
JURD: Joiner of Un-Readable Documents algorithm
for Reversing the Effects of Tokenisation Attacks

against Content-based Spam Filters
Igor Santos, Carlos Laorden, Borja Sanz, Pablo G. Bringas

S3Lab, DeustoTech - Computing
Deusto Institute of Technology, University of Deusto

Avenida de las Universidades 24, 48007, Bilbao, Spain
Email: {isantos, claorden, borja.sanz, pablo.garcia.bringas}@deusto.es

Abstract—Spam has become a major issue in computer se-
curity because it is a channel for threats such as computer
viruses, worms and phishing. More than 85% of received e-mails
are spam. Historical approaches to combating these messages,
including simple techniques like sender blacklisting or the use
of e-mail signatures, are no longer completely reliable. Many
current solutions feature machine-learning algorithms trained
using statistical representations of the terms that most commonly
appear in such e-mails. However, there are attacks that can
subvert the filtering capabilities of these methods. Tokenisation
attacks, in particular, insert characters that create divisions
within words, causing incorrect representations of e-mails. In
this paper, we introduce a new method that reverses the effects
of tokenisation attacks. Our method processes e-mails iteratively
by considering possible words, starting from the first token and
compares the word candidates with a common dictionary to
which spam words have been previously added. We provide an
empirical study of how tokenisation attacks affect the filtering
capability of a Bayesian classifier and we show that our method
can reverse the effects of tokenisation attacks.

I. INTRODUCTION

Spam has become a significant problem for e-mail users in
the past decade; an enormous amount of spam arrives in peo-
ple’s mailboxes every day. At the time of this writing, 87.6% of
all e-mail messages were spam, according to the Spam-o-meter
website1. Spam is also a major computer security problem
that costs billions of dollars in productivity losses [1]: it is the
medium for phishing (i.e., attacks that seek to acquire sensitive
information from end-users) [2] and for spreading malicious
software (e.g., computer viruses, Trojan horses, spyware and
Internet worms) [1].

Machine-learning approaches have been effectively applied
to text categorisation problems [3], and they have been adopted
for use in spam filtering systems. Consequently, substantial
work has been dedicated to the naı̈ve Bayes filtering [4];
several studies on its effectiveness have been published [5],
[6], [7], [8], [9]. Another broadly embraced machine-learning
technique is the Support Vector Machine (SVM) method [10].
The advantage of SVM is that its accuracy is not diminished
even when a problem involves a large number of features [11].

1http://www.junk-o-meter.com/stats/index.php

Several SVM approaches have been applied to spam filtering
[12], [13]. Likewise, decision trees, which classify samples
using automatically learned rule-sets (i.e., tests) [14], have
also been used for spam filtering [15]. Collective classification,
a type of semi-supervised machine-learning algorithm, has
been also applied in several recent works [16], [17]. Recently,
several new approaches have proposed for dealing with the
semantics awareness of spam messages [18], [19]. All of these
machine-learning-based spam filtering approaches are known
as statistical content-based approaches [20].

Machine-learning approaches model e-mail messages using
the Vector Space Model (VSM) [21]. VSM is an algebraic
approach for Information Filtering (IF), Information Retrieval
(IR), indexing and ranking. This model represents natural lan-
guage documents mathematically by vectors in a multidimen-
sional space where the axes are terms within messages. VSM
requires a pre-processing step in which messages are divided
into tokens by separator characters (e.g., space, tab, colon,
semicolon, or comma). This step is known as tokenisation
[22] and it is mandatory for generating content-based spam
filtering tools. Attacks against this process called tokenisation
attacks, insert separators inside words within a message (e.g.,
‘via.gra’), permitting spammers to bypass filtering systems
while the body of the message is still readable by e-mail users
[23].

We propose the first method for reversing the effects of
tokenisation attacks to recover the filtering capabilities of
content-based methods. Our method reconstructs a message by
processing each token iteratively, analysing the possible words
surrounding the tokens. Our main points are as follows:

• Presentation of a new method capable of removing the
effects of tokenisation attacks.

• An empirical study of the effects of tokenisation attacks
against a naı̈ve Bayesian spam filter.

• An empirical demonstration of the ability of our method
to recover the filtering rate of naı̈ve Bayesian classifiers,
thus transforming the obfuscated e-mails back to their
original form.

The remainder of this paper is organised as follows. Section

II describes the attacks against tokenisation in spam filtering
tools. Section III introduces and describes a new method
capable of reversing the effects of the attacks on tokenisation.
Section IV provides an empirical study of how tokenisation
affects a naı̈ve Bayes spam filtering system and evaluates the
proposed method. Section V discusses the main implications
and limitations of the proposed method and outlines the
avenues for future work.

II. BAYESIAN SPAM FILTERING AND TOKENISATION
ATTACKS

Spam filtering software attempts to accurately classify email
massages into 2 main categories: spam or not spam (also
known as ‘ham’). To this end, we use the information found
within the body and subject of an e-mail message and discard
every other piece of information (e.g., the sender or time-
stamp of the e-mail). To represent messages, we start by
removing stop-words [24], which are words devoid of content
(e.g., ‘a’,‘the’,‘is’). These words do not provide any semantic
information and add noise to the model [25].

Afterwards, we represent the e-mails using an IR model.
Formally, let the IR model be defined as a 4-tuple
[E ,Q, F,R(qi, ej)] [22] where E , is a set of representations
of e-mails; F , is a framework for modelling e-mails, queries
and their relationships; Q, is a set of representations of
user queries; and, finally, R(qi, ej) is a ranking function that
associates a real number with a query qi (qi ∈ Q) and an
e-mail representation ej , so that (ej ∈ E).

As E is the set of text e-mails e, {e : {t1, t2, ...tn}}, each
comprising n terms t1, t2, . . . , tn, we define the weight wi,j as
the number of times the term ti appears in the e-mail ej if wi,j

is not present in e, wi,j = 0. Therefore, an e-mail ej can be
represented as the vector of weights ~ej = (w1,j , w2,j , ...wn,j).

On the basis of this formalisation, spam filtering systems
commonly use the Vector Space Model (VSM) [21], which
represents e-mails algebraically as vectors in a multidimen-
sional space. This space consists only of positive axis inter-
cepts. E-mails are represented by a term-by-document matrix,
where the (i, j)th element illustrates the association between
the (i, j)th term and the jth e-mail. This association reflects
the occurrence of the ith term in e-mail j. Terms can represent
different textual units (e.g., words or phrases) and can also
be individually weighted, allowing the terms to become more
or less important within a given mail message or the e-mail
collection E as a whole.

Once documents are represented as vectors, a Bayesian
classifier can be applied. The naı̈ve Bayes is a probabilistic
classifier based on the Bayes’ theorem [26], with strong
independence assumptions. From a finite set of classes C, the
classifier assigns to an instance the most probable classifica-
tion:

cNB = argmax
c∈C

P (c|~v) (1)

where cNB is the class assignation, c is each possible classi-
fication (e.g., spam or ham), ~v is the vector of term weights

and P (c|~v) is the probability of an e-mail belonging to class
c when the attributes vi ∈ ~v occur. Applying Bayes’ theorem
[26] we obtain:

cnb = argmax
c∈C

P (c)(~v|c) (2)

which allows us to estimate posterior probabilities, P (~v|c) =
P (v1, v2, ..., vn|c) using a training data set. We can then
introduce the naı̈ve assumption (which assumes that every
variable depends only on the class):

P (v1, v2, ..., vn|c) =
∏
i

P (vi|c) (3)

in which we apply equation 1, obtaining:

cnb = argmax
c∈C

P (c)
∏
i

P (vi|c) (4)

which is the naı̈ve Bayes classifier. Through this classifier we
can estimate the probability of an e-mail being spam given its
vector of term weights.

Tokenisation is the process of breaking the stream of text
into tokens, which are the minimal units of features [25]. This
process is performed to construct the VSM representation of
a document [25], [22] and it is required for the learning and
testing of the naı̈ve Bayes classifier.

However, attacks against tokenisation modify key features
of the message by splitting words up using spaces or HTML
layout tricks [23]. For example, consider a message m =
{buy viagra} that has been stored in a training set E . In
the VSM, the features that compose the vector correspond
to words within the message. Because both buy and viagra
are common spam terms and there are already similar mes-
sages within E , the message will be flagged as spam. To
circumvent this detection, spammers can modify the message
by inserting spaces into words, creating a tokenised e-mail
m′ = {bu y via gra}. The new vector cannot be classified
as spam unless there are messages in the training set with
the words composing the e-mail m′. These techniques allow
spammers to bypass spam filtering systems while the text
remains understandable by the e-mail recipient.

III. A NEW METHOD FOR REVERSING TOKENISATION

Common tokenisation attacks insert separators (e.g., dots,
commas, semicolons, spaces, tabs) into words making the
content-based spam filtering systems incorrectly select the
terms for the term vector model [21] (also known as the
Vector Space Model). This attack allows a spammer to evade
filtering. To solve this issue, we developed a new algorithm
called JURD (Joiner of Un-Readable Documents). JURD is
capable of reversing most of the effects of tokenisation attacks
in e-mail messages.

Formally, we define an e-mail M as a set composed of n
terms (tokens), i.e. ti, M = {t1, t2, . . . , tn−1, tn}. We use a
dictionary resource D that includes every word wi within a
language L such as ∀wi ∈ D : wi ∈ L. Because our scope
is spam filtering, we add to D a set of words S composed

of common spam terms where ∃wi ∈ S : wi 6∈ D (e.g.,
named entities like ‘viagra’ or ‘cialis’). Thus, a new dictionary,
D′ = D ∪ S , is formed.

Algorithm 1 shows the pseudo-code of our method. We
extract ` possible terms for each token ti within the original
message M. Each of these possible terms Pi is the result of
the concatenation of the next 0 to `− 1 number of tokens in
the original message M to ti. In other words, we obtain the
different possible combinations by extending a window (i.e.,
n-gram) of size 1 to ` from a token ti within the original e-
mailM. Thereafter, we determine whether the possible terms
are words in the dictionary D′. If a term Pi cannot be found
in D′, we retrieve the most similar word in D′. To this end, we
use the Levenshtein distance [27], i.e., the minimum number
of edits needed to transform one word into another, where
insertion, deletion, and substitution are the possible edits. If
the possible term is either in D or a term exists in D with a
Levenshtein distance to Pi lower or equal than t, then we add
it to the dis-tokenised message, and we update the index in
order to repeat the process with the next token in the original
message M immediately after the last one within Pi.

input : A message M, the dictionary of words D′, the maximum length of the
window `, and the similarity threshold t

output: A dis-tokenised message M′
M′ = ∅;
for i← 1 to |M| do

// P is the set of possible composing terms within
M′ of an actual word. Its size when full is `

P = ∅;
// This loop extracts all the possible token

combinations, starting from the ith token,
composed of a number ` of tokens

for j ← 1 to ` : (i + j) < |M| do
Pj ← Concatenation(P′j−1,ti+j);

end
if P 6= ∅ then

// b indicates whether a combination has been
selected or not

b← false;
// n indicates whether a combination is similar

(with a distance lower than t) to a word in D′
n← false;
// This loop evaluates every possible

combination of tokens.
for z ← |P| down-to 1 do

// The combination of tokens Pi was found in
the dictionary D′

if Pi ∈ D′ then
b← true;
AddXtoY(Pi,M′);
i← i + z;

end
else if ¬b ∧ ¬n then

// We retrieve the most similar word to
Pi with an edit distance greater than
t

s ← RetrieveMostSimilarWord(Pi,t);
if s 6= ∅ then

n← true;
AddXtoY(s,M′);
i← i + z;

end
end

end
end

end
return M′

Fig. 1: JURD algorithm

vi.a.gra makes yo.u perform and
fe.el like yo.u are 1.8 again

Fig. 2: An example of a tokenised message

Notice that JURD gives priority to terms composed of larger
numbers of tokens. To understand this choice, Figure 2 shows
an example of a tokenised message. Using an ` of 3, we can
obtain the following possible combinations starting from the
first token: ‘vi’: ‘vi’,‘via’, and ‘viagra’. In this case, ‘vi’ is
not in the dictionary D′, but ‘via’ and ‘viagra’ are. If we had
given priority to small combinations, we would have selected
‘via’ instead of ‘viagra’, which is actually a common spam
term.

IV. EVALUATION

A. General Methodology

We employed the Ling Spam dataset2 to serve as the spam cor-
pus. Ling Spam comprises both spam and legitimate messages
retrieved from the Linguistic list, an e-mail distribution list
focusing on linguistics. The dataset consists of 2,893 different
e-mails, of which 2,412 are legitimate e-mails obtained by
downloading digests from the linguistic list and 481 are spam
e-mails retrieved from one of the authors’ inbox (a more
detailed description of the corpus is provided in [7], [28]).
Spam represents nearly 16% of the whole dataset, a commonly
used rate in experiments [29], [30], [28].

To generate the enhanced dictionary resource D′, we used
an English dictionary composed of 236,983 words3 as D and
we extracted a list of 10,149 words4 from the spam messages
within the Ling spam dataset to act as the common spam word
corpus S.

In this work, we want to answer the following research
questions:

1) How do tokenisation attacks affect common Bayesian
spam filters?

2) What is the effect of applying JURD to tokenised mes-
sages and how does it affect common Bayesian spam
filters?

To answer the first question, we performed an experiment
that compared the results of training a Bayesian filter with non-
tokenised e-mails. We then used a set of both tokenised and
non-tokenised messages to reveal the differences in the results.
For the second question, we applied the JURD algorithm to
the set of the tokenised e-mails and compared the results with
the results obtained in the previous experiment.

For both experiments, we modelled the messages’ original
dataset using the VSM [21]. We used the Term Frequency – In-
verse Document Frequency (TF–IDF) [25] weighting schema,
where the weight of the ith term in the jth document, denoted
by weight(i, j), is defined by:

2http://nlp.cs.aueb.gr/software and datasets/lingspam public.tar.gz
3Available online: http://free.pages.at/rnbmusiccom/fulldictionary00.zip Al-

ternative link: http://paginaspersonales.deusto.es/isantos/public/englishwords.zip
4Available online in http://paginaspersonales.deusto.es/isantos/public/spamwords.zip

weight(i, j) = tfi,j · idfi (5)

where term frequency tfi,j is defined as:

tfi,j =
ni,j∑
k nk,j

(6)

where ni,j is the number of times the term ti,j appears in a
document d, and

∑
k nk,j is the total number of terms in the

document d. The inverse term frequency idfi is defined as:

idfi =
|D|

|D : ti ∈ d|
(7)

where |D| is the total number of documents and |D : ti ∈ d|
is the number of documents containing the term ti.

We used the Themis implementation [31], which enabled
us to populate a database using the e-mail messages from the
Ling Spam dataset.

We constructed a file with the resultant vector represen-
tations of the e-mails. We extracted the top 1,000 attributes
using Information Gain [32], an algorithm that evaluates the
relevance of an attribute by measuring the information gain
with respect to the class:

IG(j) =
∑
vj∈R

∑
Ci

P (vj , Ci) ·
P (vj , Ci)

P (vj) · P (Ci)
(8)

where Ci is the ith class, vj is the value of the jth interpreta-
tion, P (vj , Ci) is the probability that the jth attribute has the
value vj in the class Ci, P (vj) is the probability that the jth

interpretation has the value vj in the training data, and P (Ci)
is the probability that the training dataset belongs to the class
Ci .

After removing the less significant attributes, the resultant
file is the training dataset for the naı̈ve Bayes classifier [4].
In this way, we obtained a training set, and 2 testing datasets:
a dataset comprising 478 spam messages after performing a
tokenisation attack, and 478 junk e-mails obtained after JURD-
mediated de-tokenising of the previously tokenised messages.

To assess the results of every option, we measured the True
Positive Ratio (TPR) which is the number of correctly detected
spam messages, divided by the total number of e-mails (shown
in equation 9):

TPR =
TP

TP + FN
(9)

where TP is the number of correctly classified spam e-mails
(i.e., true positives), FN is the number of spam messages
misclassified as legitimate mails (false negatives), and TN is
the number of legitimate e-mails that were correctly classified.

We divided these two processes into two different experi-
ments. The first experiment examined the effects of tokenisa-
tion attacks against statistical spam filters. The second experi-
ment measured the effectiveness of JURD as a countermeasure
to this attack.

B. Evaluation of the effects of tokenisation attacks

In order to evaluate the effects of tokenisation attacks against
spam filters, we first developed an algorithm that automati-
cally inserts separating characters into words within e-mail
messages (shown in Algorithm 3).

input : A message M and the probability to insert a token p
output: A tokenised message M′
M′ = ∅;
foreach wi ∈ M do

// We insert separators into a word according the
given probability p

if (RandomInteger(100)/100) < p then
// The number of insertions to be performed is

randomly determined
n← RandomInteger(|M | − 1);
for i← 1 to n do

// The position of the separator is randomly
determined

r ← RandomInteger(Length(wi));
s1 ← SubString(wi,0,r);
s2 ← SubString(wi,r,Length(wi));
AddXtoY(Concatenation(s1,s2),M′);

end
end

end
return M′

Fig. 3: A Random Tokenisation Attack

We performed the tokenisation attack with 478 of the Ling
Spam dataset messages with a probability of insertion of 95
%. Figure 4 shows a snippet from a spam message before and
after this process.

the virtual girlfriend
and virtual boyfriend are
artificial intelligence
programs for your ibm pc
or compatible and also for
macintosh. you can watch
them , talk to them ...

(a) Before performing the attack

the virtua l girlfri end an
d.virtual boyfrien d. a re
ar.t.ificial intellig ence
p rogram;s fo r, you r i bm
pc o r compatible and also
fo r macinto.sh you c a n
watch t hem talk t o.them
...

(b) After performing the attack

Fig. 4: Example of the effects of tokenisation attack

We applied this tokenisation algorithm to the 478 spam
messages. We then represented the messages in the VSM
formed by the 1,000 selected words. Thus, we finally generated
the test file for the evaluation of the tokenisation effects.

TABLE I: Effects of Tokenisation Attack in Spam Filtering

Dataset TPR (%)
Original dataset 77.8

Tokenised Spam messages 60.5

To evaluate the effects of tokenisation by comparison with
the original results (without performing tokenisation attacks),
we evaluated the naı̈ve Bayes classifier through a k-fold cross-
validation [33] applied to the training dataset, with k = 10.
In this way, the dataset was split 10 times into 10 different
sets of learning sets (90% of the total dataset) and testing sets
(10% of the total dataset). The purpose of this division was to
use different spam messages for training and testing to obtain

a reliable precision for the method when applied to common
messages.

Table I shows the effects of the tokenisation attack in the
detection of spam. Because we only tokenised spam messages,
the results are show in TPR (i.e., the amount of spam messages
correctly detected). Note that although the tokenisation attack
was performed in a random fashion, the naı̈ve Bayes classifier
lost 17.3 % of its detection capability. Therefore, if the
spammer selected the words to be tokenised (which is very
likely to happen) the detection rate would be even lower. These
results show the importance of countering these attacks.

C. Evaluation of the JURD algorithm

To counter the tokenisation attack, we applied JURD to the
478 already-tokenised spam messages. To select a window size
`, we performed a preliminary study in which we selected
the most tokenised spam messages and tried different window
sizes. We realised that the higher values for the parameter `
would result in better JURD performance. However, higher
values for parameter ` introduced higher performance over-
head. Therefore, we chose an ` value of 10, which produced
the same results for nearly every spam message. Figure 4
shows a sample from a previously tokenised spam message
of the Ling dataset before and after the application of JURD
with ` = 10 and t = 1.

To select the similarity threshold t, we conducted a similar
study. We concluded that a large edit distance changes the
meaning of a message, while a distance of 0 is too strict.
Thus, we selected a t = 1.

the virtua l girlfri end an
d.virtual boyfrien d. a re
ar.t.ificial intellig ence
p rogram;s fo r, you r i bm
pc o r compatible and also
fo r macinto.sh you c a n
watch t hem talk t o.them
...

(a) Before applying JURD

the virtual girlfriend and
virtual boyfriend arear
t ificial intelligence
programs for your ibm pc
or compatible and also for
macintosh you can watch
them talk to them ...

(b) After applying JURD

Fig. 5: Example of the effects of JURD

Thereafter, we represented the messages in the VSM formed
by the 1000 selected words and we finally generated the test
file for the evaluation of JURD.

TABLE II: Effects of JURD against Tokenisation Attacks

Dataset TPR (%)
Original dataset 77.8

Tokenised Spam messages 60.5
After applying JURD 76.2

Table II shows the effects of JURD against the tokenisation
attack. After application of JURD, the spam filtering tool
nearly achieved the precision obtained with the original spam
messages. The filtering tool only misclassified 8 of the spam
messages that were detected with the original dataset.

D. Performance evaluation of JURD

We also evaluated the processing overhead introduced by
our method. To this end, we measured the times required to
process the 478 spam messages over the number of tokens
composing the messages with a configuration of ` = 10 and
t = 1.

Fig. 6: Performance of JURD depending on the number of
tokens with a configuration of ` = 10 and t = 1.

Average Time for Message (ms) Average Time(ms) for Token
52,092.36 61.72

TABLE III: Average Time Requirements for Message and
Token for ` = 10 and t = 1

The dependence between the required time and the number
of tokens was linear (refer to Figure 6) while the average
time requirements were 52,092.35 ms for a single message
and 61.72 ms for each token (Table III).

V. DISCUSSION AND CONCLUSIONS

Spam is a serious computer security issue that is not only
annoying for end-users, but also financially damaging and
dangerous to computer security because of the possible spread
of other threats like malware or phishing. Classic machine-
learning-based spam filtering methods, despite their ability to
detect spam, can be defeated by tokenisation attacks. In this
paper, we presented a new method that is able to transform a
tokenised message to a form similar to the original message.
To this end, we iteratively processed the message looking for
possible word candidates starting from a token and compar-
ing the candidates with a dictionary of words and common
spam terms. Our experiments show that this approach restores
the spam detection rate of the classifiers and thus, handles
the tokenisation attacks.However, there are several topics of
discussion regarding the suitability of JURD.

First, JURD must be applied as a pre-processing step before
modelling e-mails in the document space E . Currently, there is
no method that is able to detect whether a message has been
tokenised. Therefore, a filtering system should always employ

our method to assure that these attacks are engaged. However,
this method introduces a significant processing overhead to
spam filtering systems. Therefore, we consider that a method
capable of detecting transformations within the e-mail would
help to improve the overall performance of spam filtering.
Such a method would act as a preliminary step for deciding
if JURD is needed.

Second, we prioritised the selection of words composed
of a large numbers of tokens. Although this choice nearly
transformed the tokenised messages back to their original
form, errors appeared in the transformation. For instance,
in the example shown in Figure 5, JURD selected ‘arear’
instead of ‘are’, resulting in an incorrect selection of words
thereafter. To solve this issue, we can use a dictionary of
words based on frequency of usage in natural language, or
in spam messages, we can prioritise the average number of
tokens composing the word and its frequency of use. We can
also extend the dictionary to include slang terms and common
spelling mistakes (although the latter issue is nearly solved by
the Levenshtein distance [27]).

Therefore, future work will move in two main directions.
First, we will enhance this method by modifying the priorities
in the selection of words by adding the frequencies of use of
candidate terms. Second, we plan to develop a fast method for
detecting whether an e-mail has been tokenised.

REFERENCES

[1] K. Choo, “The cyber threat landscape: Challenges and future research
directions,” Computers & Security, vol. 30, no. 8, pp. 719–731, 2011.

[2] T. Jagatic, N. Johnson, M. Jakobsson, and F. Menczer, “Social phishing,”
Communications of the ACM, vol. 50, no. 10, pp. 94–100, 2007.

[3] F. Sebastiani, “Machine learning in automated text categorization,” ACM
computing surveys (CSUR), vol. 34, no. 1, pp. 1–47, 2002.

[4] D. Lewis, “Naive (Bayes) at forty: The independence assumption in
information retrieval,” Lecture Notes in Computer Science, vol. 1398,
pp. 4–18, 1998.

[5] I. Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis, C. Spy-
ropoulos, and P. Stamatopoulos, “Learning to filter spam e-mail: A
comparison of a naive bayesian and a memory-based approach,” in
Proceedings of the Machine Learning and Textual Information Access
Workshop of the 4th European Conference on Principles and Practice
of Knowledge Discovery in Databases, 2000.

[6] K. Schneider, “A comparison of event models for Naive Bayes anti-spam
e-mail filtering,” in Proceedings of the 10th Conference of the European
Chapter of the Association for Computational Linguistics, 2003, pp.
307–314.

[7] I. Androutsopoulos, J. Koutsias, K. Chandrinos, G. Paliouras, and
C. Spyropoulos, “An evaluation of naive bayesian anti-spam filtering,”
in Proceedings of the workshop on Machine Learning in the New
Information Age, 2000, pp. 9–17.

[8] I. Androutsopoulos, J. Koutsias, K. Chandrinos, and C. Spyropoulos,
“An experimental comparison of naive Bayesian and keyword-based
anti-spam filtering with personal e-mail messages,” in Proceedings of
the 23rd annual international ACM SIGIR conference on Research and
development in information retrieval, 2000, pp. 160–167.

[9] A. Seewald, “An evaluation of naive Bayes variants in content-based
learning for spam filtering,” Intelligent Data Analysis, vol. 11, no. 5,
pp. 497–524, 2007.

[10] V. Vapnik, The nature of statistical learning theory. Springer, 2000.
[11] H. Drucker, D. Wu, and V. Vapnik, “Support vector machines for spam

categorization,” IEEE Transactions on Neural networks, vol. 10, no. 5,
pp. 1048–1054, 1999.

[12] E. Blanzieri and A. Bryl, “Instance-based spam filtering using SVM
nearest neighbor classifier,” Proceedings of FLAIRS-20, pp. 441–442,
2007.

[13] D. Sculley and G. Wachman, “Relaxed online SVMs for spam filtering,”
in Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval, 2007, pp. 415–
422.

[14] J. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1,
pp. 81–106, 1986.

[15] X. Carreras and L. Márquez, “Boosting trees for anti-spam email
filtering,” in Proceedings of RANLP-01, 4th international conference
on recent advances in natural language processing, 2001, pp. 58–64.

[16] C. Laorden, B. Sanz, I. Santos, P. Galán-Garcı́a, and P. G. Bringas, “Col-
lective classification for spam filtering,” in Computational Intelligence
in Security for Information Systems, ser. Lecture Notes in Computer
Science.

[17] ——, “Collective classification for spam filtering,” Logic Journal of the
IGPL, p. in press, 2012, dOI: 10.1093/jigpal/JZS030.

[18] I. Santos, C. Laorden, B. Sanz, and P. G. Bringas,
“Enhanced topic-based vector space model for semantics-
aware spam filtering,” Expert Systems with Applications,
vol. 39, no. 1, pp. 437 – 444, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417411009961

[19] C. Laorden, I. Santos, B. Sanz, G. Alvarez, and P. G.
Bringas, “Word sense disambiguation for spam filtering,”
Electronic Commerce Research and Applications, vol. 11,
no. 3, pp. 290 – 298, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1567422311001050

[20] L. Zhang, J. Zhu, and T. Yao, “An evaluation of statistical spam
filtering techniques,” ACM Transactions on Asian Language Information
Processing (TALIP), vol. 3, no. 4, pp. 243–269, 2004.

[21] G. Salton, A. Wong, and C. Yang, “A vector space model for automatic
indexing,” Communications of the ACM, vol. 18, no. 11, pp. 613–620,
1975.

[22] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1999.

[23] G. Wittel and S. Wu, “On attacking statistical spam filters,” in Proceed-
ings of the 1st Conference on Email and Anti-Spam (CEAS), 2004.

[24] W. Wilbur and K. Sirotkin, “The automatic identification of stop words,”
Journal of information science, vol. 18, no. 1, pp. 45–55, 1992.

[25] G. Salton and M. McGill, Introduction to modern information retrieval.
McGraw-Hill New York, 1983.

[26] T. Bayes, “An essay towards solving a problem in the doctrine of
chances,” Philosophical Transactions of the Royal Society, vol. 53, pp.
370–418, 1763.

[27] V. Levenshtein, “Binary codes capable of correcting deletions, insertions
and reversals,” in Soviet Physics Doklady, vol. 10, 1966, pp. 707–710.

[28] G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C. Spy-
ropoulos, and P. Stamatopoulos, “A memory-based approach to anti-
spam filtering for mailing lists,” Information Retrieval, vol. 6, no. 1, pp.
49–73, 2003.

[29] L. Cranor and B. LaMacchia, “Spam!” Communications of the ACM,
vol. 41, no. 8, pp. 74–83, 1998.

[30] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz, “A Bayesian
approach to filtering junk e-mail,” in Learning for Text Categorization:
Papers from the 1998 workshop, vol. 62. Madison, Wisconsin: AAAI
Technical Report WS-98-05, 1998, pp. 98–05.

[31] A. Polyvyanyy, “Evaluation of a novel information retrieval model:
eTVSM,” 2007, MSc Dissertation.

[32] J. Kent, “Information gain and a general measure of correlation,”
Biometrika, vol. 70, no. 1, p. 163, 1983.

[33] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in International Joint Conference on
Artificial Intelligence, vol. 14, 1995, pp. 1137–1145.

