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Abstract. Foundry is an important industry that supplies key products
to other important sectors of the society. In order to assure the quality of
the final product, the castings are subject to strict safety controls. One of
the most important test in these controls is surface quality inspection. In
particular, our work focuses on three of the most typical surface defects in
iron foundries: inclusions, cold laps and misruns. In order to automatise
this process, we introduce the QT Clustering approach to increase the
perfomance of a segmentation method. Finally, we categorise resulting
areas using machine-learning algorithms. We show that with this addition
our segmentation method increases its coverage.
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1 Introduction

Foundry process is one of the most relevant indicatives of the progress of a
society. Generally, it consists on melting a material and pouring it into a mould
where it solidifies into the desired shape. Later, the resulting castings are used
in other industries like aeronautic, automotive, weaponry or naval, where they
are critical and any defect may be critical. For this reason, the manufactured
castings must success very strict safety controls to ensure their quality.

In this context, there are many defects that may appear on the surface of the
casting. In this paper, we focus on three of the most common surface defects:
(i) inclusions, which are little perforations caused by an excess of sand in the
mould; (ii) misruns, that appear when not enough material is poured into the
mould; and finally, (iii) cold laps, which are produced when part of the melted
material is cooled down before the melting is completed.

Currently, the visual inspection and quality assessment are performed by
human operators [1, 2]. Although, people can perform some tasks better than
machines, they are slower and can get easily exhausted. In addition, qualified



operators are hard to find and to maintain in the industry since they require
capabilities and learning skills that usually take them long to acquire.

2 Proposed Machine Vision System

For the casting surface information retrieval, a simple computer-vision system
was developed, composed by [3]: (i) image device, (ii) processing device and (iii)
robotic arm.

1. Image device: We obtain the three-dimensional data through a laser-based
triangulation camera. By taking advantage of the high-power (3-B class)
laser, we are able to scan the casting even though their surface tends to be
dark.

2. Processing device: We utilise a high-speed workstation. In particular, we
use a workstation with a XENON E5506 processor working with 6GB of
RAM memory and a QUADRO FX1800 graphic processing unit. This com-
ponent controls the camera and the robotic arm. Besides, it processes the
information retrieved by the image capturing device and transforms it into
segments.

3. Robotic arm: The function of the robot is to automate the gathering phase
of the system, making every necessary move to successfully acquire the data.
There are two working options [4]: (i) to use the arm in order to handle
the tested castings, leaving the image device in a fixed position or (ii) to
attach the camera to the robotic arm. We selected the second one due to the
diversity of the castings.

Fig. 1: The architecture of the machine vision system. (1) is the robotic arm, (2) is the
image device and (3) is the working table where the castings are put for analysis.

The casting is positioned on a working table using a manually adjusted
foundry mould. The mould is built with a material similar to common silicone,



which is easily malleable. In the case that we decide to change the casting type,
we will only have to change the mould. In this way, we ensure that the vision
system allows us to analyse every type of casting in the same position.

With this system, we capture the information of the casting surface. The
process starts by putting the casting manually on a working table. Then, we use
a mould that is built with a material similar to common silicone. In this way,
we ensure that the vision system allows us to analyse every type of castings in
the same position.

When the casting is on the working table, the robotic arm makes a linear
movement, retrieving a set of profiles based on the generated triangulation of
the laser and the optical sensor. In other words, a foundry casting C is composed
of profiles P such as C = {P1,P2, ...,Pn−1,Pn}. Each profile is retrieved with a
thickness of 0.2mm. These profiles are vectors p composed of the heights of each
point px,y. Joining these profiles, we represent the casting C as a height matrix
H

H =


h1,1 h1,2 ... h1,m−1 h1,m

h2,1 h2,2 ... h2,m−1 h2,m

...
h`−1,1 h`−1,2 ... h`−1,m−1 h`−1,m
h`,1 h`,2 ... h`,m−1 h`,m

 (1)

where each hx,y represent the height of the point in the space (x, y). Therefore,
the number of profiles of each casting depends on its size.

Once the system has computed the matrix H, we have to remove the possible
existing noise, as well as the data unrelated to the casting surface. To this end,
we establish a height threshold empirically.

Finally, we generate the following representations of the information, besides
from the heigh matrix:(i) normals matrix and (ii) normals map coded in RGB.

– Normals Matrix. This representation is generated by means of the height
matrix, but shows the direction of the normal vector of the surface for
each point in the matrix. Each vector for each point have three components
(x, y, z).

– Normals Map coded in RGB. This image represents the information
of the Normals Matrix corresponding red component to the x value, green
component to the y value and blue component to the z value.

3 Enhanced Segmentation Method

Image segmentation consists on the subdivision of an image into disjointed re-
gions [5]. Usually, these regions represent areas of the original image that contain
at least one irregularity (defect or regular structure). In [6], we presented a model
based approach for image segmentation. This method uses correct castings to



compare with the normals map coded in RGB of the potentially defective sur-
faces. Then, we employed 176 correct castings to build the model, and we con-
firmed that if the number of correct castings increases, the performance of the
segmentation method decreases.

In this paper we optimise this segmentation method, using a combination
of: (i) image filters (to emphasise the defective areas); and (ii) the use of QT
clustering algorithm (to reduce the information of the good castings used like a
models).

Quality threshold algorithm was proposed by Heyer et al. [7] to extract rel-
evant information of big datasets. Specifically, we use the implementation of
this algorithm proposed by Ugarte-Pedrero et al. [8]. The Figure 2 shows the
pseudo-code of this implementation and how are centroid vectors generated.

input : The original dataset V, the distance threshold for each cluster threshold, and the
minimum number of vectors in each cluster minimumvectors

output: The reduced dataset R
// Calculate the distance from each vector (set of executable features) to the rest of

vectors in the dataset.
foreach {vi|vi ∈ V} do

foreach {vj |vj ∈ V} do
// If a vector vj’s distance to vi is lower than the specified threshold, then

vj is added to the potential cluster Ai, associated to the vi vector
if distance(vi,vj) ≥ threshold then
Ai.add(vj)

end

end

end
// In each loop, select the potential cluster with the highest number of vectors.
while ∃Ai ∈ A : |Ai| ≥ minimumvectors and ∀Aj ∈ A : |Ai| ≥ |Aj | and i 6= j do

// Add the centroid vector for the cluster to the result set R.add(centroid(Ai))
R.add(centroid(Ai))
// Discard potential clusters associated to vectors vj ∈ Ai

foreach {vj |vj ∈ Ai} do
A.remove(Aj) V.remove(vj)

end
// Remove vectors vj ∈ Ai from the clusters Ak remaining in A
foreach {Ak|Ak ∈ A} do

foreach {vj |vj ∈ Ak and vj ∈ Ai} do
Ak.remove(vj)

end

end

end
// Add the remaining vectors to the final reduced dataset
foreach {vj |vj ∈ V} do
R.add(vj)

end

Fig. 2: Pseudo-code of the implementation of QT Clustering based model re-
duction algorithm proposed by Ugarte-Pedrero et al. [8].

The input vectors are composed of the heigh matrix of the correct casting
surfaces, concatenating each row in a sole row. In other words, if we have a
height matrix H, the input vector v that represents H is the following

v = {h1,1, h1,2, ..., h1,n−1, h1,n, h2,1, h2,2, ..., hm,n−1, hm,n} (2)



QT clustering algorithm requires to fix a threshold to determine the maxi-
mum distance between two vector of the same cluster. Specifically, we use Eu-
clidean distance and we set different values for the threshold to optimise the
performance of the segmentation method.

Next, the centroids are generated, replacing the original model castings and
the segmentation process continues with the following steps:

1. The process starts converting to grey-scale the normals map coded in RGB
of the casting and of the correct models. This step is necessary to remove
any noise of the rugosity of the surface.

2. The Gaussian Blur [9] filter is applied.
3. The process continues applying the difference filter between the result image

of the previous steps and each model image.
4. The system applies a intersection filter between the differences computed in

the previous step.
5. The result image is binarized.
6. The process ends with an algorithm that extracts the areas potentially faulty,

removing the ones which are excessively small.

For each extracted area, several features are computed. These features can
be divided into the following categories:

– Features of the segmented image: The segmented image is the result of
the segmentation process applied to the normal map. We use: (i) the width,
height and perimeter of the area; (ii) the euclidean distance of the center of
gravity of the area to origin of coordinate axes; and (iii) the fullness, which
is computed as Area/(Width ∗Height).

– Features of the integral image of segmented binary image: These
features are obtained from the conversion to the integral image of the seg-
mented version of the image. An integral image is defined as the image in
which the intensity at a pixel position is equal to the sum of the intensities
of all the pixels above and to the left of that position in the original image
[10]. We use: (i) mean value of pixels in the integral image and (ii) the result
of addition of the pixels values in the integral image.

– Features of the height matrix: They are extracted from the computed
segments in the original grey-scale height map. We use: (i) summation, mean,
variance, standard deviation, standard error, min, max, range, median, en-
tropy, skewness and kurtosis of the height matrix values; and (ii) summa-
tion, mean, variance, standard deviation, standard error, min, max, range,
median, entropy, skewness and kurtosis of the height matrix without zero
pixels values.

– Features of the normals matrix: These features are extracted from the
computed segments in the original normals matrix. We use: (i) summation,
mean, variance, standard deviation, standard error, min, max, range, me-
dian, entropy, skewness and kurtosis of the x component; (ii) summation,
mean, variance, standard deviation, standard error, min, max, range, me-
dian, entropy, skewness and kurtosis of the x component without zero pixels



values; (iii) summation, mean, variance, standard deviation, standard error,
min, max, range, median, entropy, skewness and kurtosis of the y compo-
nent; (iv) summation, mean, variance, standard deviation, standard error,
min, max, range, median, entropy, skewness and kurtosis of the y compo-
nent without zero pixels values; (v) summation, mean, variance, standard
deviation, standard error, min, max, range, median, entropy, skewness and
kurtosis of the z component; and (vi) summation, mean, variance, standard
deviation, standard error, min, max, range, median, entropy, skewness and
kurtosis of the z component without zero pixels values.

4 Empirical validation

To evaluate our casting defect detector and categoriser, we collected a dataset
from a foundry, which is specialised in safety and precisions components for the
automotive industry (principally, in disk-brake support with a production over
45,000 tons per year). Three different types of defect (i.e., inclusion, cold lap and
misrun) were present in the faulty castings.

To construct the dataset, we analysed 639 foundry castings with the seg-
mentation machine-vision system described in Section 2 in order to retrieve the
different segments and their features. In particular, we used 236 correct castings
as input for the clustering algorithm and the remainder for testing.

The acceptance/rejection criterion of the studied models resembles the one
applied by the final requirements of the customer. Pieces flawed with defects
must be rejected due to the very restrictive quality standards (which is a require-
ment of the automotive industry). We labelled each possible segment within the
castings with its defects.

First, we evaluate the coverage of our segmentation method using different
values for QT Clustering threshold. To this end, we define the metric ‘Coverage’
as:

Coverage =
Ss→s

Ss→s + Sc→s
· 100 (3)

where Ss→s is the number of segments retrieved by the segmentation system
which are defects and Sc→s are the number of defects that our segmentation
method does not gather.

The Table 1 shows the evolution of the coverage of the segmentation method
using different values for the clustering threshold.

We can notice that the coverage increases with higher values of the threshold.
Besides, when we use a threshold higher than 450, the segmented areas are too
big and the method loses precision. For this reason, we compute the segmentation
process using the 51 centroids vectors.

By means of this analysis, we constructed a dataset of 6,150 segments to
train machine-learning models and determine when a segment is defective. Be-
sides, we added a second category to identify the noise that our machine vision
system retrieves called ‘Correct’, which represents the segments gathered by the



Table 1: Coverage results and generated centroids for different threshold values.

Threshold Number of centroids Coverage(%)

300 236 59.71
325 234 59.87
350 218 60.69
375 182 62.97
400 128 66.72
425 68 77.00
450 51 78.79

segmentation method that are correct even though the method has marked them
as potentially faulty. In particular, 5,686 were correct and 464 were faulty.

Table 2: Number of samples for each category.

Category Number of samples

Correct 33,216
Inclusion 553
Cold Lap 20
Misrun 60

Next, we evaluate the precision of the machine-learning methods to categorise
the segments. To this extent, by means of the dataset, we conducted the following
methodology to evaluate the proposed method:

– Cross validation: This method is generally applied in machine-learning
evaluation [11]. In our experiments, we performed a K-fold cross validation
with k = 10. In this way, our dataset is split 10 times into 10 different sets
of learning (90% of the total dataset) and testing (10% of the total dataset).

– SMOTE: The dataset was not balanced for the different classes. To address
unbalanced data, we applied Synthetic Minority Over-sampling TEchnique
(SMOTE) [12], which is a combination of over-sampling the less populated
classes and under-sampling the more populated ones. The over-sampling is
performed by creating synthetic minority class examples from each training
set. In this way, the classes became more balanced.

– Learning the model: For each fold, we accomplished the learning step
using different learning algorithms depending on the specific model. Partic-
ularly, we used the following models:

• Bayesian networks (BN): With regards to Bayesian networks, we utilize
different structural learning algorithms: K2 [13] and Tree Augmented
Näıve (TAN) [14]. Moreover, we also performed experiments with a Näıve
Bayes Classifier [11].



• Support Vector Machines (SVM): We performed experiments with a
polynomial kernel [15], a normalized polynomial Kernel [16], a Pear-
son VII function-based universal kernel [17] and a radial basis function
(RBF) based kernel [18].

• K-nearest neighbour (KNN): We performed experiments with k = 1,
k = 2, k = 3, k = 4, and k = 5.

• Decision Trees (DT): We performed experiments with J48(the Weka
[19] implementation of the C4.5 algorithm [20]) and Random Forest
[21], an ensemble of randomly constructed decision trees. In particular,
we tested random forest with a variable number of random trees N ,
N = 10, N = 25, N = 50, N = 75, and N = 100.

– Testing the model: To test the approach, we evaluated the percent of
correctly classified instances and the area under the ROC curve, which es-
tablishes the relation between false negatives and false positives [22].

Regarding the coverage results, our segmentation method is able to detect
78.79% of the surface defects. This coverage value is higher than we obtained
without clustering. In particular, the coverage increases in 19.09 points.

Table 3: Results of the categorisation in terms of accuracy and AUC.

Model Accuracy(%) AUC

Bayes K2 97.21 0.8364
Bayes TAN 98.40 0.7229
Näıve Bayes 81.83 0.8938
SVM: Polynomial Kernel 93.22 0.9543
SVM: Normalised Polynomial Kernel 96.85 0.9611
SVM: Pearson VII Kernel 98.81 0.9516
SVM: Radial Basis Function Kernel 93.98 0.9578
KNN K = 1 98.03 0.5584
KNN K = 2 98.17 0.5860
KNN K = 3 98.11 0.6104
KNN K = 4 98.16 0.6277
KNN K = 5 98.09 0.6450
J48 97.58 0.7911
Random Forest N = 10 98.63 0.9497
Random Forest N = 25 98.62 0.9621
Random Forest N = 50 98.66 0.9680
Random Forest N = 75 98.67 0.9692
Random Forest N = 100 98.70 0.9689

If we focus in the precision of the categorisation of the segments, Table 3
shows the results of the categorisation phase. In particular, the best results
were obtained by the Random Forest trained with more than 50 trees with an



accuracy of more than 98% and an AUC of 0.96. SVM trained with a Radial
Basis Function kernel and trained with Polynomial Kernel obtained poor results,
implying that a radial division of the space is not as feasible as others, because
the rest of the SVMs behaved with accuracies higher 98% in the case of Pearson
VII and near 97% in the case of the Normalised Polynomial kernel. Surprisingly,
the lazy classifier KNN achieved high results, ranging from 98.03% to 98.17%
of accuracy and from 0.55 to 0.64 or AUC. J48 was an average classifier that
achieved an AUC of 0.79.

5 Conclusions and future work

In this paper, we proposed an improvement for a machine vision system. Con-
cretely, we used Quality Threshold Clustering to reduce the data of the correct
castings used in the segmentation methods. Also, with this enhancement we
have increased the coverage of the method. Then we evaluated our new segmen-
tation method using machine learning models to categorise the detected areas
into correct, inclusion, cold lap or misrun. For this classification, we proposed
new features, using different representations. The experimental results showed
that, albeit our precision in categorisation is very high, the coverage of the seg-
mentation method had increased.

Future work is oriented in 2 main ways. First, we are going to develop new
segmentation methods in order to enhance the coverage results and the system
performance. Second, we will evaluate different features and approaches in order
to improve the categorisation process.

References

1. Mital, A., Govindaraju, M., Subramani, B.: A comparison between manual and
hybrid methods in parts inspection. Integrated Manufacturing Systems 9(6) (1998)
344–349

2. Watts, K.P.: The effect of visual search strategy and overlays on visual inspection
of castings. Master’s thesis, Iowa State University (2011)

3. Pernkopf, F., O’Leary, P.: Image acquisition techniques for automatic visual in-
spection of metallic surfaces. NDT & E International 36(8) (2003) 609–617

4. vom Stein, D.: Automatic visual 3-d inspection of castings. Foundry Trade Journal
180(3641) (2007) 24–27

5. Castleman, K. Second edn. Prentice-Hall, Englewood Clliffs, New Jersey (1996)
6. Pastor-Lopez, I., Santos, I., Santamaria-Ibirika, A., Salazar, M., de-la Pena-Sordo,

J., Bringas, P.: Machine-learning-based surface defect detection and categorisation
in high-precision foundry. In: Industrial Electronics and Applications (ICIEA),
2012 7th IEEE Conference on. (2012) 1359–1364

7. Heyer, L.J., Kruglyak, S., Yooseph, S.: Exploring expression data: identification
and analysis of coexpressed genes. Genome research 9(11) (1999) 1106–1115

8. Ugarte-Pedrero, X., Santos, I., Bringas, P., Gastesi, M., Esparza, J.: Semi-
supervised learning for packed executable detection. In: In Proceedings of the 5th
International Conference on Network and System Security (NSS). (2011) 342–346



9. Gonzalez, R., Woods, R.: Digital image processing. Reading, Mass.: Addison-
Wesley 16(716) (1992)

10. Viola, P., Jones, M.: Robust real-time face detection. International journal of
computer vision 57(2) (2004) 137–154

11. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press
(1995)

12. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research 16(3) (2002)
321–357

13. Cooper, G.F., Herskovits, E.: A bayesian method for constructing bayesian belief
networks from databases. In: Proceedings of the 1991 conference on Uncertainty
in artificial intelligence. (1991)

14. Geiger, D., Goldszmidt, M., Provan, G., Langley, P., Smyth, P.: Bayesian network
classifiers. In: Machine Learning. (1997) 131–163

15. Amari, S., Wu, S.: Improving support vector machine classifiers by modifying
kernel functions. Neural Networks 12(6) (1999) 783–789

16. Maji, S., Berg, A., Malik, J.: Classification using intersection kernel support vector
machines is efficient. In: Proc. CVPR. Volume 1. (2008) 4
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