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Abstract—Foundry is one of the key axes in society because
it provides with important pieces to other industries. However,
several defects may appear in castings. In particular, Dross is
defect that is a type of non-metallic, elongated and filamentary
inclusion. Unfortunately, the methods to detect Dross have to
be performed once the production has already finished using
quality controls that incur in a subsequent cost increment. Given
this context, we propose the first machine-learning-based method
able to foresee Dross in iron castings, modelling the foundry
production parameters as input. Our results have shown that
this method obtains good accuracy results when tested with real
data from a heavy-section casting foundry.

I. INTRODUCTION

Spheroidal graphite irons (SGI) or ductile irons were de-

veloped and patented for the International Nickel Company

Research Laboratory by Keith Millis et al. in the 1940s [1].

After more than sixty years of development, SGI have become

an economically interesting group of materials with interesting

physical properties as high toughness, corrosion resistance or

high tensile strength [2] and applications in automotive, wind

mills or tooling industries. These properties are due to the

different microstructures which are available both in the as-

cast or heat-treated states.

One of the main structural characteristic of cast irons is the

shape of graphite particles which are present in the metallic

matrix. In SGI, graphite is formed as spherical particles or nod-

ules rather than flakes as in lamellar graphite irons (also named

grey irons). The spherical growth of nodules is promoted by

the addition of nodularizing elements such as Mg or Ce [2], [3]

to melts usually by means of FeSiMg or Misch-Metal alloys.

The technological and economic advantages of SGI have in-

creased the production of this type of alloy during the last sixty

years up to a world production of 23 Mt per year in 2010 [4].

Approximately 2 Mt per year are produced for heavy-section

castings meanwhile 0.5 Mt are used to manufacture cast parts

for the wind mills industry [5]. This strong development has

also required important advances in both processing knowledge

and control in order to produce sound cast parts with complex

geometries and satisfactory mechanical properties.

In the case of heavy-section castings produced for wind

mills, customer requirements and competence have increased

rapidly. As a consequence of this, parameters like the surface

quality or the appearance of internal inclusions become critical

aspects when validating the functionality of the cast parts. It

has been reported in the literature [6], [7] that both, surface

defects and sand/slag inclusions, negatively affect the fatigue

behaviour by acting as stress raiser spots that promote crack

initiation during the service period. Thus one of the most im-

portant challenges of heavy-casting foundries is to manufacture

as-cast parts free of sand or slag inclusions, with high surface

quality and also with lower costs.

Amongst the various types of slag inclusions, Dross and

Dross-pitting are the most representative and detrimental.

Specifically, Dross is a non-metallic inclusion with elongated

and filamentary aspect [6] usually surrounded by degenerated

graphite (lamellar and/or vermicular shapes). In contrast to

sand inclusions, the origin of Dross particles is endogenous and

it is associated with the high reactivity of Oxygen, Silicon and

Magnesium, this last added during the necessary spheroidiza-

tion treatment. Several technical papers [6], [8]–[10] have been

published for describing the characteristics of this defect and

for determining the mechanisms and factors that have influence

on Dross appearance. The results of these works are useful

to implement some general rules when manufacturing heavy-

section cast parts. However, this understanding is not still

enough to optimise the production processes and to obtain the

minimum rejection levels.

An effective combination of machine-learning tools and the

available processing data coming from foundries must lead to

a deeper understanding about how the processing parameters

and cast parts characteristics affect Dross formation.

Besides, a prediction tool for this parameter would lead

foundries to lower reject rates and the subsequent cost and

time saving. Successful machine-learning approaches related

with other foundry problems have been previously reported in

[11]–[18].

Against this background, we present here the first machine

learning based tool that has been developed and, then, success-

fully applied to predict and to prevent Dross defects in cast iron

parts. The data base used contained experimental processing

parameters and defect evaluation on parts as output data.

In summary, our main contributions are:

• We study the variables to represent the Dross formation

as a machine learning classification task.

• We adapt the machine-learning algorithms for the Dross
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prediction.

• We show that our method is capable of predicting Dross

with a high accuracy.

The remainder of this paper is organised as follows: Section

II details the casting production process. Section III describes

the problem of Dross formation. Section IV describes the dif-

ferent method that we have applied to this particular problem

domain. Section V describes the experiments and presents

results. Finally, Section VI concludes the paper and outlines

avenues for future work.

II. MANUFACTURE OF HEAVY-SECTION CAST PARTS

Cast iron foundries are companies that produce a wide range

of different cast parts which complex designs and close to their

final shape. Basically, these castings are manufactured by pour-

ing molten alloys in sand moulds after controlling the chemical

composition and the quality of melts. Before pouring, moulds

must be prepared placing the needed cores to create internal

sections. Once metal is cooled sufficiently (200− 500◦C) the

casting is removed from the sand and then properly cleaned

and finished. Figure 1 details the manufacturing process for

the production for heavy-section parts.

Fig. 1. Different steps in heavy-section castings production.

A. Pattern making and Mould Design

Moulding and core-making patterns respectively provide

the exterior and interior shape of any designed heavy-section

casting. These patterns are normally produced in wood or

polystyrene (this last also called as ‘lost foam moulding’). In

this step, simulation tools are essential to design the filling

systems and to evaluate the needs of risers in the final lay-

outs. These last feeders are used to avoid the formation of

shrinkage defects during solidification.

B. Mould-making and Core-making

Production of heavy-section castings requires big moulds

which are normally manufactured using chemical-bonded sand

mixtures. For this purpose, controlled mixtures composed by

recycled sand, new sand, furanic resins and acid catalysts

are prepared using continuous mixers in plants. The prepared

sand mixtures are rapidly added on framed patterns and hand-

squeezed before sand hardening. After several hours, the mould

components are removed from patterns, cores are then inserted

and finally moulds are finished by assembling the different

components. The current preparation of moulds for heavy-

section castings is still a quite handmade process. Mould and

core physical properties are usually controlled by means of

several standardized analysis made both on the produced sand

mixtures and on the materials used to prepare them.

C. Weigh-in of Raw Materials

Chemical features of the final castings mainly depend on

the composition of the metallic charges added to the melting

furnace and on the type of raw materials employed (low

alloyed pig iron, internal returns and steel scrap among others).

Both aspects strongly depend on market conditions, thus,

foundries have to take into account the existing prices and

availability of raw materials, and the casting requirements

when managing the needed melts composition.

D. Melting

Designed metallic charges are gradually introduced in a

melting furnace (usually a medium frequency induction fur-

nace though cupolas, electric arc furnaces or rotary furnaces

are also utilized). After melting, chemical composition of

molten alloys is checked and adjustments are normally required

by means of the addition of specific Fe-alloys or alloying

elements. Then the liquid metal temperature is increased to

1400 − 1450◦C and its surface properly skimmed. In this

step, the obtained melt composition, called as ‘base metal’, is

checked again by spectrometry, combustion techniques and/or

thermal analysis.

E. Magnesium Treatment

Spherical shape of graphite particles precipitated in ductile

cast irons becomes the cause of their interesting mechanical

properties. In particular, ferritic ductile irons with impact and

fatigue requirements for wind mill industry strongly depend

on the correct shape of graphite nodules and on nodule count.

The active element to achieve the desirable graphite particles

shape is Magnesium (called as ‘nodularising agent’).
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This chemical element is normally added via a FeSiMg

master-alloy which is added to the base metal. A nodularising

ladle is used for this purpose. Before transferring the base

metal from the melting furnace, the FeSiMg alloy is placed in

a reaction chamber located in the bottom of the nodularising

ladle. Then the FeSiMg is covered (usually adding steel scrap

returns from stamping processes) to delay the start of the

reaction between the transferring base metal and the master-

alloy. When the reaction is accomplished, the resulting batch

surface is skimmed and its temperature and chemical com-

position measured. In modern heavy-section foundry plants,

the quality of the prepared melts is measured by Thermal

Analysis techniques in order to evaluate, among others, its

graphite nucleation potential. Finally, the Mg-treated melt is

transferred to the corresponding pouring area.

F. Inoculation

In addition to Magnesium, an effective inoculation process

is needed to guarantee the suitable spherical shape of precipi-

tated graphite particles. Additionally, inoculation is also essen-

tial to obtain high nodule counts (homogeneous distribution of

graphite nodules in the metallic matrix). Inoculation consists in

the addition of a controlled amount of an inoculant product to

the melt just before pouring the mould. Inoculants are normally

composed by a FeSi alloy that contains other active elements

(Ca, Al, Sr, Zr, etc.) to promote graphite nucleation and growth

during solidification of cast irons.

It is usual to find two different inoculation steps in heavy-

section castings production. An early inoculation (also called

as ‘pre-inoculation’) is performed in the nodularising ladle

adding the inoculant in the reaction chamber on the FeSiMg

master-alloy. On the other hand, a post-inoculation is carried

out when pouring the mould by placing some inoculant blocks

in the gating system.

G. Casting or Pouring Process

Before starting the mould filling, the Mg-treated and inoc-

ulated melt is usually placed in a basin located in the top of

the mould. It is critical to keep under control variables as the

melt temperature and the filling time.

H. Cast Part Separation from the Mould (Shake-out)

After cooling, the cast part must be removed from the mould

by shaking the casting-mould system in a grid. This procedure

extracts the major amount of sand from the cast part, filling

channels and feeders. Cooling rate has an important influence

on microstructural characteristics and on mechanical properties

of cast irons. Thus, cast parts have to remain in the mould until

the required temperature so as to guarantee that the obtained

microstructure is correct. For ferritic heavy-section castings,

the maximum temperature in the part must be lower than

600◦C before removing it from the mould. Hence, the time

between pouring the mould and removing the cast part takes

several days depending on the weight of metal poured in the

mould.

I. Removal of Filling Channels and Risers

Once the casting is extracted from the mould, filling

channels and feeding systems (these last tools are used to

compensate for the lack of mass due to the contraction of

melts during solidification and, consequently, to minimise the

formation of shrinkages) are separated from the cast part. They

are regularly removed by knocking off, sawing or cutting.

J. Cast Part Cleaning

The objective of this step is to remove the residual sand still

stuck to the cast part surface by shot-blasting. This procedure

consists in rapidly impacting the surface of the part with a

controlled stream of abrasive metallic shots. This step allows

cleaning the part surface for subsequent inspections.

K. Quality Assurance and Finishing Step

Once the cast part surface has been correctly cleaned, a

number of controls have to be made to determine the validity

of it according to the established customer requirement. These

controls depend on the casting type and its application. The

ferritic heavy-section cast parts produced for wind mills are

object of intensive evaluation controls. These parts are used

for applications that demand important fatigue efforts. So any

shrinkage, Dross inclusion, gas porosity and/or sand inclusion

that are present in the metallic matrix have a negative effect on

this critical demand. Therefore, the potential presence of any

of these defects is exhaustively controlled for each cast part

according to the specifications established by the customers

or end-users. The appearance of any of the defects mentioned

above will require additional cleaning operations to eliminate

all affected areas and to fulfil the customer requirements. This

additional cleaning works strongly increase the costs linked

to the manufacture of each cast part. When the importance

of the defects consequences is big enough, the cast part will

be rejected with important costs for the foundry. The usual

required controls for ferritic cast parts produce for wind mills

are the following:

• Visual inspection of all surfaces to detect external defects

(inclusions, high roughness, geometric problems, blow

holes, etc.).

• Magnetic particles inspection for a detailed detection of

surface defects. The detected defects have to be removed

by wearing down all affected areas.

• Ultrasound inspection to detect and evaluate internal

defects (shrinkages, Dross inclusions, sand inclusions,

gas porosities, etc.). The detected defects have to be

eliminated by wearing down all affected areas.

• Second visual inspection after removing the possible areas

with defects and then after shot-blasting again the cast

part.

• Chemical analysis of the melt poured into the mould.

• Complete metallographic analysis on the demanded cast-

ing areas and/or samples.

• Mechanical properties measurement on the demanded

casting areas and/or samples. Tensile strength, yield

strength, elongation and impact properties at different
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temperatures are typically controlled in ferritic heavy-

section castings produced for wind mills.

L. Other Finishing Operations

After finishing and validating a cast part, other finishing

operations are required (machining, painting, application of

corrosion preventive coating, etc.). Although these subsequent

finishing operations are not directly linked to the foundry

process, some of the most modern foundries include them

among their activities in order to offer their clients a product

with an increased added value. It is necessary to emphasize

here that machining processes may discover internal defects on

castings that were not detected in previous control tests. Such

results would complicate the final validation of the involved

cast part.

III. DROSS INCLUSIONS AND AFFECTING VARIABLES

Slag inclusions are one of the most common defects found

in ductile iron parts. These inclusions are oxides that are

formed by the reaction of different chemical elements involved

in the nodularisation and inoculation treatments. The term

‘Dross’ is normally referred to an internal slag inclusion

(Figure 2) with elongated and filamentary aspect and usually

surrounded by degenerated graphite particles. Although the

composition of Dross inclusions can be more complex, MgO

and SiO2 oxides are normally found when analysing them.

Fig. 2. Dross defect in a ductile iron part.

The presence of slag inclusions is frequently linked to

problems when cleaning the Magnesium treated melts before

pouring. However, Dross defect can be detected in cast parts

even when using correctly skimmed melts. This fact is a con-

sequence of the continuous formation of Dross in the internal

mass of liquid irons before solidifying. In such condition,

active elements as Si and Mg progressively react and oxides

and other complex compounds are precipitated. Therefore, the

resulting inclusions occupy small internal areas of the solid

material and an important negative effect on its mechanical

properties will be obtained. Three different main causes are

considered in foundry plants regarding Dross inclusions: chem-

ical composition of melt, turbulences when filling the moulds

and pouring temperatures. However a proper control of these

factors does not seem to be enough to minimize the appearance

of this defect and other processing variables must be taken into

account.

IV. MACHINE LEARNING TECHNIQUES

Machine-learning is an active research area within Artificial
Intelligence (AI) that focuses on the design and development

of new algorithms that allow computers to reason and decide

based on data [19].

Machine-learning algorithms can commonly be divided into

three different types depending on the training data: supervised

learning, unsupervised learning and semi-supervised learning.

For supervised algorithms, the training dataset must be labelled

(e.g., the defect in the casting) [20]. Unsupervised learning

algorithms try to determine how data are organised into

different groups named clusters. Therefore, data do not need

to be labelled [21]. Finally, semi-supervised machine-learning

algorithms use a mixture of both labelled and unlabelled data

in order to build models, improving the accuracy of solely

unsupervised methods [22].

Because castings can be properly labelled, we use super-

vised machine-learning; however, in the future, we would also

like to test unsupervised methods for automatic categorisation

of foundry defects.

A. Bayesian Networks

Bayesian Networks [23], which are based on the Bayes
Theorem, are defined as graphical probabilistic models for mul-

tivariate analysis. Specifically, they are directed acyclic graphs

that have an associated probability distribution function [24].

Nodes within the directed graph represent problem variables

(they can be either a premise or a conclusion) and the edges

represent conditional dependencies between such variables.

Moreover, the probability function illustrates the strength of

these relationships in the graph [24].

The most important capability of Bayesian Networks is their

ability to determine the probability that a certain hypothesis is

true (e.g., the probability of a casting to have certain defect)

given a historical dataset.

B. Decision Trees

Decision Tree classifiers are a type of machine-learning

classifiers that are graphically represented as trees. Internal

nodes represent conditions regarding the variables of a prob-

lem, whereas final nodes or leaves represent the ultimate

decision of the algorithm [25].

Different training methods are typically used for learning

the graph structure of these models from a labelled dataset.

We use Random Forest, an ensemble (i.e., combination of weak

classifiers) of different randomly-built decision trees [26], and

J48, the WEKA [27] implementation of the C4.5 algorithm

[28].

C. K-Nearest Neighbour

The K-Nearest Neighbour (KNN) [29] classifier is one of

the simplest supervised machine learning models. This method

classifies an unknown specimen based on the class of the

instances closest to it in the training space by measuring
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the distance between the training instances and the unknown

instance.

Even though several methods to choose the class of the

unknown sample exist, the most common technique is to

simply classify the unknown instance as the most common

class amongst the K-nearest neighbours.

D. Support Vector Machines (SVM)

SVM algorithms divide the n-dimensional space represen-

tation of the data into two regions using a hyperplane. This

hyperplane always maximises the margin between those two

regions or classes. The margin is defined by the farthest dis-

tance between the examples of the two classes and computed

based on the distance between the closest instances of both

classes, which are called supporting vectors [30].

Instead of using linear hyperplanes, it is common to use

the so-called kernel functions. These kernel functions lead to

non-linear classification surfaces, such as polynomial, radial or

sigmoid surfaces [31].

V. EMPIRICAL VALIDATION

The acceptance/rejection criterion of the studied models

resembles the one applied by the final requirements of the

customer. Cast parts flawed with defects must be rejected due

to the very restrictive quality standards (which is an imposed

practice by the automotive industry). To this end, we labelled

each possible segment within the castings with its defects.

A whole dataset that contained records from the most im-

portant processing variables involved in a heavy-section casting

foundry process was created. 120 different parameters related

with raw materials, chemical composition of melt, thermal

analysis data, inoculation, magnesium treatment, pouring time

and pouring temperature, etc. were collected in addition to the

output data. In this last case, the volume affected by Dross

measured by ultrasound inspection on each produced cast part

was selected as output variable.

Next, we evaluate the precision of the machine-learning

method to predict the value of Dross. The final level of Dross

was discretized in 5 different categories in order to apply

classification techniques:

1) Dross ≤ 2.5
2) 2.5 < Dross ≤ 3.5
3) 3.5 < Dross ≤ 4.5
4) 4.5 < Dross ≤ 5.5
5) 5.5 < Dross ≤ 6.5
6) Dross > 6.5

Hereafter, by means of the dataset, we conducted the

following methodology to evaluate the proposed method:

• Cross validation: This method is generally applied in

machine-learning evaluation [32]. In our experiments, we

performed a K-fold cross validation with k = 10. In this

way, our dataset is 10 times split into 10 different sets of

learning (90 % of the total dataset) and testing (10 % of

the total data).

• Learning the model: For each fold, we accomplished the

learning step of each algorithm using different parameters

for the learning algorithms depending on the specific

model. In particular, we used the following models:

– Bayesian networks (BN): With regards to Bayesian

networks, we utilize different structural learning al-

gorithms: K2 [33] and Tree Augmented Naı̈ve (TAN)

[34]. Moreover, we also performed experiments with

a Naı̈ve Bayes Classifier [32].

– Support Vector Machines (SVM): We performed ex-

periments with a polynomial kernel [31], a nor-

malised polynomial Kernel [35], a Pearson VII

function-based universal kernel [36] and a radial

basis function (RBF) based kernel [37].

– K-nearest neighbour (KNN): We performed experi-

ments with k = 1, k = 2, k = 3, k = 4, and k = 5.

– Decision Trees (DT): We performed experiments

with J48(the Weka [27] implementation of the C4.5
algorithm [28]) and Random Forest [26], an ensemble

of randomly constructed decision trees. In particular,

we tested random forest with a variable number of

random trees N , N = 10, N = 20, N = 30,

N = 40, and N = 50.

• Testing the model: To test the approach, we evaluated the

percent of correctly classified instances and the area under

the ROC curve (AUC), which establishes the relation

between false negatives and false positives [38].

TABLE I
RESULTS OF DROSS PREDICTION IN TERMS OF ACCURACY AND AREA

UNDER THE ROC CURVE (AUC).

Classifier Accuracy(%) AUC
Naı̈ve Bayes 47.86±3.06 0.7690±0.05
BN: K2 62.63±2.94 0.8939±0.03
BN: TAN 74.92±2.81 0.9560±0.02
KNN K = 1 30.20±2.89 0.5888±0.05
KNN K = 2 30.67±2.78 0.6323±0.05
KNN K = 3 30.25±2.93 0.6602±0.05
KNN K = 4 31.22±2.89 0.6672±0.05
KNN K = 5 30.99±2.82 0.6753±0.05
SVM: Polynomial Kernel 57.07±2.76 0.8135±0.04
SVM: Normalised Polynomial Kernel 50.92±3.08 0.7779±0.04
SVM: RBF Kernel 44.78±2.79 0.7165±0.04
SVM: Pearson VII Kernel 62.59±2.72 0.8239±0.04
DT: J48 62.97±3.23 0.8157±0.06
DT: RandomForest N = 10 70.23±3.00 0.8999±0.03
DT: RandomForest N = 20 72.54±2.55 0.9223±0.02
DT: RandomForest N = 30 73.33±2.56 0.9296±0.02
DT: RandomForest N = 40 73.65±2.39 0.9334±0.02
DT: RandomForest N = 50 73.87±2.31 0.9356±0.02

Table I shows the obtained results for Dross prediction in

terms of accuracy and area under the ROC curve. In this way,

the best results were obtained by Bayesian Networks trained

with Tree Augmented Naı̈ve, with a 74.92% of accuracy and a

0.9560 of AUC. Random Forest classifiers also obtained good

results with accuracy values higher that 70% and AUCs higher

than 0.89. Instance-based classifiers were the worst classifiers

with very poor results.

The results show that this method can be used in a high-

precision foundry. Remarkably, the good results achieved by
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the Bayesian network trained with Tree Augmented Naı̈ve

show that it can be used in a similar way as we have used the

Bayesian networks in previous works, for this defect. In this

way, combining the better classifiers and using them for the

defects that suit best, we can reduce the cost and the duration

of the actual testing methods, and provide an effective quality

control method.
Our experience shows that the behaviour of the system can

be deployed in the following way: when the system detects

that the probability of a inappropriate value of Dross to appear

is very high, the operator may change the factors to produce

another reference (and, thus, to skip the cost of having to re-

manufacture it again) and try it later.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel supervised learning

based approach for Dross defect detection in iron castings. This

method achieves good results in terms of accuracy.
Future work will be focused on three main directions. First,

we will utilise different features and methods for training

these kinds of models. Second, we will extend our study of

supervised learning by applying more algorithms to this issue.

Finally, we are going to focus on different defects in foundry

production in order to generate a general fault detector.
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