided the results by the classification

target.

A. Microshrinkages

As we mentioned before, there are several approaches based

on evolutionary programming to generate non-linear models

for controlling the manufacturing process [25], [26], [27],

[28]. Nevertheless, these approaches are specific and focused

on reducing or solving one objective. Hence, we present the

results of our generic genetic algorithm to solve the first

objective, the faulty castings flawed with microshrinkages.

TABLE I
SUMMARY OF THE RESULTS RELATED TO SOLVE CASTINGS FLAWED WITH

MICROSHRINKAGES.

Corrections
Total castings 951
Faulty castings 261
Corrected castings 261

In this way, Table I shows the behaviour of the software and

how accurate it is. As we can notice, 261 out to 951 castings

were faulty and applying our approach we could detect and fix

the 100% of them.

We also measured the number of changes needed to redirect

the process to the optimum. Table II illustrates with the results

achieved by the genetic algorithm. More accurately, we can

notice that the lowest number of modified variables is 1.

Although the algorithm changes 2 variables in the majority of

the executions, there are some cases that we need to fix more

than 5 variables, a 5.75%. In fact, the worst result implies to

change 19 variables. However, as we can distinguish in the

Table II, several statistic measures (average, mode, median)

shows that the most representative number of changes is 2.

TABLE II
SUMMARY OF THE RESULTS RELATED TO MODIFICATIONS FOR SOLVING

CASTINGS FLAWED WITH MICROSHRINKAGES.

Variable modifications
Minimum number of modifications 1
Maximum number of modifications 19
Average number of modifications 2.67
Standard deviation 1.94
Mode number of modifications 2
Median number of modifications 2
Number of modification involving 1 variable 37
Number of modification involving de 2 variables 113
Number of modification involving 3 variables 87
Number of modification involving 4 variables 9
Number of modification involving 5 variables 0
Number of modification involving more than 5 variables 15

Thirdly, we gathered the information related to the number

of generations (i.e., iterations of our genetic algorithm) that

are required to obtain the optimal solution in Table III. As we

said before, the condition to finish the algorithm is to reach a

number of iterations. Henceforth, after 2000 generations, we

realise that our genetic algorithm works in a wide range of

generations, [115, 1900]. But if we reduce the number of them,
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we still maintain a huge amount of optimums. Specifically,

the system is able to achieve a 56.32% of optimums using

500 generations, with 1000 generations an 83.91%, and with

1500 a 93.87%. These results imply that we could manage the

foundry process using a suboptimal algorithm that achieves a

high number of optimal solutions.

TABLE III
SUMMARY OF THE RESULTS RELATED TO REQUIRED GENERATIONS TO GET

THE OPTIMUM FOR SOLVING CASTING FLAWED WITH MICROSHRINKAGES.

Generations needed for the optimum
Minimum number of generations 115
Maximum number of generations 1900
Average number of generations 587.35
Standard deviation 433.62
Median number of generations 449
Optimums achieved with 500 generations 147
Optimums achieved with 1000 generations 219
Optimums achieved with 1500 generations 245

TABLE IV
SUMMARY OF THE RESULTS RELATED TO THE EXECUTION TIME FOR

SOLVING CASTINGS FLAWED WITH MICROSHRINKAGES.

Execution Time
Minimum time 00:02:40
Maximum time 00:04:25
Average time 00:03:21
Average time per generation 0,1005 secs.
Average time for 500 generations 00:00:50
Average time for 1000 generations 00:01:40
Average time for 1500 generations 00:02:31

Finally, we evaluated the execution time of the system

(shown in Table IV). These results are really interesting due to

this time could be the reason to reject the algorithm. Neverthe-

less, the achieved time is enough to solve the manufacturing

process in a high precision foundry. More accurately, the

average time is 03:21 minutes. Moreover, we calculated the

average time for the suboptimal algorithms, and these results

show that if we work with the suboptimal genetic algorithm

that employs 500 generation, we can reduce the time until 50

seconds.

B. Mechanical Properties

Following the same methodology and executing the same

genetic algorithm, we just changed the predictive model; we

have tested our approach for another problem, the ultimate

tensile strength.

Firstly, we tested the performance of the system (shown

in Table V). In this case, our approach is not as accurate as

for microshrinkages. Regarding the ultimate tensile strength,

244 out of 889 castings have low values for this mechanical

property. Our genetic algorithm was able to detect and to solve

232 castings, a 95% of all the evidences. Despite this result,

the system still maintains a great control over the production.

Secondly, as for the previous experiment, we measured the

number of changes needed to fix the manufacturing process.

Table VI illustrates that the most repeated number of changes

TABLE V
SUMMARY OF THE RESULTS RELATED TO SOLVE CASTINGS WITH BAD

VALUES OF THE ULTIMATE TENSILE STRENGTH.

Correcciones
Total castings 889
Faulty castings 244
Corrected castings 232

is 2. The results are as good as in the previous experiment, in

fact, only the 9.28% of castings needs to change more than

5 variables. Again, mode, average and median tell us that the

number of modifications is close to 2.

TABLE VI
SUMMARY OF THE RESULTS RELATED TO MODIFICATIONS FOR SOLVING

CASTINGS WITH BAD VALUES OF THE ULTIMATE TENSILE STRENGTH.

Variable modifications
Minimum number of modifications 1
Maximum number of modifications 12
Average number of modifications 2.68
Standard deviation 2.16
Mode number of modifications 2
Median number of modifications 2
Number of modification involving 1 variable 44
Number of modification involving 2 variables 126
Number of modification involving 3 variables 32
Number of modification involving 4 variables 5
Number of modification involving 5 variables 3
Number of modification involving more than 5 variables 22

Thirdly, we registered the number of generations needed to

obtain the optimal solutions. Moreover, we have measured how

many optimums can be reached using suboptimal algorithms.

This solution can reduce the time and also the computational

complexity of the algorithm. Table VII shows the obtained

results. For the ultimate tensile strength, the range of the

needed generations is similar to the range for microshrinkages,

[21, 1993]. And for our suboptimal system, using only 500

generations, the algorithm can solve the 76.37% in the optimal

way, 94.41% for 1000 generations and 94.51% for 1500

generations.

TABLE VII
SUMMARY OF THE RESULTS RELATED TO REQUIRED GENERATIONS TO GET

THE OPTIMUM FOR SOLVING CASTINGS WITH BAD VALUES OF THE

ULTIMATE TENSILE STRENGTH.

Generations needed for the optimum
Minimum number of generations 21
Maximum number of generations 1993
Average number of generations 337.40
Standard deviation 385.67
Median number of generations 168
Optimums achieved with 500 generations 181
Optimums achieved with 1000 generations 219
Optimums achieved with 1500 generations 224

Finally, the last information collected from the experiments

is the execution time. Table VIII displays how much time

our algorithm employs to fix the process. In order to solve
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the ultimate tensile strength, we need more time because the

predictive model is more complicated and the duration of

the fitness function is longer, nevertheless, the execution time

is really close to the previous one. Specifically, the average

time is 04:29 minutes. Nonetheless, if we reduce the number

of generations, we are going to reduce the execution time,

hence, a suboptimal algorithm can require from 01:07 to 03:22

minutes.

TABLE VIII
SUMMARY OF THE RESULTS RELATED TO THE EXECUTION TIME FOR

SOLVING CASTINGS WITH BAD VALUES OF THE ULTIMATE TENSILE

STRENGTH.

Execution time
Minimum time 00:04:00
Maximum time 00:04:59
Average time 00:04:29
Average time per generation 0,1345 secs.
Average time for 500 generations 00:01:07
Average time for 1000 generations 00:02:15
Average time for 1500 generations 00:03:22

V. CONCLUSIONS

On the one hand, microshrinkages are tiny porosities that

appear when the casting is cooling down. On the other hand,

ultimate tensile strength is the capacity of a metal to resist

deformation when subject to a certain load. Our previous

research [2], [3], [4], [5], [6], [7], [8] pioneers the applica-

tion of Artificial Intelligence to the prediction of these two

features. However, this approach does not solve the problems

in the plant. Specifically in this paper, we have extended

the predictive model with a genetic algorithm to find the

optimal parameters to give the feedback to the plant. For both

problems, our algorithm was very accurate detecting the faulty

castings and correcting them with few changes in the process,

2 variables.
Accordingly, future work will be focused on 2 main direc-

tions. First, we plan to extend our analysis for solving other

defects in order to develop a global system of incident analysis.

And, second, we plan to test other searching methods that can

reduce the execution time reached by the genetic algorithm.
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