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Abstract—Iron casting production is a very important industry
that supplies critical products to other key sectors of the economy.
For this reason, these castings are subject to very strict safety
controls to ensure their final quality. One of the most common
flaws is the appearance of defects on the surface. In particular, our
work focuses on three of the most typical defects in iron foundries:
inclusions, cold laps and misruns. We propose a new approach
that detects these imperfections on the surface by means of a
segmentation method that flags the potential defective regions on
the casting and, then, applies collective classification techniques
to determine whether the regions are defective or not. We show
that these classifiers obtain high precision rates whilst decreasing
the effort of labelling.

I. INTRODUCTION

One of the most important field in the industry sector is the

foundry process, which consists in melting different types of

material and pouring them into a mould where they solid-

ify into the desired shape. Then, the produced castings are

employed in other sectors such as automotive, aeronautic,

weaponry or naval industries. Therefore, any defect, even the

tiniest one, may become fatal when it comes to the foundry

process. In order to discard any defective casting, strict safety

controls are required to guarantee a certain threshold of quality

for the manufactured casting.

There are a large number of defects that may appear in

the manufactured castings. In this paper we focus on surface

defects that occur in the external sides of the casting. Specif-

ically, we deal with: (i) inclusions, little perforations caused

by an excess of sand in the mould; (ii) cold laps, produced

when part of the melted material is cooled down before the

melting is completed; and (iii) misruns, which appear when

not enough material is poured into the mould.

Nowadays, the inspection of the quality of the castings is

performed by human operators [1]. Albeit people can perform

some tasks better than machines, they are slower and get easily

exhausted. Besides, qualified operators are hard to find and to

maintain in the industry since they require capabilities and

learning skills that usually take long time to learn. There

are also cases in whose boredom affected the process. In

some applications, the inspection is critical and dangerous and

computer vision can replace manual inspection more efficiently

and safely [2].

In this sense, computer vision systems are replacing manual

inspection in many industries such as timber [3], textile [4]

or metallurgical [5][6]. Whereas manual inspection strongly

depends on human factor, computer vision is independent, with

the subsequent decrease in the error rate.

In our previous work, we proposed a new approach for

surface defect detection and categorisation using machine-

learning classifiers [7]. Nevertheless, these supervised classi-

fiers require a high number of labelled instances for each class.

In a real-world problem such a quality inspection in foundries,

it is quite cumbersome to collect this number of labelled data.

Semi-supervised learning is a type of machine-learning that

is useful when a limited amount of labelled data for each class

is available [8]. Concretely, this approach uses the relational

structure of the combined labelled and unlabelled data-sets to

increase the classification accuracy [9]. With these relational

approaches, the predicted label of an example will often be in-

fluenced by the labels of related samples. Collective classifiers

and semi-supervised techniques have been used successfully

in fields like text classification [9], malware detection [10],

[11] or spam filtering [12]. The main advantage of collective

classification is that the predicted labels of a test sample should

also be influenced by the predictions made for related test

samples.

In light of this background, we propose a new approach ca-

pable of detecting inclusions, cold laps and misruns. First, we

describe a machine vision system that retrieves the information

of the surface of the tested castings. Second, a segmentation

method, based on modelling the correct castings, is used in

order to detect the possible defects. Finally, we employ several

features extracted from the machine-vision and segmentation

systems to train collective classifiers to detect the possible

defects.

Summarising, our main contributions are: (i) an adaptation

of a machine vision system to the segmentation of foundry

casting regions, (ii) a collective classifiers based approach

to determine faulty regions on the foundry castings and (iii)

an empirical validation using actual foundry castings of our

proposed approach.

II. DATA ACQUISITION AND SEGMENTATION THROUGH

MACHINE VISION

In order to retrieve and process the casting model data, we

develop a simple computer-vision system that is composed of

a laser camera with 3D technology, a computer with high data

processing capabilities and a robotic arm, already employed in

our previous work [7].
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In our case, the following components compose our system:

1) Image device: We obtain the three-dimensional data

through a laser-based triangulation camera. By taking

advantage of the high-power laser (3-B class), our system

is able to scan the casting even though their dark and

uneven surface.

2) Processing device: We utilise a high-speed workstation.

In particular, we have used a workstation with a XENON

E5506 processor working with 6GB of RAM memory

and a QUADRO FX1800 graphic processing unit. This

component controls the camera and the robotic arm. It

also processes the information retrieved by the image

capturing device and transforms it to segments.

3) Robotic arm: The function of the robot is to automate

the topology information gathering phase of the system,

making every necessary movement to successfully ac-

quire the data and attaching the camera.

Fig. 1. The architecture of the machine vision system. (1) is the robotic arm
of the system, (2) is the image device of the system and (3) is the working
table where the castings are put for analysis.

The casting is put on a working table using a manually

adjusted foundry mould. The mould has been built using a

material similar to common silicone, which is easily malleable.

In the case we decide to change the casting type, we would

only need to change this mould. In this way, we ensure that

the vision system allows us to analyse every type of casting

in the same position.

Using this architecture, we gather the topological informa-

tion of the castings. Initially, we put the casting on the mould

and we start the surface scan. The robotic arm makes a lineal

movement, retrieving a set of profiles based on the generated

triangulation of the laser and the optical sensor. In other

words, a foundry casting C is composed of profiles P such

as C = {P1,P2, ...,Pn−1,Pn}. Each profile is retrieved for

a thickness of 0.2mm. These profiles are vectors �p composed

of the heights of each point px,y . Joining these profiles, we

represent the casting C as a height matrix H

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

h1,1 h1,2 ... h1,m−1 h1,m

h2,1 h2,2 ... h2,m−1 h2,m

...
h�−1,1 h�−1,2 ... h�−1,m−1 h�−1,m

h�,1 h�,2 ... h�,m−1 h�,m

⎞
⎟⎟⎟⎟⎟⎟⎠

(1)

where each hx,y represent the height of the point in the

space (x, y). Therefore, the number of profiles of each casting

depends on its size.
Once the system has computed the matrix H, we have

to remove any possible remaining noise, as well as the data

unrelated to the casting surface, like the working table. To this

end, we establish a height threshold, established empirically.
We have also taken into consideration other representations

of the data using the height matrix: (i) Grey-scale Height Map
[13], a well-known representation converts each height value

to a range between 0 and 255, showing the different scales of

grey; (ii) Colour Height Map, a representation similar to the

Grey-scale Height Map but with higher detail, since full colour

information is used; specifically, the RGB (i.e., Red, Green

and Blue) components and the colour scale Jet Colour Map as

defined in Matlab [14]; (iii) Normal map, this representation

has been generated by means of the height matrix, but shows

the direction of the normal vector of the surface for each

point in the matrix and each vector for each point have three

components (x, y, z) that we represent as an image — even

when it is not a true image by itself — corresponding red

component to the x value, green component to the y value

and blue component to the z value.
Thenceforth, the system starts with the segmentation pro-

cess. Segmentation is the process of selecting the regions of the

surface of the casting that may have defects. To this end, we

made two different labelling tasks. The first one classifies each

casting as good or potentially defective. This classification

is necessary for the construction of the models used in the

segmentation process. The second one is for evaluating the

accuracy of the segmentation and labels each segment in

‘correct’ or ‘defective’ (the defect may be misrun, cold lap

or inclusion).
The segmentation process is accomplished by the following

steps:

1) The system converts the normal map to grey-scale —

although it is not an image, we represent it as one, as

aforementioned – of the casting and the normal map of

the correct models. This step is performed to remove the

noise regarding the rugosity on the surface.

2) The Gaussian Blur filter [15] is applied.

3) The system applies a difference filter between the normal

map to examine and each of the correct models.

4) The system applies an intersection filter between the

differences computed in the previous step.

5) The system binarises the results.

6) The system uses an algorithm to extract the potentially

faulty areas or segments, removing the ones which are

excessively small (i.e., regions smaller than 3x3 pixels).

Once each area is extracted, we compute several features

using the different representations:

• Features of the segmented image: The segmented image

is the result of the segmentation process applied to the

normal map. We use: (i) the width, height and perimeter

of the area; (ii) the euclidean distance of the center of

gravity of the area to origin of coordinate axes; and
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(iii) the fullness, which is computed as Area/(Width ∗
Height).

• Features of the integral image of segmented binary
image: These features are obtained from the conversion to

the integral image of the segmented version of the image.

An integral image is defined as the image in which the

intensity at a pixel position is equal to the sum of the

intensities of all the pixels above and to the left of that

position in the original image [16]. We use: (i) mean

value of pixels in the integral image and (ii) the result

of addition of the pixels values in the integral image.

• Features of the grey scale height map: They are ex-

tracted from the computed segments in the original grey-

scale height map. We use: (i) max, min, mean, median,

standard deviation and entropy of the grey histogram val-

ues; and (ii) max, min, mean, median, standard deviation

and entropy of the grey histogram values without black

(zero value) pixels.

• Features of the colour height map: These features are

extracted from the computed segments in the original

colour height map. We use: (i) max, min, mean, median,

standard deviation and entropy of the red histogram

values; (ii) max, min, mean, median, standard deviation

and entropy of the red histogram values without black

(zero value) pixels; (iii) max, min, mean, median, standard

deviation and entropy of the green histogram values; (iv)

max, min, mean, median, standard deviation and entropy

of the green histogram values without black (zero value)

pixels; (v) max, min, mean, median, standard deviation

and entropy of the blue histogram values; and (vi) max,

min, mean, median, standard deviation and entropy of the

blue histogram values without black (zero value) pixels.

• Features of the normal map: These features are ex-

tracted from the computed segments in the original nor-

mal map. We use: (i) max, min, mean, median, standard

deviation and entropy of the x component histogram

values; (ii) max, min, mean, median, standard deviation

and entropy of the x component histogram values without

black (zero value) pixels; (iii) max, min, mean, median,

standard deviation and entropy of the y component his-

togram value; (iv) max, min, mean, median, standard

deviation and entropy of the y component histogram

values without black (zero value) pixels; (v) max, min,

mean, median, standard deviation and entropy of the z
component histogram values; and (vi) max, min, mean,

median, standard deviation and entropy of the z compo-

nent histogram values without black (zero value) pixels.

By extracting these features from each segment, we can

train collective machine-learning algorithms in order to deter-

mine weather a potentially faulty segment is defective or not.

III. COLLECTIVE CLASSIFICATION

Collective classification is a combinatorial optimisation prob-

lem, in which we are given a set of castings, or nodes,

E = {e1, ..., en} and a neighbourhood function N , where

Ni ⊆ E \ {Ei}, which describes the underlying network

(a) Real image. (b) Height map. (c) Grey scale
height map.

(d) Colour scale
height map.

(e) Normal map. (f) Segmented
image.

Fig. 2. Visual representations of a cold lap region.

structure [17]. Being E a random collection of castings, it is

divided into two sets X and Y , where X corresponds to the

castings for which we know the correct values and Y are the

castings whose values need to be determined. Therefore, the

task is to label the nodes Yi ∈ Y with one of a small number

of labels, L = {l1, ..., lq}.

We use the Waikato Environment for Knowledge Analysis
(WEKA) [18] and its Semi-Supervised Learning and Collective

Classification plugin1. In the remainder of this section we re-

view the collective algorithms used in the empirical evaluation.

• CollectiveIBK. Internally, this model uses WEKA’s clas-

sic IBK algorithm, an implementation of the K-Nearest
Neighbour (KNN), to determine the best k instances on

the training set and builds then, for all instances from the

test set, a neighbourhood consisting of k instances from

the training pool and test set (either a naı̈ve search over

the complete set of instances or a k-dimensional tree is

used to determine neighbours). All neighbours in such a

neighbourhood are sorted according to their distance to

the test instance they belong to. The neighbourhoods are

sorted according to their ‘rank’, where ‘rank’ means the

different occurrences of the two classes in the neighbour-

hood.

For every unlabelled test instance with the highest rank

value, the class label is determined by majority vote or, in

case of a tie, by the first class. This is performed until no

further test instances remain unlabelled. The classification

terminates by returning the class label of the instance that

is about to be classified.

• CollectiveForest. It uses WEKA’s implementation of

RandomTree as base classifier to divide the test set into

folds containing the same number of elements. The first

iteration trains the model using the original training set

and generates the distribution for all the instances in the

test set. The best instances are then added to the original

training set (being the number of instances chosen the

same as in a fold).

1Available at: http://www.scms.waikato.ac.nz/˜fracpete/
projects/collectiveclassification
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The next iterations train the model with the new training

set and generate then the distributions for the remaining

instances in the test set.

• CollectiveWoods & CollectiveTree. CollectiveWoods

works like CollectiveForest using CollectiveTree algo-

rithm instead of RandomTree.

Collective tree is similar to WEKA’s original RandomTree

classifier. It splits the attribute at a position that divides

the current subset of instances (training and test instances)

into two halves. The process finishes if one of the

following conditions is met: (i) only training instances

are covered (the labels for these instances are already

known); (ii) only test instances in the leaf, case in which

distribution from the parent node is taken, and (iii) only

training instances of one class, case in which all test

instances are considered to have this class.

To calculate the class distribution of a complete set

or a subset, the weights are summed up according to

the weights in the training set, and then normalised.

The nominal attribute distribution corresponds to the

normalised sum of weights for each distinct value and,

for the numeric attribute, distribution of the binary split

based on median is calculated and then the weights are

summed up for the two bins and finally normalised.

• RandomWoods It works like WEKA’s classic Random-

Forest but using CollectiveBagging (classic Bagging, a

machine learning ensemble meta-algorithm to improve

stability and classification accuracy, extended to make

it available to collective classifiers) in combination with

CollectiveTree. RandomForest, in contrast, uses Bagging

and RandomTree algorithms.

IV. EMPIRICAL VALIDATION

In order to evaluate our casting defect detector, we collected

a dataset from a foundry, which is specialised in safety and

precisions components for the automotive industry (principally,

in disk-brake support with a production over 45,000 tons per

year). Three different types of defect (i.e., inclusion, cold lap

and misrun) were present in the faulty castings.

To construct the dataset, we analysed 645 foundry castings

with the segmentation machine-vision system described in

Section II in order to retrieve the different segments and their

features. In particular, we used 176 correct castings to construct

the model and the remainder for testing. By means of this

analysis, we constructed a dataset of 6150 segments to train

collective models and determine when a segment is defective.

Besides, we added a second category to identify the noise that

our machine vision system retrieves called ‘Correct’, which

represents the segments gathered by the segmentation method

that are correct even though the method has marked them as

potentially faulty. In particular, 5,686 were correct and 464

were faulty.

The acceptance/rejection criterion of the studied models

resembles the one applied by the final requirements of the

customer. Pieces flawed with defects must be rejected due to

the very restrictive quality standards (which is a requirement

of the automotive industry). We labelled each possible segment

within the castings with its defects.
Next, we evaluate the precision of the collective machine-

learning methods to categorise the segments. To this extent, by

means of the dataset, we conducted the following methodology

to evaluate the proposed method:

• Cross validation: This method is generally applied in

machine-learning evaluation [19]. In our experiments, we

performed a K-fold cross validation with k = 10. In this

way, our dataset is split 10 times into 10 different sets

of learning and testing. For each fold, we changed the

number of labelled instances from 10% to 90% to measure

the effect of the number of previously labelled instances

on the final performance of collective classification in

detecting surface defects.

• SMOTE: The dataset was not balanced for the dif-

ferent classes. To address unbalanced data, we applied

Synthetic Minority Over-sampling TEchnique (SMOTE)

[20], which is a combination of over-sampling the less

populated classes and under-sampling the more populated

ones. The over-sampling is performed by creating syn-

thetic minority class examples from each training set. In

this way, the classes became more balanced.

• Learning the model: For each fold, we accomplished the

learning step using different learning algorithms depend-

ing on the specific model. As aforementioned, we used

the collective classification implementations provided by

the Semi-Supervised Learning and Collective Classifica-
tion package for machine-learning tool WEKA [18] In

particular, we used the following models:

– Collective IBK: We performed experiments with k =
5.

– Collective Forest: We performed experiments with

100 trees, the default value of classifier.

– Collective Woods: We performed experiments with

100 trees, the default value of classifier.

– Random Woods: We performed experiments with 100

trees, the default value of classifier.

• Testing the model: To test the approach, we measured the

True Positive Rate (TPR), i.e., the number of the faulty

segments correctly detected divided by the total number

of faulty segments: TPR = TP/(TP + FN) where

TP is the number of faulty instances correctly classified

(true positives) and FN is the number of faulty instances

misclassified as correct segments (false negatives).

We also measured the False Positive Rate (FPR), i.e.,

the number of correct segments misclassified as faulty

divided by the total number of correct segments: FPR =
FP/(FP + TN) where FP is the number of correct

instances incorrectly detected as faulty and TN is the

number of correct segments correctly classified.

Furthermore, we measured accuracy, i.e., the total num-

ber of hits of the classifiers divided by the number of

instances in the whole dataset: Accuracy(%) = (TP +
TN)/(TP + FP + TP + TN)
Besides, we measured the Area Under the ROC Curve
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(a) Accuracy results. The classifiers were sensitive
to the number of instances used in the training step.
With the exception of Collective IBK, the rest of the
classifiers obtained accuracies higher than 90% using
only a 10% of labelled instances.

(b) TPR results. In general, the higher the amount
of labelled instances, the higher the TPR. The worst
classifier is Collective forest, although more of the
30% of labelled instances Collective Forest obtained
TPR values higher than 75%.

(c) FPR results. Collective IBK was the worst classi-
fier with a minimun FPR of 0.0749% using the 90% of
the dataset. The remainder of the classifiers obtained
a FPR of less than 0.04% with only a 10% of training
size.

(d) AUC results. The AUC axis (Y axis) has been
scaled from 50% to 100% in order to appreciate better
the evolution of the classifiers. As it happened with
accuracy, Collective IBK was the worst classifier.

Fig. 3. Results of our collective-classification-based for surface defect detection. Collective Forest was the overall classifier with the highest accuracy, TPR
and AUC.

(AUC), which establishes the relation between false neg-

atives and false positives [21]. The ROC curve is obtained

by plotting the TPR against the FPR. All these measures

refer to the test instances.

Figure 3 shows the obtained results in terms of accuracy,

TPR, FPR and AUC. Our results outline that, as is usually

the case, the higher the number of labelled instances in the

dataset the better results achieved. However, by using only the

10% of the available data, with the exception of Collective

IBK and Collective Forest, the collective classifiers were able

to achieve TPRs higher than 75% and FPRs lower than 4%.

In particular, Random Woods trained with the 50% of the

data obtained 94.88% of accuracy, 79.44% of TPR, 3.86%

of FPR and 95.77% of AUC. Figure 3(a) shows the accuracy

results of our proposed method. All the tested classifiers, with

the exception of Collective IBK, achieved accuracy results

higher than 90%. In particular, Collective Forest was the best,

achieving an accuracy of 94.84% using only a 10% of the

instances for training and 95,97% using a 50% of labelled

instances. Figure 3(b) shows the obtained results in terms

of correctly classified faulty segments. In this way, Random

Woods was also the best detecting the 79.44% of the faulty

castings with only a 50% of the dataset labelled. Figure 3(c)

shows the FPR results. Every classifier obtained results lower

than 5%, except Collective IBK. In particular, the lowest FPR

achieved was of 2.36%, achieved by Collective Forest with the

10% of dataset. Finally, regarding AUC, shown in Figure 3(d),

Collective Forest was again the best, with results higher than

94% for every configuration.

Table I shows the results for the classification task using

supervised learning techniques. In this way, we can com-

pare these results with the ones achieved using collective

techniques. Regarding supervised classification Random Forest

with N=100 was the best classifier, accomplishing a 96.15%
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TABLE I
RESULTS OF THE DEFECT DETECTION IN TERMS OF ACCURACY, TRUE POSITIVE RATE, FALSE POSITIVE RATE AND AUC. THE BEST RESULTS WERE

OBTAINED BY THE RANDOM FOREST TRAINED WITH MORE THAN 50 TREES.

Model Accuracy (%) TPR FPR AUC
Bayes K2 93.01 ± 1.00 0.5982 ± 0.07 0.0423 ± 0.01 0.8845 ± 0.03
Bayes TAN 92.54 ± 0.27 0.0291 ± 0.03 0.0015 ± 0.00 0.8672 ± 0.03
Naı̈ve Bayes 79.34 ± 1.59 0.8698 ± 0.05 0.2128 ± 0.02 0.8811 ± 0.03
SVM: Polynomial Kernel 90.22 ± 1.07 0.8767 ± 0.05 0.0957 ± 0.01 0.9533 ± 0.01
SVM: Normalised Polynomial Kernel 91.61 ± 0.99 0.8659 ± 0.05 0.0798 ± 0.01 0.9563 ± 0.01
SVM: Pearson VII Kernel 95.95 ± 0.76 0.7227 ± 0.06 0.0212 ± 0.01 0.9665 ± 0.01
SVM: Radial Basis Function Kernel 88.78 ± 1.29 0.8918 ± 0.04 0.1125 ± 0.01 0.9511 ± 0.02
KNN K = 1 94.48 ± 0.84 0.7626 ± 0.06 0.0403 ± 0.01 0.8611 ± 0.03
KNN K = 2 95.13 ± 0.76 0.6951 ± 0.07 0.0278 ± 0.01 0.9029 ± 0.03
KNN K = 3 94.02 ± 0.91 0.8107 ± 0.05 0.0492 ± 0.01 0.9199 ± 0.03
KNN K = 4 94.44 ± 0.85 0.7766 ± 0.06 0.0419 ± 0.01 0.9322 ± 0.02
KNN K = 5 93.30 ± 0.86 0.8286 ± 0.05 0.0585 ± 0.01 0.9322 ± 0.02
J48 93.21 ± 0.97 0.7143 ± 0.06 0.0501 ± 0.01 0.8240 ± 0.05
Random Forest N = 10 95.83 ± 0.69 0.7392 ± 0.07 0.0238 ± 0.01 0.9524 ± 0.02
Random Forest N = 25 95.86 ± 0.74 0.7804 ± 0.06 0.0269 ± 0.01 0.9628 ± 0.02
Random Forest N = 50 96.13 ± 0.72 0.7804 ± 0.06 0.0239 ± 0.01 0.9664 ± 0.01
Random Forest N = 75 96.09 ± 0.73 0.7851 ± 0.06 0.0247 ± 0.01 0.9670 ± 0.01
Random Forest N = 100 96.15 ± 0.73 0.7824 ± 0.06 0.0238 ± 0.01 0.9676 ± 0.01

of accuracy, 78.24% of TPR, 2.38% of FPR and 96.76% of

AUC. If we compare these results with the ones obtained by

Random Woods with a 50% of the labelled dataset: 94.88% of

accuracy, 79.34% of TPR, 3.86% of FPR and 95.77% of AUC,

we can notice that by only using the 50% of the information

that the supervised approach employs we can guarantee that

the results will be nearly as high as the ones obtained by them.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel collective-

classification-based approach for surface defect detection in

iron castings. This method requires less labelling effort than

presented previous work [7] based on supervised learning

approach.
Future work will be focused on three main directions. First,

we will utilise different features and segmentation methods for

training these kinds of models. Second, we will extend our

study of collective learning by applying more algorithms to

this issue. Finally, we are going to focus on different defects in

foundry production in order to generate a general fault detector.
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[7] I. Pastor-López, I. Santos, A. Santamarı́a-Ibirika, M. Salazar, J. de-
la-Peña Sordo, and P. Bringas, “Machine-learning-based surface defect
detection and categorisation in high-precision foundry,” in Proceedings of
7th IEEE Conference in Industrial Electronics and Applications (ICIEA),
2012.

[8] O. Chapelle, B. Schölkopf, A. Zien et al., Semi-supervised learning.
MIT press Cambridge, MA:, 2006, vol. 2.

[9] J. Neville and D. Jensen, “Collective classification with relational depen-
dency networks,” in Proceedings of the Second International Workshop
on Multi-Relational Data Mining, 2003, pp. 77–91.

[10] I. Santos, C. Laorden, and P. Bringas, “Collective classification for
unknown malware detection,” in Proceedings of the 6th International
Conference on Security and Cryptography (SECRYPT), 2011, pp. 251–
256.

[11] I. Santos, J. Nieves, and P. G. Bringas, “Semi-supervised learning for
unknown malware detection.” in Proceedings of the 4th International
Symposium on Distributed Computing and Artificial Intelligence (DCAI).
9th International Conference on Practical Applications of Agents and
Multi-Agent Systems (PAAMS), 2011, pp. 415–422.

[12] C. Laorden, B. Sanz, I. Santos, P. Galán-Garcı́a, and P. G. Bringas, “Col-
lective classification for spam filtering,” in Computational Intelligence
in Security for Information Systems, ser. Lecture Notes in Computer
Science, vol. 6694. Springer, 2011, pp. 1–8.

[13] D. vom Stein, “Automatic visual 3-d inspection of castings,” Foundry
Trade Journal, vol. 180, no. 3641, pp. 24–27, 2007.

[14] R. Gonzalez, R. Woods, and S. Eddins, Digital image processing using
MATLAB. Pearson Education India, 2004.

[15] R. Gonzalez and R. Woods, “Digital image processing. 1992,” Reading,
Mass.: Addison-Wesley, vol. 16, no. 716, p. 8.

[16] P. Viola and M. Jones, “Robust real-time face detection,” International
journal of computer vision, vol. 57, no. 2, pp. 137–154, 2004.

[17] G. Namata, P. Sen, M. Bilgic, and L. Getoor, “Collective classification
for text classification,” Text Mining, pp. 51–69, 2009.

[18] S. Garner, “Weka: The Waikato environment for knowledge analysis,”
in Proceedings of the 1995 New Zealand Computer Science Research
Students Conference, 1995, pp. 57–64.

[19] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
University Press, 1995.

[20] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, “SMOTE: synthetic
minority over-sampling technique,” Journal of Artificial Intelligence
Research, vol. 16, no. 3, pp. 321–357, 2002.

[21] Y. Singh, A. Kaur, and R. Malhotra, “Comparative analysis of regression
and machine learning methods for predicting fault proneness models,”
International Journal of Computer Applications in Technology, vol. 35,
no. 2, pp. 183–193, 2009.

946 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 901
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50055
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 901
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50055
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 901
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50055
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


