
Opcode Sequences as Representation of Executables for

Data-mining-based Unknown Malware Detection

Igor Santos∗, Felix Brezo, Xabier Ugarte-Pedrero, Pablo G. Bringas

University of Deusto, Laboratory for Smartness, Semantics and Security (S3Lab),
Avenida de las Universidades 24, 48007 Bilbao, Spain

Abstract

Malware can be defined as any type of malicious code that has the po-
tential to harm a computer or network. The volume of malware is growing
faster every year and poses a serious global security threat. Consequently,
malware detection has become a critical topic in computer security. Cu-
rrently, signature-based detection is the most widespread method used in
commercial antivirus. In spite of the broad use of this method, it can detect
malware only after the malicious executable has already caused damage and
provided the malware is adequately documented. Therefore, the signature-
based method consistently fails to detect new malware. In this paper, we
propose a new method to detect unknown malware families. This model is
based on the frequency of the appearance of opcode sequences. Furthermore,
we describe a technique to mine the relevance of each opcode and assess the
frequency of each opcode sequence. In addition, we provide empirical vali-
dation that this new method is capable of detecting unknown malware.

Keywords: malware detection, computer security, data mining, machine
learning, supervised learning

∗Corresponding author
Email addresses: isantos@deusto.es (Igor Santos), felix.brezo@deusto.es (Felix

Brezo), xabier.ugarte@deusto.es (Xabier Ugarte-Pedrero),
pablo.garcia.bringas@deusto.es (Pablo G. Bringas)

Preprint submitted to Information Sciences August 22, 2011

1. Introduction

Malware (or malicious software) is defined as computer software that has
been explicitly designed to harm computers or networks [58]. In the past,
malware creators were motivated mainly by fame or glory. Most current
malware, however, is economically motivated [51].

Commercial anti-malware solutions rely on a signature database [49] (i.e.,
list of signatures) for detection. An example of a signature is a sequence of
bytes that is always present within a malicious executable and within the files
already infected by that malware. In order to determine a file signature for a
new malicious executable and to devise a suitable solution for it, specialists
must wait until the new malicious executable has damaged several computers
or networks. In this way, suspect files can be analysed by comparing bytes
with the list of signatures. If a match is found, the file under test will be
identified as a malicious executable. This approach has proved to be effective
when the threats are known beforehand.

Several issues render the signature-based method less than completely
reliable: it cannot cope with code obfuscations and cannot detect previously
unseen malware.

Malware writers use code obfuscation techniques [40] to hide the actual
behaviour of their malicious creations [8, 84, 13, 33]. Examples of these
obfuscation algorithms include garbage insertion, which consists on adding
sequences which do not modify the behaviour of the program (e.g., nop ins-
tructions1); code reordering, which changes the order of program instructions
and variable renaming ; which replaces a variable identifier with another one
[15].

Several approaches have been proposed by the research community to
counter these obfuscation techniques. For instance, Sung, Xu and Chavez
[74, 82] introduced a method for computing the similarity between two exe-
cutables by focusing on the degree of similarity within syscall2 sequences.
This approach offered only a limited performance because of its inability
to detect malware while maintaining a low false positive ratio (i.e., benign
executables misclassified as malware).

Several other approaches have been based on so-called Control Flow Graph

1Nop or Noop is an machine code instruction that does not perform any action.
2A syscall or system call is the procedure through which an executable requests a service

from the kernel of the operating system.

2

(CFG) analysis. An example was introduced by Lo et al. [45] as part of the
Malicious Code Filter (MCF) project. Their method slices a program into
blocks while looking for tell-tale signs (e.g., operations that change the state
of a program such as network access events and file operations) in order to
determine whether an executable may be malicious.

Bergerson et al. [3] presented several methods for disassembling of binary
executables, helping to build a representation of the execution of binary
executables and improved the slicing of a program into idioms (i.e., sequences
of instructions). It is also worth to mention the work of Christodorescu
and Jha [16], who proposed a method based on CFG analysis to handle
obfuscations in malicious software. Later, Christodorescu et al. [17] improved
on this work by including semantic-templates of malicious specifications.

Two approaches have been developed to deal with unknown malware that
classic signature method cannot handle: anomaly detectors and data-mining-
based detectors. These approaches have been also used in similar domains
like intrusion detection [39, 23, 77, 27]

Anomaly detectors use information retrieved from benign software to ob-
tain a benign behaviour profile. Then, every significant deviation from this
profile is qualified as suspicious. Li et al. [42] proposed the fileprint (or
n-gram) analysis in which a model or set of models attempt to characterise
several file types on a system based on their structural (byte) composition.
The main assumption behind this analysis is that benign files are composed
of predictable regular byte structures for their respective types. Likewise, Cai
et al. [9] used byte sequence frequencies detect malware. Their goal was to
use only information about benign software to measure the deviations from
the benign behaviour profile. Specifically, they applied a Gaussian Likelihood
Model fitted with Principal Component Analysis (PCA) [31]. Unfortunately,
these methods usually have a high false positive ratio that renders them
difficult for commercial antivirus vendors to adopt.

Data-mining-based approaches rely on datasets that include several cha-
racteristic features for of both malicious samples and benign software to
build classification tools that detect malware in the wild (i.e., undocumented
malware). To this end, Schultz et al. [69] were the first to introduce the
idea of applying data-mining models to the detection of different malicious
programs based on their respective binary codes. Specifically, they applied
several classifiers to three different feature extraction approaches: program
headers, string features and byte sequence features. Later, Kolter et al. [36]
improved the results obtained by Schulz et al. by using n-grams (i.e., over-

3

lapping byte sequences) instead of non-overlapping sequences. This method
used several algorithms and the best results were achieved with a Boosted3

Decision Tree. In a similar vein, substantial research has focussed on n-gram
distributions of byte sequences and data mining [50, 71, 85, 67]. Still, most of
these methods are limited as they count certain bytes in the malware body;
because most of the common transformations operate at the source level,
these detection methods can be easily thwarted [14]. These approaches were
also used by Perdisci et al. [54] to detect packed executables. Perdisci et al.
[54] proposed their first approach based on (i) the extraction of some fea-
tures from the Portable Executable (PE), e.g., the number of standard and
non-standard sections, the number of executable sections, the entropy of the
PE header; and (ii) the classification through machine-learning models, e.g.,
Näıve Bayes, J48 and MLP. Later, Perdisci et al. [55] evolved their method
and developed a fast statistical malware detection tool. They added new n-
gram-based classifiers to combine their results with the previous MLP-based
classifier.

Given the state of current research, we propose a new method for unk-
nown malware detection using a data-mining-based approach. We use a re-
presentation based on opcodes (i.e., operational codes in machine language).
Our method is based on the frequency of appearance of opcode-sequences: it
trains several data-mining algorithms in order to detect unknown malware. A
recent study [4] statistically analysed the ability of single opcodes to serve as
the basis for malware detection and confirmed their high reliability for deter-
mining the maliciousness of executables. In a previous work [66], we presen-
ted an approach focused on detecting obfuscated malware variants using the
frequency of appearance of opcode-sequences to build an information retrie-
val representation of executables. We now extend our research by focusing
on the detection of unknown malware using data-mining techniques.

Specifically, we advance the state of the art with the following three con-
tributions:

• We show how to use an opcode-sequence-frequency representation of
executables to detect and classify malware.

• We provide empirical validation of our method with an extensive study

3Boosting is a machine learning technique that builds a strong classifier composed by
weak classifiers [68].

4

of data-mining models for detecting and classifying unknown malicious
software.

• We show that the proposed methods achieve high detection rates, even
for completely new and previously unseen threats. We also discuss
the shortcomings of the proposed model and suggest possible enhance-
ments.

The remainder of this paper is organised as follows. Section 2 describes a
method to calculate a weight of the relevance of each opcode. Section 3 details
the method for the representation of executables. Section 4 outline the data-
mining approaches used. Section 5 describes the experiments performed and
present results. Section 6 discusses the proposed method. Finally, Section 7
concludes the paper and outlines avenues for future work.

2. Finding a measure for the ability of opcodes to detect malware

In a recent work Bilar [4] investigated the ability of operational codes
to detect malware. This study concluded that opcodes reveal significant
statistical differences between malware and legitimate software and that rare
opcodes are better predictor than common opcodes. The operands in the
machine code were omitted and the opcodes by themselves were capable to
statistically explain the variability between malware and legitimate software.

Therefore, our approach only uses opcodes and we discard the operands
within the instructions. First, we extend this previous study by providing
a method that measures the relevance of individual opcodes. To this end,
we employ a methodology that computes a weight for each operational code.
This weighting represents the relevance of the opcode to malicious and benign
executables based on whether it appears more frequently in malware or in
benign executables.

We collected malware from the VxHeavens website4 to assemble a malware
dataset of 13,189 malware executables. This dataset contained only Portable
Executable (PE)5 executable files, and it was made up of different types of
malicious software (e.g., computer viruses, Trojan horses and spyware). For

4http://vx.netlux.org/
5The Portable Executable (PE) format is a file format for executables, object code and

DLLs, used in Microsoft Windows operating systems.

5

the benign software dataset, we collected 13,000 executables from our com-
puters. This benign dataset included text processors, drawing tools, windows
games, Internet browsers and PDF viewers. We confirmed that the benign
executables were not infected because any infections would have distorted
the results. We achieved this via analysis of the benign files using Eset An-
tivirus6.

The method for computing the relevance of opcodes is composed of the
following steps:

1. Disassembling the executables: We used the NewBasic Assembler7

as the main tool for obtaining the assembly files.

2. Generation of opcode profile file: Using the generated assembly
files, we built opcode profiles. Each file contains a list with the ope-
rational code and the times that each opcode appears within both the
benign software dataset and the malicious software dataset.

3. Computation of opcode relevance: We computed the relevance of
each opcode based on the frequency it appears in each dataset. We
used Mutual Information [53] (shown in equation 1) to measure the
statistical dependence of the two variables:

I(X;Y) =
∑
yϵY

∑
xϵX

p(x, y) log

(
p(x, y)

p(x) · p(y)

)
(1)

where X is the opcode frequency and Y is the class of the file (i.e.,
malware or benign software), p(x, y) is the joint probability distribution
function of X and Y , and p(x) and p(y) are the marginal probability
distribution functions of X and Y . In our particular case, we defined
the two variables as the single opcode and whether or not the instance
was malware. Note that this weight only measures the relevance of a
single opcode and not the relevance of an opcode sequence.

Once we had computed the mutual information between each opcode and
the executable class, we sorted and generated an opcode relevance file. The
opcode frequency file was saved so that we may calculate the relevance of the
opcodes in future research using other measures such as the gain ratio [46]
or chi-square [30].

6http://www.eset.com/
7http://www.frontiernet.net/ fys/newbasic.htm

6

This list of opcode relevances helped with more accurate malware detec-
tion because we were able to weight the final representation of executables
using the calculated opcode relevances and reducing noise from irrelevant
opcodes. Specifically, we observed that the most common opcodes, such as
push, mov or add, tended to be weighted low in the results.

These weights may be considered a replacement for the Inverse Document
Frequency (IDF) measure [62] used in the Vector Space Model [65] for infor-
mation retrieval. The IDF weighting terms occur in documents based on the
frequency with which they appear in the whole document. Our method per-
forms a similar task by using mutual information instead of simply counting
occurrences. Our method is also easier to update, using the total number of
opcode occurrences in each dataset (both malicious and benign).

3. Feature Extraction

To represent executables using opcodes, we extract the opcode-sequences
and their frequency of appearance. More specifically, a program ρ may be
defined as a sequence of instructions I where ρ = (I1, I2, ..., In−1, In). An
instruction is a 2-tuple composed of an operational code and a parameter
or a list of parameters. Since opcodes are significant by themselves [4], we
discard the parameters and assume that the program was composed only of
opcodes. These opcodes are gathered into several blocks that we call opcode
sequences.

Specifically, we define a program ρ as a set of ordered opcodes o, ρ =
(o1, o2, o3, o4, ..., oℓ−1, oℓ), where ℓ is the number of instructions I of the pro-
gram ρ. An opcode sequence os is defined as a subgroup of opcodes within
the executable file where os ⊆ ρ; it is made up of opcodes o, os = (o1, o2, o3,
..., om1, om) where m is the length of the sequence of opcodes os.

Consider an example based on the assembly code snippet shown Figure
1; the following sequences of length 2 can be generated: s1 = (mov, add),
s2 = (add, push), s3 = (push, add), s4 = (add, and), s5 = (and, push), s6 =
(push, push) and s7 = (push, and). Because most of the common operations
that can be used for malicious purposes require more than one machine code
operation, we propose the use of sequences of opcodes instead of individual
opcodes. We added syntactical information by using this representation since
we wished to better identify blocks of instructions (opcode sequences) that
pass on malicious behaviour to an executable.

7

mov ax,0000h

add [0BA1Fh],cl

push cs

add [si+0CD09h],dh

and [bx+si+4C01h],di

push sp

push 7369h

and [bx+si+72h],dh

Figure 1: Assembly code example.

It is hard to establish an optimal value for the lengths of the sequences; a
small value will fail to detect complex malicious blocks of operations whereas
long sequences can easily be avoided with simple obfuscation techniques.
Besides, long opcode sequences will introduce a high performance overhead.

Afterwards, we compute the frequency of occurrence of each opcode se-
quence within the file by using Term Frequency (TF) [48] (shown in equation
2) that is a weight widely used in information retrieval [83]:

tfi,j =
ni,j∑
k nk,j

(2)

where ni,j is the number of times the sequence si,j (in our case opcode se-
quence) appears in an executable e, and

∑
k nk,j is the total number of terms

in the executable e (in our case the total number of possible opcode sequen-
ces)

We compute this measure for every possible opcode sequence of fixed
length n, thereby acquiring a vector v⃗ of the frequencies of opcode sequences
si = (o1, o2, o3, ..., on−1, on). We weighted the frequency of occurrence of this
opcode sequence using the relevance weights described in Section 2.

We define the Weighted Term Frequency (WTF) as the result of weigh-
ting the TF with the relevance of each opcode when calculating the term
frequency. Specifically, we computed the WTF as the product of sequence
frequency and the calculated weight of every opcode in the sequence:

wtfi,j = tfi,j ·
∏
ozϵS

weight(oz)

100
(3)

where weight(oz) is the calculated weight, by means of mutual information
gain, for the opcode oz and tfi,j is the sequence frequency measure for the

8

given opcode sequence.
Applying the previously calculated weighted sequence frequencies, we

obtain a vector v⃗ composed of weighted opcode-sequence frequencies, v⃗ =
((os1, wtf1), (os2, wtf2), (os3, wtf3), ..., (osn−1, wtfn−1), (osn, wtfn)), where osi
is the opcode sequence and wtfi is the weighted term frequency for that par-
ticular opcode sequence. Using the resultant vector representation of the
files, we are able to, one hand, compute a similarity between two input files
to detect malware variants and on the other hand, train machine-learning
classifiers to detect unknown malware.

4. Data-mining-based Classification

Offering protection from unknown malware is an important challenge in
malware detection due to the increasing growth of malware. Data mining ap-
proaches usually rely on machine-learning algorithms that use both malicious
executables and benign software to detect malware in the wild [28, 29, 81, 70].

Machine learning is a discipline within Artificial Intelligence (AI) concer-
ned with the design and development of algorithms that allow computers to
reason and make decisions based on data [5]. Generally, machine-learning
algorithms can be classified into three different types: supervised learning,
unsupervised learning and semi-supervised learning algorithms. First, su-
pervised machine-learning algorithms, or classifying algorithms, require the
training dataset to be properly labelled (in our case, knowing whether an ins-
tance is malware) [37]. Second, unsupervised machine-learning algorithms,
or clustering algorithms, try to assess how data are organised into different
groups called clusters. In this type of machine-learning, data do not need to
be labelled [38]. Finally, semi-supervised machine-learning algorithms use a
mixture of both labelled and unlabelled data in order to build models, thus
improving the accuracy of unsupervised methods [12].

Since in our case malware can be properly labelled, we use supervised
machine-learning. In future work, however, we would also like to test the
ability of unsupervised methods to detect malware. In the remainder of this
section, we review several supervised machine-learning approaches that have
succeeded in similar domains [67, 69, 36].

4.1. Decision Trees

Decision Tree classifiers are a type of machine-learning classifiers that
can be graphically represented as a tree (Figure 2 shows an snippet of the

9

actual decision tree generated). The internal nodes represent conditions of
the problem variables, and their final nodes (or leaves) constitute the final
decision of the algorithm [60]. In our case, the final nodes would represent
whether an executable is malware or not.

Figure 2: Extract of the Decision Tree.

Formally, a decision tree graph G = (V,E) consists on a not empty set of
finite nodes V and a set of arcs E. If the set of arcs is composed of ordered
bi-tuples (v, w) of vertices, then we say that the graph is directed. A path is
defined as an arc sequence of the form (v1, v2), (v2, v3), ..., (vn−1, vn). Paths
can be expressed by origin, end and distance (i.e., the minimum number of
arcs from the origin to the end). In addition, if (v, w) is an arc within the
tree, v is considered the parent of w. Otherwise, w is defined as the child
node of v. The single node with no parent is defined as the root node. Every
other node in the tree is defined as an internal node. In order to build the
representation of the tree, a set of binary questions (yes-no) are answered.

There are several training algorithms that are typically used to learn
the graph structure of these trees by means of a labelled dataset. In this
work, we use Random Forest, which is an ensemble (i.e., combination of
weak classifiers) of different randomly-built decision trees [7]. Further, we
also use J48, the Weka [25] implementation of the C4.5 algorithm [61].

10

4.2. Support Vector Machines (SVM)

SVM classifiers consist of a hyperplane dividing a n-dimensional-space-
based representation of the data into two regions (shown in Figure 3). This
hyperplane is the one that maximises the margin between the two regions
or classes (in our case, malware or benign software). Maximal margin is
defined by the largest distance between the examples of the two classes com-
puted from the distance between the closest instances of both classes (called
supporting vectors) [80].

Figure 3: Example of a SVM classifier in a bi-dimensional space.

Formally, the optimal hyperplane is represented by a vector w and a scalar
m in a way that the inner products of w with vectors ϕ(Xi) from the two
classes are divided by an interval between −1 and +1 subject to m:

(w, ϕ(Xi)) −m ≥ +1 (4)

for every Xi that belongs to the first class (in our case malware) and

(w, ϕ(Xi)) −m ≤ −1 (5)

for every Xi that belongs to the second class (in our case benign software).
The optimisation problem that involves finding w and m can be formula-

ted solely in terms of inner products ϕ(xi), ϕ(xj) between data points when

11

this problem is stated in the dual form from quadratic programming [5]. In
mathematics, an inner product space is a vector space with the additional
structure called an inner product. This structure relates each pair of vectors
in the space with a scalar quantity known as the inner product of the vec-
tors. A specific case of inner product is the well-known dot product between
vectors.

A kernel is thus defined by α(ϕ(Xi), ϕ(Xj)) = xi ·ϕ(Xj) forming the linear
kernel with inner products. Generally, instead of using inner products, the
so-called kernel functions are applied. These kernel functions lead to non-
linear classification surfaces, such as polynomial, radial or sigmoid surfaces
[1].

4.3. K-Nearest Neighbours

The K-Nearest Neighbour (KNN) [24] algorithm is one of the simplest
supervised machine-learning algorithms for classifying instances. This met-
hod classifies an unknown instance based on the class (in our case, malware
or benign software) of the instance nearest to it in the training space (see
Figure 4).

Figure 4: Example of a KNN classifier in a bidimensional space.

Specifically, the training phase of this algorithm presents a set of training
data instances S = {s1, s2, .., sm} in a n-dimensional space where n is the

12

number of variables for each instance (e.g., the frequency of occurence for
each opcode sequence).

Furthermore, the classification phase of an unknown instance is conducted
by measuring the distance between the training instances and the unknown
specimen. In this way, establishing the distance between two points X and
Y in a n-dimensional space can be achieved by using any distance measure.
In our case, we use Euclidean Distance:√√√√ n∑

i=0

(Xi − Yi)2 (6)

There are several methods for determining the class of the unknown sam-
ple; the most commonly used technique is to classify the unknown instance
as the most common class among its K-Nearest Neighbours.

4.4. Bayesian Networks

Bayes’ Theorem [2] is the basis of the so-called Bayesian inference, a
statistical reasoning method that determines, based on a number of observa-
tions, the probability that a hypothesis may be true. Bayes’ theorem adjusts
the probabilities as new informations becomes available. According to its
classical formulation (shown in equation 7), given two events A and B, the
conditional probability P (A|B) that A occurs if B occurs can be obtained if
we know the probability that A occurs, P (A), the probability that B occurs,
P (B), and the conditional probability of B given A, P (B|A).

P (A|B) =
P (B|A) · P (A)

P (B)
(7)

Bayesian networks [52] are probabilistic models for multivariate analysis.
Formally, they are directed acyclic graphs associated with a probability dis-
tribution function [11]. Nodes in the graph represent variables (which can
be either a premise or a conclusion) while the arcs represent conditional de-
pendencies between such variables. The probability function illustrates the
strength of these relationships in the graph [11]. Figure 5 shows a repre-
sentation of the actual problem as a simplified Bayesian network. Nodes in
the graph are variables of the classification problem. Each node has a condi-
tional probability function associated to it. One of the nodes (or several in
other cases) is the output node, which in our case is whether an executable
is malicious or not.

13

Figure 5: Example of a Bayesian network representing the malware classification problem.

If we let a Bayesian network B be defined as a pair, B = (D,P), where D
is a directed acyclic graph, P = {p(x1|Ψ2), ..., p(xn|Ψn)} is the set composed
by n conditional probability functions, one for each variable and Ψi is the
set of parent nodes of the node Xi in D. The set P is defined as a joint
probability density function (shown in equation 8):

P (x) =
n∏

i=1

p(xi|Ψi) (8)

For our needs, the most important ability of Bayesian networks is their
ability to infer the probability of a certain hypothesis being true (e.g., the
probability of an executable being malicious or legitimate) given a historical
dataset.

5. Experiments and Results

In order to validate our proposed method, we used two different datasets
to test the system: a malware dataset and a benign software dataset. We
downloaded several malware samples from the VxHeavens website to assem-
ble a malware dataset of 17,000 malicious programs, including 585 malware
families that represent different types of malware such as Trojan horses, vi-
ruses and worms. Among the malware programs used for our experiment, we

14

use variants of SDBot, Alamar, Bropia, Snowdoor, JSGen, Kelvir, Skydance,
Caznova, Sonic, Redhack and Theef.

Even though they had already been labelled with their family and va-
riant names, we scanned them using Eset Antivirus to confirm this labelling.
We also use PEiD8 to analyse whether malware was packed. We removed
any packed samples and selected a total of 1,000 malicious executables. We
confirmed that the remainder of the executables were not the result of com-
pilation by many different compilers to avoid distortion of the results (a more
detailed discussion is provided in section 6).

For the benign dataset, we gathered 1,000 legitimate executables from our
computers. As we did when computing the relevance of opcodes in Section
2, we performed an analysis of the benign files using Eset Antivirus.

We extracted the opcode-sequence representation for every file in that
dataset for different opcode-sequence lengths n. Specifically, we extracted
features for n = 1 and n = 2. The reason of not extracting further opcode-
sequence lengths is that the underlying complexity of machine-learning met-
hods and the huge amount of features obtained would render the extrac-
tion very slow. We also used the two opcode-sequence lengths combined: a
feature-set composed by the frequencies of occurrence with lengths of one
and two.

The number of features obtained with an opcode-sequence length of two
and above was very high (see Figure 8). To deal with this, we applied a
feature selection step using Information Gain [34] and we selected the top
1000 features, which represent the 0.6 % of the total number of features in the
case of n = 2. On we obtained the reduced datasets, we tested the suitability
of our proposed approach using the following steps:

• Cross validation: In order to evaluate the performance of machine-
learning classifiers, k-fold cross validation is usually used in machine-
learning experiments [5].

This technique assesses how the results of the predictive models will
generalise to an independent data set. It involves partitioning the sam-
ple of data into subsets, performing the training step with one subset
(called the training set) and validating with the remaining dataset (ca-
lled the test set). To reduce the variability, cross validation performs

8http://www.peid.info/

15

multiple rounds with different partitions, which are defined with the
parameter k. The results of each round are averaged to estimate the
global measures of the tested model.

Thereby, for each classifier we tested, we performed a k-fold cross va-
lidation [35] with k = 10. In this way, our dataset was split 10 times
into 10 different sets of learning (90% of the total dataset) and testing
(10% of the total data).

• Learning the model: For each validation step, we conducted the
learning phase of each algorithm with each training dataset, applying
different parameters or learning algorithms depending on the concrete
classifier. The algorithms use the default parameters in the well-known
machine-learning tool WEKA [25]. Specifically, we used the following
four models:

– Decision Trees (DT): We used Random Forest [7] and J48 (Weka’s
C4.5 [61] implementation).

– K-Nearest Neighbour (KNN): We performed experiments over the
range k = 1 to k = 10 to train KNN.

– Bayesian networks (BN): We used several structural learning al-
gorithms; K2 [18], Hill Climber [64] and Tree Augmented Näıve
(TAN) [26]. We also performed experiments with a Näıve Bayes
classifier [41].

– Support Vector Machines (SVM): We used a Sequential Minimal
Optimization (SMO) algorithm [57] and performed experiments
with a polynomial kernel [1], a normalised polynomial kernel [1],
Pearson VII function-based universal kernel [79], and a Radial
Basis Runction (RBF) based kernel [1].

• Testing the model: In order to measure the processing overhead
of the proposed model, we measure the required representation time,
number of features, feature selection time, training time and testing
time:

– Disassembling time: It measures the time that the disassembler
requires to extract the assembly representation of the files. For
this step, we used an Intel Pentium M clocked at 1.73Ghz with 1
GB of RAM memory because it was the only machine available

16

with a x32 Operative System installed, which NewBasic Assembler
requires.

– Representation time: It measures the time required to build the
representation of the executables. To this end, we tested with
different opcode-sequence length ranked from 1 to 4. For this
step, we used a Intel Core 2 Quad CPU clocked at 2.83 GHz with
8 GB of RAM memory.

– Number of features: It measures the number of different opcode
sequences for each opcode-sequence length from 1 to 4. For this
step, we used a Intel Core 2 Quad CPU clocked at 2.83 GHz with
8 GB of RAM memory.

– Feature selection: It measures the time required for the selection
of the most relevant opcode sequences. We used a Intel Core 2
Quad CPU clocked at 2.83 GHz with 8 GB of RAM memory.

– Training time: It measures the needed overhead for building the
different machine-learning algorithms. We used a Intel Core 2
Quad CPU clocked at 2.83 GHz with 8 GB of RAM memory.

– Testing time: It measures the total time that the models require
for evaluating the testing instances in the dataset. We used a
Intel Core 2 Quad CPU clocked at 2.83 GHz with 8 GB of RAM
memory.

To evaluate each classifier’s capability, we measured the True Positive
Ratio (TPR), i.e., the number of malware instances correctly detected,
divided by the total number of malware files (shown in equation 9):

TPR =
TP

TP + FN
(9)

where TP is the number of malware cases correctly classified (true
positives) and FN is the number of malware cases misclassified as
legitimate software (false negatives).

We also measured the False Positive Ratio (FPR), i.e., the number
of benign executables misclassified as malware divided by the total
number of benign files (shown in equation 10):

17

FPR =
FP

FP + TN
(10)

where FP is the number of benign software cases incorrectly detected
as malware and TN is the number of legitimate executables correctly
classified.

TPR and FPR establish the cost of misclassification. It is important
to set the cost of false negatives (1−TPR) and false positives, in other
words, establish whether is better to classify a malware as legitimate or
to classify a benign software as malware. In particular, since our frame-
work is devoted to detect new and unknown malware, one may think
that it is more important to detect more malware than to minimise
false positives. However, for commercial reasons, one may think just
the opposite: a user can be bothered if their legitimate applications
are flagged as malware. Therefore, we consider that the importance
of the cost is established by the way our framework will be used. If
it is used as a complement to standard anti-malware systems then we
should focus on minimising false positives. Otherwise, if the frame-
work is used within antivirus laboratories to decide which executables
should be further analysed then we should minimise false negatives (or
maximise true positives). To tune the proposed method, we can apply
two techniques: (i) whitelisting and blacklisting or (ii) cost-sensitive
learning. White and black lists store a signature of an executable in
order to be flagged either as malware (blacklisting) or benign software
(whitelisting). On the other hand, cost-sensitive learning is a machine-
learning technique where one can specify the cost of each error and the
classifiers are trained taking into account that consideration [22].

Furthermore, we measured accuracy, i.e., the total number of the clas-
sifier’s hits divided by the number of instances in the whole dataset
(shown in equation 11):

Accuracy(%) =
TP + TN

TP + FP + TP + TN
· 100 (11)

Besides, we measured the Area Under the ROC Curve (AUC) that
establishes the relation between false negatives and false positives [73].
The ROC (Receiver Operator Characteristics) curve is obtained by
plotting the TPR against the FPR.

18

Figure 6: Time results for extracting the assembly code from the binary. As we can see
the required time increases along with the opcode-sequence length and the size of the
executable.

Figure 7: Time results for the representation time. As we can see the required time
increases along with the opcode-sequence length and the size of the executable.

19

Figure 8: The number of features for different opcode-sequence lengths. As we can see the
number of different opcode sequences increases along with the opcode-sequence length.

Figure 6 shows the time required for NewBasic Assembler to extract the
assembly representation from the binary executables. Obviously, the greater
the size of the executable, the greater the required time for the disassembly
step.

Figure 7 shows the representation times for n = 1, n = 2, n = 3 and
n = 4. This step utilises the assembly files generated by the NewBasic
Assembler and builds the opcode-sequence representations. In particular, for
a opcode-sequence length of 1, the average representation time was 149.31
milliseconds; for n = 2 the average time was 182.12 milliseconds; for n = 3
was 285.56 milliseconds and for n = 4 it was 1254.36 milliseconds. Therefore,
the required representation time is exponential to the opcode-sequence length
while remains lineal with regards to the executable size.

With regards to number of different opcode-sequences extracted, Figure
8 shows the tendency of the number of different opcode sequences. In this
step, we deleted the opcode-sequences which have always a value of 0 of
WTF (Weighted Term Frequency) from the representation to reduce the
total number of different features. The number of different opcode sequences
increases with the chosen opcode-sequence length. In particular, for n = 1
we obtained 348 different sequences, 51,949 for n = 2, 1,360,744 for n = 3

20

and 10,309,792 different opcode sequences for n = 4.

Table 1: Time results for the feature reduction step.

N Feature Selection Time (ms)
1 Not required
2 731,038.17
1 & 2 Combined 1,003,985.76
3 N/A
4 N/A

Table 1 shows the required time for the selection of the top 1,000 opcode
sequences using Information Gain [34]. For n = 1, there was no need of a
feature selection step since the total number of opcode sequences was 348.
For n = 2, a total time of 731,038.17 milliseconds were required. For opcode-
sequence length longer than 2 we were unable to perform a feature selection
step using the following machine: Intel Core 2 Quad CPU clocked at 2.83
GHz with 8 GB of RAM memory. In fact, we were not able to open the
file with the WEKA software [25] to perform the top 1,000 feature selection
step neither to use an implementation of the feature selection step using the
WEKA API. Therefore, the rest of the steps are only tested for n = 1, n = 2
and the combination of opcode sequences of length 1 and 2.

Table 2 shows the required time to train and test the data-mining mo-
dels with an opcode-sequence length of 1. Note that we did not reduce the
number of features of this dataset. The KNN algorithm did not require any
training time. However, it was the slowest in terms of testing time, with
results between 1.13 and 1.66 milliseconds. SVM with polynomial kernel was
the fastest of the tested configurations for SVM, achieving a training time
of 1.42 milliseconds and a testing time of 0.01 milliseconds. Näıve Bayes
required 5.83 milliseconds for training and 0.53 seconds for testing. The per-
formance of the Bayesian networks depended on the algorithm used. Overall,
we found that K2 is the fastest Bayesian classifier, requiring 9.29 milliseconds
for training and 0.22 milliseconds for testing. TAN had the slowest training
time at 2585.08 milliseconds; however, it only required 0.32 milliseconds for
the testing step. Among the decision trees, Random Forest performed faster
than J48, with 4.37 milliseconds of training time and 0.00 milliseconds of
testing time.

Table 3 shows the required time to train and test the data-mining models
with an opcode-sequence length of 2. This time, we reduced the number

21

Table 2: Time results of data-mining classifiers for n = 1.

Classifier Training Time (ms) Testing Time (ms)
KNN K=1 0± 0.00 1.13± 0.10
KNN K=2 0± 0.00 1.29± 0.10
KNN K=3 0± 0.00 1.35± 0.10
KNN K=4 0± 0.00 1.43± 0.10
KNN K=5 0± 0.00 1.43± 0.10
KNN K=6 0± 0.00 1.44± 0.10
KNN K=7 0± 0.00 1.50± 0.10
KNN K=8 0± 0.00 1.58± 0.11
KNN K=9 0± 0.00 1.62± 0.09
KNN K=10 0± 0.00 1.66± 0.12
DT: J48 43.03± 3.56 0.00± 0.00
DT: Random Forest 4.37± 0.20 0.00± 0.00
SVM: RBF 14.18± 1.68 0.58± 0.04
SVM: Polynomial 1.42± 0.11 0.01± 0.00
SVM: Normalised Polynomial 5.58± 0.55 0.36± 0.03
SVM: Pearson VII 9.22± 0.76 0.49± 0.04
Näıve Bayes 5.83± 0.11 0.53± 0.06
BN: K2 9.29± 0.80 0.22± 0.06
BN: Hill Climber 2069.48± 34.89 0.20± 0.03
BN: TAN 2585.08± 226.31 0.32± 0.04

of features of this dataset to 1,000. KNN was also the slowest in terms of
testing time for this configuration, with results between 2.96 and 4.82 mi-
lliseconds. SVM with polynomial kernel was also the fastest of the tested
configurations for SVM, achieving a training time of 3.76 milliseconds and a
testing time of 0.01 milliseconds. Näıve Bayes required 4.29 milliseconds for
training and 0.10 seconds for testing. Overall, we found that K2 is the fastest
Bayesian classifier, requiring 8.93 milliseconds for training and 0.10 millise-
conds for testing. TAN had the slowest training time at 488.69 milliseconds
while it only required 0.15 milliseconds for the testing step. Random Forest
performed also faster than J48, with 2.68 milliseconds of training time.

Table 4 shows the required time to train and test the data-mining models
with a combined opcode-sequence length of 1 and 2. This time, the results
were nearly the same than the results for an opcode-sequence length of 2
because the number of features was the same: 1,000 features.

Table 5, Figure 9 and Figure 10 show the results for an opcode-sequence
length of one. This opcode-sequence length represents only executable files

22

Table 3: Time results of data-mining classifiers for n = 2

Classifier Training Time (ms) Testing Time (ms)
KNN K=1 0.00± 0.00 2.96± 0.16
KNN K=2 0.00± 0.00 3.95± 0.39
KNN K=3 0.00± 0.00 4.11± 0.26
KNN K=4 0.00± 0.00 4.34± 0.18
KNN K=5 0.00± 0.00 4.54± 0.17
KNN K=6 0.00± 0.00 4.6± 0.175
KNN K=7 0.00± 0.00 4.96± 0.28
KNN K=8 0.00± 0.00 5.18± 0.19
KNN K=9 0.00± 0.00 4.70± 0.20
KNN K=10 0.00± 0.00 4.82± 0.16
DT: J48 32.43± 3.73 0.00± 0.00
DT: Random Forest N=10 2.68± 0.09 0.00± 0.01
SVM: RBF 33.08± 7.44 1.76± 0.09
SVM: Polynomial 3.76± 0.25 0.01± 0.00
SVM: Normalised Polynomial 16.35± 1.26 1.30± 0.07
SVM: Pearson VII 56.47± 3.31 3.20± 0.09
Näıve Bayes 4.29± 0.24 0.10± 0.03
BN: K2 8.93± 1.09 0.10± 0.02
BN: Hill Climber 501.71± 31.60 0.10± 0.02
BN: TAN 488.69± 7.80 0.15± 0.01

as a statistical distribution of opcodes. The best results were obtained by
the SVM trained with Pearson VII kernel, which yielded an accuracy of
92.92%. Nearly every classifier yielded results with accuracies greater than
90%. Nevertheless, Bayesian networks trained with K2, Hill Climber and
Näıve Bayes performed worse that their counterparts. The best TPR results
were achieved by KNN K=2 with a TPR of 0.95. Most of classifiers obtained
a detection ratio higher than 85%, except of, as occurred in accuracy results,
Bayesian networks trained with K2, Hill Climber, Näıve Bayes and SVM
trained with Radial Basis Function Kernel. In terms of FPR false positive
ratio, a very important measure, especially for commercial antivirus software,
the lowest rate of false positive was achieved using SVM trained with Pearson
VII Kernel. Bayesian networks trained with K2 and Hill Climber, Näıve
Bayes and KNN with K=2 yielded a FPR higher or equal than 0.10. Finally,
with regards to the area under the ROC curve, all classifiers other than Näıve
Bayes and SVM trained with RBF Kernel, achieved areas bigger than 0.90.

When using a length of two (shown in Table 6, Figure 11 and Figure 12),

23

Table 4: Time results of data-mining classifiers for the combination of features of opcode-
sequence length of 1 and 2.

Classifier Training Time (ms) Testing Time (ms)
KNN K=1 0.00± 0.00 3.64± 0.22
KNN K=2 0.00± 0.00 4.31± 0.20
KNN K=3 0.00± 0.02 4.60± 0.28
KNN K=4 0.00± 0.00 4.88± 0.22
KNN K=5 0.00± 0.00 5.20± 0.28
KNN K=6 0.00± 0.00 5.23± 0.25
KNN K=7 0.00± 0.00 5.53± 0.24
KNN K=8 0.00± 0.00 5.09± 6.38
KNN K=9 0.00± 0.00 5.84± 0.27
KNN K=10 0.00± 0.00 5.97± 0.27
DT: J48 32.43± 2.98 0.00± 0.00
DT: Random Forest N=10 2.68± 0.16 0.00± 0.00
SVM: RBF 34.24± 3.07 1.76± 2.02
SVM: Polynomial 5.35± 0.34 0.02± 0.01
SVM: Normalised Polynomial 18.88± 1.69 1.87± 0.17
SVM: Pearson VII 58.19± 4.03 3.41± 0.20
Näıve Bayes 4.29± 0.19 0.12± 0.03
BN: K2 9.16± 0.33 0.12± 0.02
BN: Hill Climber 453.93± 35.06 0.10± 0.03
BN: TAN 448.63± 10.27 0.14± 0.01

the results substantially improved. The results for SVM trained with Norma-
lised Polynomial Kernel were the best, at 95.90%. Bayesian networks trained
with K2 and Hill Climber were the worst in terms of accuracy — weaker than
90%. In terms of TPR, Random Forest, SVM trained with Polynomial Kernel
and KNN K=2 yielded the best results, 96%. With the exception of Bayesian
networks trained with K2 and Hill Climber, the classifiers all achieved ratios
higher than 0.85. For FPR, SVM trained with the Normalised Polynomial
Kernel outperformed the rest of classifiers with a ratio of 0.2. Finally, every
model obtained results for AUC greater than 90%.

Surprisingly, the results for the combination of opcode sequences with
lengths one and two (refer to Table 7, Figure 13 and Figure 14), did not yield
better results than experiments with n = 2. Specifically, the results were
slightly lower than those obtained with the sequences of length two, with the
exception of the Bayesian networks algorithms. In terms of model accuracy,
SVM trained with the Normalised Polynomial Kernel achieved 95.80% ac-
curacy, 0.10% less than the previous result using an opcode-sequence length

24

Table 5: Results for an opcode-sequence length of 1.

Classifier Accuracy (%) TPR FPR AUC
KNN K=1 92.83± 1.90 0.93± 0.02 0.07± 0.03 0.93± 0.02
KNN K=2 90.75± 2.04 0.95± 0.02 0.14± 0.03 0.95± 0.02
KNN K=3 91.71± 1.95 0.91± 0.03 0.08± 0.03 0.96± 0.01
KNN K=4 91.40± 2.04 0.93± 0.03 0.10± 0.03 0.96± 0.01
KNN K=5 90.95± 2.08 0.90± 0.03 0.08± 0.02 0.96± 0.01
KNN K=6 90.87± 2.08 0.91± 0.03 0.10± 0.03 0.96± 0.01
KNN K=7 90.80± 2.28 0.89± 0.04 0.07± 0.03 0.97± 0.01
KNN K=8 90.68± 2.25 0.90± 0.03 0.09± 0.03 0.97± 0.01
KNN K=9 90.40± 2.25 0.88± 0.03 0.08± 0.03 0.97± 0.01
KNN K=10 90.36± 2.31 0.90± 0.03 0.09± 0.03 0.97± 0.01
DT: J48 91.25± 2.15 0.92± 0.03 0.09± 0.03 0.91± 0.03
DT: Random Forest N=10 91.43± 1.98 0.92± 0.03 0.09± 0.03 0.97± 0.01
SVM: RBF 81.67± 2.57 0.67± 0.05 0.03± 0.02 0.82± 0.03
SVM: Polynomial 89.65± 2.08 0.88± 0.03 0.09± 0.03 0.90± 0.02
SVM: Normalised Polynomial 91.67± 2.05 0.88± 0.04 0.05± 0.02 0.92± 0.02
SVM: Pearson VII 92.92± 1.86 0.89± 0.03 0.03± 0.02 0.93± 0.02
Näıve Bayes 79.64± 3.02 0.90± 0.03 0.31± 0.05 0.86± 0.02
BN: K2 84.24± 3.02 0.79± 0.05 0.10± 0.03 0.92± 0.03
BN: Hill Climber 84.24± 3.03 0.79± 0.05 0.10± 0.03 0.92± 0.02
BN: TAN 90.65± 2.14 0.87± 0.04 0.05± 0.02 0.97± 0.01

of two. The results for TPR were the same as with a sequence length of
two: Random Forest, SVM trained with the Polynomial Kernel and KNN
K=2 yielded 0.96 for TPR. The same outcome occurred for FPR, for which
SVM trained with the Normalised Polynomial Kernel was the best, at 0.02.
Finally, the result for AUC were also the same as in opcode length 2.

We would like to point out several observations from the experiments.
First, the best overall results were obtained with polynomial kernel classifiers
and decision trees. These two types of classifiers have a long history on text
classification and they behave well in this domain too. Second, Bayesian
networks, even though they detect much of the malware, yielded a high false
positive ratio. Because minimising false positive ratio is one of our goals,
we do not support these methods for unknown malware detection. Finally,
K-Nearest Neighbour, in spite of being a very simple method, yielded very
favourable results.

25

6. Discussion

The obtained results validate our initial hypothesis that building an unk-
nown malware detector based on opcode-sequence is feasible. The machine-

Figure 9: Comparison of the results in terms of accuracy of the classifiers for an opcode-
sequence length of 1.

Figure 10: Comparison of the results in terms of FPR of the classifiers for an opcode-
sequence length of 1.

26

Table 6: Results for an opcode-sequence length of 2.

Classifier Accuracy (%) TPR FPR AUC
KNN K=1 94.83± 1.43 0.95± 0.02 0.05± 0.02 0.95± 0.01
KNN K=2 93.15± 1.72 0.96± 0.02 0.10± 0.03 0.96± 0.01
KNN K=3 94.16± 1.67 0.94± 0.02 0.05± 0.03 0.97± 0.01
KNN K=4 93.89± 1.68 0.95± 0.02 0.07± 0.03 0.97± 0.01
KNN K=5 93.50± 1.85 0.92± 0.03 0.05± 0.02 0.97± 0.01
KNN K=6 93.38± 1.83 0.93± 0.03 0.06± 0.02 0.98± 0.01
KNN K=7 92.87± 1.77 0.90± 0.03 0.04± 0.02 0.98± 0.01
KNN K=8 92.89± 1.92 0.91± 0.03 0.05± 0.02 0.98± 0.01
KNN K=9 92.10± 2.07 0.88± 0.03 0.04± 0.02 0.98± 0.01
KNN K=10 92.24± 2.04 0.90± 0.03 0.05± 0.02 0.97± 0.01
DT: J48 92.61± 1.95 0.93± 0.02 0.08± 0.03 0.93± 0.02
DT: Random Forest N=10 95.26± 1.57 0.96± 0.02 0.06± 0.03 0.99± 0.01
SVM: RBF 91.93± 2.01 0.89± 0.03 0.05± 0.02 0.92± 0.02
SVM: Polynomial 95.50± 1.56 0.96± 0.02 0.05± 0.02 0.95± 0.02
SVM: Normalised Polynomial 95.90± 1.59 0.94± 0.03 0.02± 0.01 0.96± 0.02
SVM: Pearson VII 94.35± 1.70 0.95± 0.02 0.06± 0.03 0.94± 0.02
Näıve Bayes 90.02± 2.16 0.90± 0.03 0.10± 0.03 0.93± 0.02
BN: K2 86.73± 2.70 0.83± 0.04 0.09± 0.03 0.94± 0.02
BN: Hill Climber 86.73± 2.70 0.83± 0.04 0.09± 0.03 0.94± 0.02
BN: TAN 93.40± 1.77 0.91± 0.03 0.04± 0.02 0.98± 0.01

learning classifiers achieved high performance in classifying unknown malware.
Nevertheless, there are several considerations regarding the viability of this
method.

Fist, the processing overhead of method is highly dependant of the length
of the opcode sequences. In our experiments, we analysed how the length of
opcode sequences influences the processing overhead of the method. In par-
ticular, we were not capable of building the classifiers with opcode sequences
longer than 2 because we could not perform the feature selection step. If we
were able to perform that step and we selected the top ranked 1,000 opcode
sequences then the classifiers could have been generated. Since the accuracy
results using a length of 2 are high, we consider that there is not benefit
of such lengths. Besides, a long opcode sequence can be easily evaded by a
malware obfuscator through code transposition techniques whereas a short
one may be harder to evade.

Second, our representation technique only employs opcodes and discards
the operands in the machine code instructions. The work of Bilar [4] studied

27

Figure 11: Comparison of the results in terms of accuracy of the classifiers for an opcode-
sequence length of 2.

the representativeness of single opcodes for determine the legitimacy of an
application and it was proved that single opcodes are statistically dependant
with regards to the class of a software. However, we do not discard to enhance
our representation including operands within the instructions in a further
work. To use these operands, we have to first perform a classification of
the operands, grouping every type of operand that have the same meaning
together.

Third, because of the static nature of the proposed method, it cannot
counter packed malware. Packed malware is the result of cyphering the
payload of the executable and deciphering it when the executable is finally
loaded into memory. Indeed, static detection methods can deal with packed
malware only by using the signatures of the packers. Accordingly, dynamic
analysis seems a more promising solution to this problem [32]. One solution
to solve this obvious limitation of our malware detection method is the use of
a generic dynamic unpacking schema such as PolyUnpack [63], Renovo [32],
OmniUnpack [47] and Eureka [72]. These methods execute the sample in a
contained environment and extract the actual payload, allowing further static
or dynamic analysis of the executable. Another solution is to use concrete
unpacking routines to recover the actual payload that requires one routine
per packing algorithm [75]. Obviously, this approach is limited to a fixed

28

Figure 12: Comparison of the results in terms of FPR of the classifiers for an opcode-
sequence length of 2.

set of known packers. Likewise, commercial antivirus software also applies
“X-ray” techniques that can defeat known compression schemes and weak

Figure 13: Comparison of the results in terms of accuracy for the combination of features
of opcode-sequence length of 1 and 2.

29

Table 7: Results for the combination of features of opcode-sequence length of 1 and 2.

Classifier Accuracy (%) TPR FPR AUC
KNN K=1 94.73± 1.47 0.95± 0.02 0.05± 0.02 0.95± 0.01
KNN K=2 93.06± 1.75 0.96± 0.02 0.10± 0.03 0.96± 0.01
KNN K=3 94.30± 1.63 0.94± 0.02 0.05± 0.02 0.97± 0.01
KNN K=4 94.13± 1.77 0.95± 0.02 0.07± 0.03 0.98± 0.01
KNN K=5 93.98± 1.87 0.93± 0.03 0.05± 0.02 0.98± 0.01
KNN K=6 94.09± 1.80 0.94± 0.02 0.06± 0.02 0.98± 0.01
KNN K=7 93.80± 1.88 0.92± 0.03 0.04± 0.02 0.98± 0.01
KNN K=8 93.80± 1.79 0.93± 0.03 0.06± 0.02 0.98± 0.01
KNN K=9 93.16± 1.92 0.91± 0.03 0.04± 0.02 0.98± 0.01
KNN K=10 93.20± 1.94 0.92± 0.03 0.05± 0.02 0.98± 0.01
DT: J48 92.34± 1.58 0.93± 0.02 0.09± 0.02 0.92± 0.02
DT: Random Forest N=10 94.98± 1.77 0.96± 0.02 0.06± 0.03 0.99± 0.01
SVM: RBF 91.70± 2.00 0.89± 0.02 0.05± 0.03 0.92± 0.02
SVM: Polynomial 95.50± 1.52 0.96± 0.02 0.05± 0.02 0.95± 0.02
SVM: Normalised Polynomial 95.80± 1.59 0.94± 0.02 0.02± 0.01 0.96± 0.02
SVM: Pearson VII 94.29± 1.77 0.95± 0.02 0.06± 0.03 0.94± 0.02
Näıve Bayes 89.81± 2.30 0.90± 0.03 0.11± 0.03 0.93± 0.02
BN: K2 87.29± 2.59 0.83± 0.04 0.08± 0.03 0.94± 0.02
BN: Hill Climber 87.29± 2.59 0.83± 0.04 0.08± 0.03 0.94± 0.02
BN: TAN 93.40± 1.80 0.91± 0.03 0.04± 0.02 0.98± 0.01

encryption [56]. Still, these techniques cannot cope with the increasing use of
packing techniques, and, we suggest the use of dynamic unpacking schemas
to confront the problem.

Fourth, it may seem that our method detects mainly the compiler used to
create executables. In fact, the use of a specific compiler inherently renders
an executable rich in several opcode sequences. Nonetheless, our machine-
learning method represents all information in the training dataset. We also
included a pre-processing step that conducts a feature extraction. Hence,
selection of the most relevant opcode-sequence confirms our approach goes
further than detecting different compilers. In addition, when selecting exe-
cutables to be part of the dataset, we analysed them using PEiD, a tool that
detects most common packers, cryptors and compilers for Portable Executa-
ble (PE)9 files. After removing the packed ones (our method would not be
able to detect them), there was no significant difference in the compilers used

9PE is the format of windows binary files.

30

for benign software and malware. We found that the most common known
compilers in the malware dataset were Microsoft Visual Basic, Microsoft Vi-
sual C++, Borland Delphi and Borland C++. In the benign dataset, the
most common compilers were Microsoft Visual C++, Borland C++ and Bor-
land Delphi. We may be able to apply the ability to detect compilers for our
own benefit. We can apply our method to detect whether an executable is
packed. If the executable is packed, then we may unpack it using a dynamic
unpacking schema capable of extracting the original payload. Afterwards or
if the sample is not packed, we can analyse it to determine out whether it is
malware.

Finally, the use of supervised machine-learning algorithms for the model
training, can be a problem in itself. In our experiments, we used a trai-
ning dataset that is very small when compared with commercial antivirus
databases. As the dataset size grows, so does the issue of scalability. This
problem produces excessive storage requirements, increases time complexity
and impairs the general accuracy of the models [10]. To reduce dispropor-
tionate storage and time costs, it is necessary to reduce the original training
set [19]. In order to solve this issue, data reduction is normally considered an
appropriate preprocessing optimisation technique [59, 78]. Such techniques
have many potential advantages such as reducing measurement, storage and

Figure 14: Comparison of the results in terms of FPR for the combination of features of
opcode-sequence length of 1 and 2.

31

transmission; decreasing training and testing times; confronting the curse
of dimensionality to improve prediction performance in terms of speed, ac-
curacy and simplicity and facilitating data visualization and understanding
[76, 20]. Data reduction can be implemented in two ways. On the one hand,
Instance Selection (IS) seeks to reduce the evidences (i.e., number of rows) in
the training set by selecting the most relevant instances or re-sampling new
ones [43]. On the other hand, Feature Selection (FS) decreases the number
of attributes or features (i.e., columns) in the training set [44]. We applied
FS in our experiments when selecting the 1000 top-ranked opcode sequences.
Because both IS and FS are very effective at reducing the size of the training
set and helping to filtrate and clean noisy data, thereby improving the accu-
racy of machine-learning classifiers [6, 21], we strongly encourage the use of
these methods.

7. Conclusions

Malware detection has become a major topic of research and concern
owing to the increasing growth of malicious code in recent years. The classic
signature methods employed by antivirus vendors are no longer completely
effective because the large volume of new malware renders them impractical.
Therefore, signature methods must be complemented with more complex
approaches that provide detection of unknown malware families.

In this paper, we present a method for malware detection. Specifically, we
propose a method for representing malware that relied on opcodes sequences
in order to construct a vector representation of the executables. In this
way, we were able to train machine-learning algorithms to detect unknown
malware variants. Our experiments show that this method provides a good
detection ratio of unknown malware while keeping a low false positive ratio.

The future development of this malware detection system will be concen-
trated in three main research areas. First, we will focus on facing packed
executables using a hybrid dynamic-static approach. Second, we plan to
apply this method for the detection of packed executables. Finally, we will
study the problem of scalability of malware databases using a combination
of feature and instance selection methods.

Acknowledgements

This research was financially supported by the Ministry of Industry of
Spain, project Cenit SEGUR@, Security and Trust in the Information So-

32

ciety, (BOE 35, 09/02/2007, CDTI). We would also like to acknowledge to
the anonymous reviewers for their helpful comments and suggestions.

References

[1] S. Amari, S. Wu, Improving support vector machine classifiers by mo-
difying kernel functions, Neural Networks 12 (1999) 783–789.

[2] T. Bayes, An essay towards solving a problem in the doctrine of chances,
Philosophical Transactions of the Royal Society 53 (1763) 370–418.

[3] J. Bergeron, M. Debbabi, M. Erhioui, B. Ktari, Static Analysis of Bi-
nary Code to Isolate Malicious Behaviors, in: Proceedings of the 1999
Workshop on Enabling Technologies on Infrastructure for Collaborative
Enterprises, pp. 184–189.

[4] D. Bilar, Opcodes as predictor for malware, International Journal of
Electronic Security and Digital Forensics 1 (2007) 156–168.

[5] C. Bishop, Pattern recognition and machine learning, Springer New
York., 2006.

[6] A. Blum, P. Langley, Selection of relevant features and examples in
machine learning, Artificial intelligence 97 (1997) 245–271.

[7] L. Breiman, Random forests, Machine learning 45 (2001) 5–32.

[8] D. Bruschi, L. Martignoni, M. Monga, Detecting self-mutating malware
using control-flow graph matching, Lecture Notes in Computer Science
4064 (2006) 129.

[9] D. Cai, J. Theiler, M. Gokhale, Detecting a malicious executable without
prior knowledge of its patterns, in: Proceedings of the 2005 Defense
and Security Symposium. Information Assurance, and Data Network
Security, volume 5812, pp. 1–12.

[10] J. Cano, F. Herrera, M. Lozano, On the combination of evolutionary
algorithms and stratified strategies for training set selection in data mi-
ning, Applied Soft Computing Journal 6 (2006) 323–332.

[11] E. Castillo, J.M. Gutiérrez, A.S. Hadi, Expert Systems and Probabilistic
Network Models, Springer, New York, NY, USA, erste edition, 1996.

33

[12] O. Chapelle, B. Schölkopf, A. Zien, Semi-supervised learning, MIT
Press, 2006.

[13] M. Chouchane, A. Lakhotia, Using engine signature to detect metamorp-
hic malware, in: Proceedings of the 2006 ACM workshop on Recurring
malcode, ACM New York, NY, USA, pp. 73–78.

[14] M. Christodorescu, Behavior-based malware detection, Ph.D. thesis,
2007.

[15] M. Christodorescu, S. Jha, Testing malware detectors, ACM SIGSOFT
Software Engineering Notes 29 (2004) 34–44.

[16] M. Christodorescu, S. Jha, Static analysis of executables to detect ma-
licious patterns, in: Proceedings of the 12th USENIX Security Sympo-
sium, pp. 169–186.

[17] M. Christodorescu, S. Jha, S. Seshia, D. Song, R. Bryant, Semantics-
aware malware detection, in: Proceedings of the 2005 IEEE Symposium
on Security and Privacy, pp. 32–46.

[18] G.F. Cooper, E. Herskovits, A bayesian method for constructing baye-
sian belief networks from databases, in: Proceedings of the 1991 confe-
rence on Uncertainty in artificial intelligence.

[19] I. Czarnowski, P. Jedrzejowicz, Instance reduction approach to machine
learning and multi-database mining, in: Proceedings of the 2006 Scienti-
fic Session organized during XXI Fall Meeting of the Polish Information
Processing Society, Informatica, ANNALES Universitatis Mariae Curie-
Sk lodowska, Lublin, pp. 60–71.

[20] M. Dash, H. Liu, Consistency-based search in feature selection, Artificial
Intelligence 151 (2003) 155–176.

[21] J. Derrac, S. Garcıa, F. Herrera, A First Study on the Use of Coevolu-
tionary Algorithms for Instance and Feature Selection, in: Proceedings
of the 2009 International Conference on Hybrid Artificial Intelligence
Systems, Springer, pp. 557–564.

[22] C. Elkan, The foundations of cost-sensitive learning, in: Proceedings of
the 2001 International Joint Conference on Artificial Intelligence, Cite-
seer, pp. 973–978.

34

[23] D. Fisch, A. Hofmann, B. Sick, On the versatility of radial basis fun-
ction neural networks: A case study in the field of intrusion detection,
Information Sciences 180 (2010) 2421–2439.

[24] E. Fix, J.L. Hodges, Discriminatory analysis: Nonparametric discrimi-
nation: Small sample performance, Technical Report Project 21-49-004,
Report Number 11 (1952).

[25] S. Garner, Weka: The Waikato environment for knowledge analysis,
in: Proceedings of the 1995 New Zealand Computer Science Research
Students Conference, pp. 57–64.

[26] D. Geiger, M. Goldszmidt, G. Provan, P. Langley, P. Smyth, Bayesian
network classifiers, in: Machine Learning, pp. 131–163.

[27] J. Huang, I. Liao, et al., Shielding wireless sensor network using marko-
vian intrusion detection system with attack pattern mining, Information
Sciences (2011).

[28] N. Idika, A. Mathur, A survey of malware detection techniques, Techni-
cal Report, Department of Computer Science, Purdue University, 2007.

[29] G. Jacob, H. Debar, E. Filiol, Behavioral detection of malware: from a
survey towards an established taxonomy, Journal in Computer Virology
4 (2008) 251–266.

[30] X. Jin, A. Xu, R. Bie, P. Guo, Machine learning techniques and chi-
square feature selection for cancer classification using SAGE gene ex-
pression profiles, Lecture Notes in Computer Science 3916 (2006) 106–
115.

[31] I. Jolliffe, Principal component analysis, Springer verlag, 2002.

[32] M. Kang, P. Poosankam, H. Yin, Renovo: A hidden code extractor
for packed executables, in: Proceedings of the 2007 ACM workshop on
Recurring malcode, pp. 46–53.

[33] M. Karim, A. Walenstein, A. Lakhotia, L. Parida, Malware phylogeny
generation using permutations of code, Journal in Computer Virology 1
(2005) 13–23.

35

[34] J. Kent, Information gain and a general measure of correlation, Biome-
trika 70 (1983) 163.

[35] R. Kohavi, A study of cross-validation and bootstrap for accuracy esti-
mation and model selection, in: Proceedings of the 1995 International
Joint Conference on Artificial Intelligence, volume 14, pp. 1137–1145.

[36] J. Kolter, M. Maloof, Learning to detect malicious executables in the
wild, in: Proceedings of the 2004 ACM SIGKDD international confe-
rence on Knowledge discovery and data mining, ACM New York, NY,
USA, pp. 470–478.

[37] S. Kotsiantis, Supervised Machine Learning: A Review of Classification
Techniques, in: Proceeding of the 2007 conference on Emerging Artifi-
cial Intelligence Applications in Computer Engineering: Real Word AI
Systems with Applications in eHealth, HCI, Information Retrieval and
Pervasive Technologies, pp. 3–24.

[38] S. Kotsiantis, P. Pintelas, Recent advances in clustering: A brief survey,
WSEAS Transactions on Information Science and Applications 1 (2004)
73–81.

[39] G. Kou, Y. Peng, Z. Chen, Y. Shi, Multiple criteria mathematical pro-
gramming for multi-class classification and application in network intru-
sion detection, Information Sciences 179 (2009) 371–381.

[40] N. Kuzurin, A. Shokurov, N. Varnovsky, V. Zakharov, On the Concept of
Software Obfuscation in Computer Security, Lecture notes in computer
science 4779 (2007) 281.

[41] D. Lewis, Naive (Bayes) at forty: The independence assumption in infor-
mation retrieval, Lecture Notes in Computer Science 1398 (1998) 4–18.

[42] W. Li, K. Wang, S. Stolfo, B. Herzog, Fileprints: Identifying file types
by n-gram analysis, in: Proceedings of the 2005 IEEE Workshop on
Information Assurance and Security, Citeseer.

[43] H. Liu, H. Motoda, Instance selection and construction for data mining,
Kluwer Academic Pub, 2001.

36

[44] H. Liu, H. Motoda, Computational methods of feature selection, Chap-
man & Hall/CRC, 2008.

[45] R. Lo, K. Levitt, R. Olsson, MCF: A malicious code filter, Computers
& Security 14 (1995) 541–566.

[46] R. Mántaras, A distance-based attribute selection measure for decision
tree induction, Machine learning 6 (1991) 81–92.

[47] L. Martignoni, M. Christodorescu, S. Jha, Omniunpack: Fast, generic,
and safe unpacking of malware, in: Proceedings of the 2007 Annual
Computer Security Applications Conference (ACSAC), pp. 431–441.

[48] M. McGill, G. Salton, Introduction to modern information retrieval,
McGraw-Hill, 1983.

[49] P. Morley, Processing virus collections, in: Proceedings of the 2001 Virus
Bulletin Conference (VB2001), Virus Bulletin, 2001, pp. 129–134.

[50] R. Moskovitch, D. Stopel, C. Feher, N. Nissim, Y. Elovici, Unknown
malcode detection via text categorization and the imbalance problem, in:
Proceedings of the 2008 IEEE International Conference on Intelligence
and Security Informatics (ISI), pp. 156–161.

[51] G. Ollmann, The evolution of commercial malware development kits and
colour-by-numbers custom malware, Computer Fraud & Security 2008
(2008) 4–7.

[52] J. Pearl, Reverend bayes on inference engines: a distributed hierarchical
approach, in: Proceedings of the 1982 National Conference on Artificial
Intelligence, pp. 133–136.

[53] H. Peng, F. Long, C. Ding, Feature selection based on mutual informa-
tion: criteria of max-dependency, max-relevance, and min-redundancy,
IEEE Transactions on Pattern Analysis and Machine Intelligence (2005)
1226–1238.

[54] R. Perdisci, A. Lanzi, W. Lee, Classification of packed executables for ac-
curate computer virus detection, Pattern Recognition Letters 29 (2008)
1941–1946.

37

[55] R. Perdisci, A. Lanzi, W. Lee, McBoost: Boosting scalability in malware
collection and analysis using statistical classification of executables, in:
proceedings of the 23rd Annual Computer Security Applications Confe-
rence, pp. 301–310.

[56] F. Perriot, P. Ferrie, Principles and practise of x-raying, in: Proceedings
of the 2004 Virus Bulletin International Conference, pp. 51–66.

[57] J. Platt, Sequential minimal optimization: A fast algorithm for training
support vector machines, Advances in Kernel Methods-Support Vector
Learning 208 (1999).

[58] B. Potter, G. Day, The effectiveness of anti-malware tools, Computer
Fraud & Security 2009 (2009) 12–13.

[59] D. Pyle, Data preparation for data mining, Morgan Kaufmann, 1999.

[60] J. Quinlan, Induction of decision trees, Machine learning 1 (1986) 81–
106.

[61] J. Quinlan, C4. 5 programs for machine learning, Morgan Kaufmann
Publishers, 1993.

[62] S. Robertson, Understanding inverse document frequency: on theoreti-
cal arguments for IDF, Journal of Documentation 60 (2004) 503–520.

[63] P. Royal, M. Halpin, D. Dagon, R. Edmonds, W. Lee, Polyunpack:
Automating the hidden-code extraction of unpack-executing malware,
in: Proceedings of the 2006 Annual Computer Security Applications
Conference (ACSAC), pp. 289–300.

[64] S.J. Russell, Norvig, Artificial Intelligence: A Modern Approach (Second
Edition), Prentice Hall, 2003.

[65] G. Salton, A. Wong, C. Yang, A vector space model for automatic in-
dexing, Communications of the ACM 18 (1975) 613–620.

[66] I. Santos, F. Brezo, J. Nieves, Y. Penya, B. Sanz, C. Laorden, P. Brin-
gas, Idea: Opcode-sequence-based malware detection, in: Engineering
Secure Software and Systems, volume 5965 of LNCS, 2010, pp. 35–43.
10.1007/978-3-642-11747-3 3.

38

[67] I. Santos, Y. Penya, J. Devesa, P. Bringas, N-Grams-based file signa-
tures for malware detection, in: Proceedings of the 2009 International
Conference on Enterprise Information Systems (ICEIS), Volume AIDSS,
pp. 317–320.

[68] R. Schapire, The boosting approach to machine learning: An overview,
Lecture Notes in Statistics (2003) 149–172.

[69] M. Schultz, E. Eskin, F. Zadok, S. Stolfo, Data mining methods for
detection of new malicious executables, in: Proceedings of the 2001
IEEE Symposium on Security and Privacy, pp. 38–49.

[70] A. Shabtai, R. Moskovitch, Y. Elovici, C. Glezer, Detection of malicious
code by applying machine learning classifiers on static features: A state-
of-the-art survey, Information Security Technical Report 14 (2009) 16–
29.

[71] M. Shafiq, S. Khayam, M. Farooq, Embedded Malware Detection Using
Markov n-Grams, Lecture Notes in Computer Science 5137 (2008) 88–
107.

[72] M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, W. Lee, Eureka: A Fra-
mework for Enabling Static Malware Analysis, in: Proceedings of the
2008 European Symposium on Research in Computer Security (ESO-
RICS), pp. 481–500.

[73] Y. Singh, A. Kaur, R. Malhotra, Comparative analysis of regression
and machine learning methods for predicting fault proneness models,
International Journal of Computer Applications in Technology 35 (2009)
183–193.

[74] A. Sung, J. Xu, P. Chavez, S. Mukkamala, Static analyzer of vicious exe-
cutables (save), in: Proceedings of the 2004 Annual Computer Security
Applications Conference (ACSAC), pp. 326–334.

[75] P. Ször, The art of computer virus research and defense, Addison-Wesley
Professional, 2005.

[76] K. Torkkola, Feature extraction by non parametric mutual informa-
tion maximization, The Journal of Machine Learning Research 3 (2003)
1415–1438.

39

[77] C. Tsai, Y. Hsu, C. Lin, W. Lin, Intrusion detection by machine learning:
A review, Expert Systems with Applications 36 (2009) 11994–12000.

[78] E. Tsang, D. Yeung, X. Wang, OFFSS: optimal fuzzy-valued feature
subset selection, IEEE transactions on fuzzy systems 11 (2003) 202–213.

[79] B. Üstün, W. Melssen, L. Buydens, Facilitating the application of Sup-
port Vector Regression by using a universal Pearson VII function based
kernel, Chemometrics and Intelligent Laboratory Systems 81 (2006) 29–
40.

[80] V. Vapnik, The nature of statistical learning theory, Springer, 2000.

[81] P. Vinod, R. Jaipur, V. Laxmi, M. Gaur, Survey on Malware Detection
Methods, in: Hack. in 2009.

[82] J. Xu, A. Sung, P. Chavez, S. Mukkamala, Polymorphic malicious exe-
cutable scanner by API sequence analysis, in: Proceedings of the 2004
International Conference on Hybrid Intelligent Systems, pp. 378–383.

[83] C. Zhai, J. Lafferty, A study of smoothing methods for language mo-
dels applied to information retrieval, ACM Transactions on Information
Systems 22 (2004) 179–214.

[84] Q. Zhang, D. Reeves, Metaaware: Identifying metamorphic malware,
in: Proceedings of the 2007 Annual Computer Security Applications
Conference (ACSAC), pp. 411–420.

[85] Y. Zhou, W. Inge, Malware detection using adaptive data compression,
in: Proceedings of the 2008 ACM workshop on Workshop on AISec,
ACM New York, NY, USA, pp. 53–60.

40

