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Abstract. The usage of mobile phones has increased in our lives be-
cause they offer nearly the same functionality as a personal computer.
Specifically, Android is one of the most widespread mobile operating sys-
tems. Indeed, its app store is one of the most visited and the number of
applications available for this platform has also increased. However, as it
happens with any popular service, it is prone to misuse, and the number
of malware samples has increased dramatically in the last months. Thus,
we propose a new method based on anomaly detection that extracts the
strings contained in application files in order to detect malware.
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1 Introduction

Smartphones have become extremely useful gadgets, very rich in functionality.
Their operating systems have evolved, becoming closer to the desktop ones. We
can read our email, browse the Internet or play games with our friends, wherever
we are. In addition, the smartphone functionality can be enhanced, similarly to
desktop computers, through the installation of software applications.

In recent years, a new approach to distribute applications has gained popu-
larity: application stores. These stores, which distribute software and manage the
payments, have become very successful. Apple’s AppStore was the first online
store to bring this new paradigm to users and now offers more than 800,000 ap-
plications1. In a similar way, Google’s Play Store, Android’s official application
store, hosts 675,000 apps2.

Nevertheless, this success has also drawn attention to criminals and many
malware samples have emerged. According to Kaspersky, more than 35,000 new
samples were identified in 2012, which represents six times the number detected
in 2011.
1 http://www.apple.com/pr/library/2013/01/28Apple-Updates-iOS-to-6-1.

html
2 http://officialandroid.blogspot.com.es/search?q=675000



Several approaches have been proposed to deal with this issue. Crowdroid [1]
is an approach that analyses the behaviour of the applications through device
usage features. Blasing et al. created AASandbox [2], which is a hybrid (i.e., dy-
namic and static) approximation. The approach is based on the analysis of the
logs for the low-level interactions obtained during execution. Shabtai and Elovici
[3] also proposed a Host-Based Intrusion Detection System (HIDS) which used
machine learning methods to determine whether the application is malware or
not. Google itself has also deployed a framework for the supervision of appli-
cations called Bouncer. Oberheide and Miller 20123 revealed how the system
works: it is based in QEMU and performs both static and dynamic analysis.
In previous work, we used permissions to train machine-learning algorithms in
order to detect malware [4], obtaining more than 86% accuracy and 0.92 of Area
Under ROC curve.

However, machine-learning classifiers (or supervised-learning methods) re-
quire a high number of labelled applications for each of the classes (i.e., malware
or benign applications) to train the different models. Unfortunately, it is quite
difficult to acquire this amount of labelled data for a real-world problem such as
malware detection. In order to compose such data-set, a time-consuming process
of analysis is mandatory that renders in a cost increment.

In light of this background, we present an anomaly detection method for the
detection of malware in Android. This method employs the strings contained
in the disassembled Android applications, constructing a bag of words model in
order to generate an anomaly detection model that measures deviations from
normality (i.e., legitimate applications).

In summary, our main contributions are: (i) we present a new technique
for the representation of Android applications, based on the bag of words model
formed by the strings contained in the disassembled applications; (ii) we propose
a new anomaly-based malware detection method for Android; and (iii) we show
that this approach can provide detection of malicious applications in Android
using the strings contained in the disassembled application as features.

The remainder of this paper is organised as follows. Section 2 presents and
details our approach to represent applications in order to detect malware in
Android. Section 3 describes the anomaly detection techniques that our approach
is using. Section 4 describes the empirical evaluation of our method. Finally,
section 5 concludes and outlines the avenues of further work in this area.

2 Representation of Applications using String Analysis

One of the most widely-used techniques for classic malware detection is the usage
of strings contained in the files [5, 6]. This technique extracts every printable
string within an executable file. The information that may be found in these
strings can be, for example, options in the menus of the application or malicious
URLs to connect to. In this way, by means of an analysis of these data, it

3 http://jon.oberheide.org/files/summercon12-bouncer.pdf



is possible to extract valuable information in order to determine whether an
application is malicious or not.

The process adopted in our approach is the following. First, we disassemble
the application using the open-source Android disassembler smali4. Afterwards,
we search for the const-string operational code within the disassembled code.

Using this disassembler, the representation of Android binaries is semanti-
cally richer than common desktop binaries. For example, the strings extraction
in desktop binaries is complex and, usually, malware writers use obfuscation
techniques to hide relevant information. Instead, the obfuscation of strings in
Android binaries is more difficult, given the internal structure of binaries in this
platform.

In order to conform the strings, we tokenise the symbols found using the
classic separators (e.g., dot, comma, colon, semi-colon, blank space, tab, etc.).
In this way, we construct a text representation of an executable E , which is
formed by strings si, such that E = (s1, s2, ..., sn−1, sn) where n is the number
of strings within a file.

C is the set of Android executables E , {E : {s1, s2, ...sn}}, each compris-
ing n strings s1, s2, . . . , sn. We define the weight wi,j as the number of times
the string si appears in the executable Ej ; if si is not present in E , wi,j = 0.
Therefore, an application Ej can be represented as the vector of weights Ej =
(w1,j , w2,j , ...wn,j).

In order to represent a string collection, a common approach in text classifi-
cation is to use the Vector Space Model (VSM) [7], which represents documents
algebraically, as vectors in a multidimensional space.

This space consists only of positive axis intercepts. Executables are repre-
sented by a string-by-executable matrix, where the (i, j)th element illustrates
the association between the ith string and the jth executable. This association
reflects the occurrence of the ith string in the executable j. Strings can be indi-
vidually weighted, allowing the strings to become more or less important within
a given executable or the executable collection C as a whole.

We used the Term Frequency – Inverse Document Frequency (TF–IDF) [8]
weighting schema, where the weight of the ith string in the jth executable, de-
noted by weight(i, j), is defined by:

weight(i, j) = tfi,j · idfi (1)

where term frequency tfi,j is defined as:

tfi,j =
ni,j∑
k nk,j

(2)

where ni,j is the number of times the string si appears in a executable Ej , and∑
k nk,j is the total number of strings in the executable Ej . The inverse term

frequency idfi is defined as:

4 http://code.google.com/p/smali/



idfi = log

(
|C|

|C : ti ∈ E|

)
(3)

where |C| is the total number of executables and |C : si ∈ E| is the number of
executables containing the string si.

3 Anomaly Detection Techniques

Anomaly detection models what it is a normal application and every deviation
to this model is considered anomalous. Our method represents Android applica-
tions as points in the feature space, using the method described in the previous
section. When an application is being inspected, our method starts by comput-
ing the values of the points in the feature space. This point is then compared
with the previously calculated points of the legitimate applications. To this end,
distance measures are required. In this study, we have used the following distance
measures:

– Manhattan Distance: This distance between two points x and y is the sum
of the lengths of the projections of the line segment between the points onto
the coordinate axes:

d(x, y) =

n∑
i=0

|xi − yi| (4)

where x is the first point; y is the second point and xi and yi are the ith

component of the first and second point, respectively.
– Euclidean Distance: This distance is the length of the line segment connect-

ing two points. It is calculated as:

d(x, y) =

n∑
i=0

√
v2i − u2i (5)

where x is the first point; y is the second point and xi and yi are the ith

component of the first and second point, respectively.
– Cosine Similarity : It consists of measuring the similarity between two vectors

by finding the cosine of the angle between them [9]. Since we are measuring
distance and not similarity, we have used 1−CosineSimilarity as a distance
measure:

d(x, y) = 1− cos(θ) = 1− v · u
||v||·||u||

(6)

where v is the vector from the origin of the feature space to the first point
x, u is the vector from the origin of the feature space to the second point y,
v ·u is the inner product of v and u. ||v||·||v|| is the cross product of v and
u. This distance ranges from 0 to 1, where 1 means that the two evidences
are completely different and 0 means that the evidences are the same (i.e.,
the vectors are orthogonal between them).



By means of these measures, we can compute the deviation of an application
with respect to a set of benign ones.

Since we have to compute this measure with the points representing valid
apps, a combination metric is required in order to obtain a final distance value
which considers every measure performed. To this end, our system employs 3
simplistic rules: (i) select the mean value, (ii) select the lowest distance value
and (iii) select the highest value of the computed distances.

In this way, when our method inspects an application, a final distance value
is acquired, which will depend on both the chosen distance measure and a com-
bination rule.

4 Empirical validation

To evaluate our method, we used a dataset composed of 666 samples: 333 mali-
cious applications and 333 legitimate apps. Malicious applications were gathered
from the company VirusTotal5. VirusTotal offers a series of services called Virus-
Total Malware Intelligence Services, which allow researchers to obtain samples
from their databases.

To evaluate our anomaly-based approach, we followed the next configuration
for the empirical validation:

1. Cross validation: We performed a 5-fold cross-validation over benign samples
to divide them into 5 different divisions of the data into training and test
sets.

2. Computation of distances and combination rules: We extracted the strings
from the applications and used the 3 different measures and the 3 different
combination rules described in Section 3 to obtain a final measure of devi-
ation for each testing evidence. More accurately, we applied the following
distances: (i) the Manhattan distance, (ii) the Euclidean distance and (iii)
the Cosine distance. For the combination rules, we tested the following ones:
(i) the mean value, (ii) the lowest distance and (iii) the highest value.

3. Defining thresholds: For each measure and combination rule, we established
10 different thresholds to determine whether a sample is valid or not.

4. Testing the method : We evaluated the method by measuring these parame-
ters:

– True Positive Ratio (TPR), also known as sensitivity.

TPR =
TP

(TP + FN)
(7)

where TP is the number of applications correctly classified as malware
and FN is the number of applications misclassified as benign software.

5 http://www.virustotal.com



Table 1. Results for the different combination measures using Manhattan Distance.
The results in bold are the best for each combination rule and distance measure.

Comb. Thres. TPR FPR AUC Acc.

Average

1042516.95554 1.00000 1.00000

0.29121

50.00%
1297301.02116 0.56456 0.89189 33.63%
1552085.08679 0.47988 0.82282 32.85%
1806869.15241 0.37117 0.73273 31.92%
2061653.21803 0.23964 0.55856 34.05%
2316437.28365 0.15856 0.34835 40.51%
2571221.34927 0.11051 0.17117 46.97%

2826005.41490 0.07568 0.03303 52.13%
3080789.48052 0.00240 0.02102 49.07%
3335573.54614 0.00000 0.00300 49.85%

Max.

2115684.24601 1.00000 1.00000

0.30224

49.85%
2386946.41796 0.90871 0.98198 50.00%
2658208.58992 0.54294 0.87387 46.34%
2929470.76187 0.43724 0.79880 33.45%
3200732.93383 0.30931 0.67868 31.92%
3471995.10578 0.21201 0.43243 31.53%
3743257.27774 0.14114 0.19520 38.98%
4014519.44969 0.08468 0.07207 47.30%
4285781.62165 0.06006 0.00601 50.63%

4557043.79360 0.00000 0.00000 52.70%

Min.

0.00000 1.00000 1.00000

0.29987

50.00%
274472.12573 0.54655 0.85285 50.00%

548944.25146 0.44805 0.75976 34.68%
823416.37718 0.33333 0.64565 34.41%

1097888.50291 0.20721 0.50751 34.38%
1372360.62864 0.14114 0.32733 34.98%
1646832.75437 0.09610 0.15315 40.69%
1921304.88009 0.00300 0.03604 47.15%
2195777.00582 0.00000 0.02102 48.35%
2470249.13155 0.00000 0.00000 48.95%



Table 2. Results for the different combination measures using Euclidean Distance.
The results in bold are the best for each combination rule and distance measure.

Comb. Thres. TPR FPR AUC Acc.

Average

1292555.44 0.99880 1.00000

0.321240159

49.94%
1494979.97 0.53814 0.86787 33.51%
1697404.49 0.39880 0.76577 31.65%
1899829.02 0.27327 0.56757 35.29%
2102253.55 0.19700 0.25526 47.09%
2304678.08 0.12613 0.13213 49.70%

2507102.61 0.10511 0.04805 52.85%
2709527.14 0.02402 0.01802 50.30%
2911951.67 0.01502 0.00601 50.45%
3114376.19 0.00000 0.00000 50.00%

Max.

2486071.46 1.00000 1.00000

0.326824121

50.00%
2643030.09 0.88829 0.95796 46.52%
2799988.72 0.49189 0.82282 33.45%
2956947.35 0.28889 0.63664 32.61%
3113905.98 0.19339 0.30030 44.65%

3270864.60 0.13874 0.10811 51.53%
3427823.23 0.08889 0.06306 51.29%
3584781.86 0.02222 0.01201 50.51%
3741740.49 0.01201 0.00000 50.60%
3898699.12 0.00000 0.00000 50.00%

Min.

0.00 1.00000 1.00000

0.320127335

50.00%
308138.33 0.59760 0.91892 33.93%
616276.67 0.53754 0.84384 34.68%
924415.01 0.43664 0.75676 33.99%

1232553.35 0.29730 0.60961 34.38%
1540691.69 0.21021 0.35135 42.94%
1848830.03 0.12613 0.12312 50.15%

2156968.37 0.10511 0.02703 53.90%
2465106.71 0.01502 0.00601 50.45%
2773245.05 0.00000 0.00000 50.00%



Table 3. Results for the different combination measures using Cosine Distance. The
results in bold are the best for each combination rule and distance measure.

Comb. Thres. TPR FPR AUC Acc.

Average

0.83693246 1.00 1.00

0.884413242

50.00%
0.85505219 0.99 1.00 49.70%
0.87317191 0.99 1.00 49.61%
0.89129164 0.98 1.00 49.13%
0.90941137 0.98 0.96 50.90%
0.92753109 0.98 0.80 58.86%
0.94565082 0.97 0.52 72.40%

0.96377055 0.94 0.27 83.51%
0.98189027 0.77 0.11 82.79%
1.00001000 0.00 0.00 50.00%

Max.

1.00000000 1.00 1.00

0.5

50.00%
1.00000111 0.00 0.00 50.00%
1.00000222 0.00 0.00 50.00%
1.00000333 0.00 0.00 50.00%
1.00000444 0.00 0.00 50.00%
1.00000556 0.00 0.00 50.00%
1.00000667 0.00 0.00 50.00%
1.00000778 0.00 0.00 50.00%
1.00000889 0.00 0.00 50.00%
1.00001000 0.00 0.00 50.00%

Min.

0.00000000 1.00 1.00

0.854307461

50.00%
0.11111222 1.00 0.98 51.20%
0.22222444 1.00 0.95 52.70%
0.33333667 1.00 0.92 53.75%
0.44444889 1.00 0.84 57.69%
0.55556111 0.94 0.70 61.98%
0.66667333 0.87 0.33 76.94%

0.77778556 0.58 0.04 77.30%
0.88889778 0.41 0.02 69.64%
1.00001000 0.00 0.00 50.00%



– False Positive Ratio (FPR), which is the number of legitimate applica-
tions misclassified as malware.

FPR =
FP

(FP + TN)
(8)

where FP is the number of valid applications incorrectly detected as
malicious and TN is the number of valid applications correctly classified.

– Accuracy, which is the total number of hits divided by the number of
instances in the dataset.

Accuracy =
TP + TN

(TP + FP + TN + FN)
(9)

– Area Under ROC Curve [10], establishes the relation between FNR and
FPR for the different thresholds stablished.

Table 1 shows the results obtained using the Manhattan distance, Table 2
shows the results for the Euclidean distance and Table 3 shows the results for
the Cosine distance. In this way, both the Manhattan and Euclidean distances
achieved very low accuracy results. However, the results of our anomaly-based
system using the Cosine similarity are considerably sounder. In particular, it
obtained a best result of 83.51% of accuracy, with an FPR of 27% and a TPR
of 94%, using the average combination rule.

5 Conclusions and future work

Smartphones and tablets are flooding both consumer and business markets and,
therefore, manage a large amount of information. For this reason, malware writ-
ers have found in these devices a new source of income and therefore the number
of malware samples has grown exponentially in these platforms.

In this paper, we present a new malicious software detection approach that
is inspired on anomaly detection systems. In contrast to other approaches, this
method only needs to previously label goodware and measures the deviation of
a new sample with respect to normality (applications without malicious inten-
tions). Although anomaly detection systems tend to produce high error rates
(specially, false positives), our experimental results show low FPR values. The
number of samples that exist today is assumable by existing systems, but is grow-
ing very rapidly. This approach reduces the necessity to collect malware samples
and is trained using benign ones. In addition, our method is based on features
that are extracted from string analysis of the application, making possible to
prevent the installation of malicious software.

However, this approach also has several limitations. Through an internet
connection, a benign application can download a malicious payload and change
its behaviour. To detect these kind of changes, a dynamic approach is necessary
to monitor the behaviour of the applications. Nevertheless, these approaches
require considerable computational effort.



Future work is oriented in three main directions. First, there are other fea-
tures that could be used to improve the detection ratio. These features could be
obtained from the AndroidManifest.xml file. Second, other distance measure-
ments and combination rules could be tested. Finally, the effectiveness of the
method relies on the appropriate choice of the thresholds, making necessary to
improve these metrics.
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