
MADS: Malicious Android Applications
Detection through String Analysis

Borja Sanz, Igor Santos, Javier Nieves, Carlos Laorden, Iñigo Alonso-Gonzalez,
Pablo G. Bringas

S3Lab, DeustoTech Computing, University of Deusto, Bilbao, Spain
borja.sanz@deusto.es, isantos@deusto.es, jnieves@deusto.es,

claorden@deusto.es, ialonso@opendeusto.es, pablo.garcia.bringas@deusto.es

Abstract. The use of mobile phones has increased in our lives because
they offer nearly the same functionality as a personal computer. Besides,
the number of applications available for Android-based mobile devices
has increased. Google offers to programmers the opportunity to upload
and sell applications in the Android Market, but malware writers up-
load their malicious code there. In light of this background, we present
here Malicious Android applications Detection through String analysis
(MADS), a new method that extracts the contained strings from the An-
droid applications to build machine-learning classifiers and detect mal-
ware.

Key words: malware, android, machine learning, security

1 Introduction

Smartphones have become very popular. They allow us to check the email, to
browse the Internet, or to play games with our friends, wherever we are. But, in
order to take advantage of every possibility these devices may offer, applications
have to be previously installed in the devices.

In the past, the installation of applications was a source of problems for the
users because there was not a centralized site for users to download their appli-
cations and they used to search them in the Internet. Several operating systems
like Symbian, in an attempt to avoid piracy and protect the device, used an au-
thentication protocol that certified the application and, usually, caused several
inconveniences to the users (e.g., they could not install applications although
they bought them).

Nowadays, new methods for the distribution and installation have appeared
thanks to the widely used Internet connection in mobile devices. Therefore, users
can install any application they want, avoiding the connection of the device to
a personal computer. The App Store of Apple was the first online store to bring
this new paradigm to novel users. The model was praised and it became very
successful, leading to other vendors such as RIM, Microsoft or Google to adopt
the same business model and developing application stores for their devices.
These factors have led a large number of developers to focus on these platforms.

However, malware has also arrived to the application markets. To this end,
both Android and iOS have different approaches to deal with malicious software.
According to their response to the US Federal Communication Commission’s
July 20091, Apple applies a very strict review process by at least two review-
ers. Android, on the other hand, relies on its security permission system and
on the user’s sound judgement. Unfortunately, users have usually no security
consciousness and they do not read required permissions before installing an
application.

Both AppStore and Android Market include in their terms of service, clauses
that do not allow developers to upload malware to their markets but both mar-
kets have hosted malware. Therefore, we can conclude that both models by
themselves are insufficient to ensure safety and other methods must be devel-
oped in order to enhance the security of the devices.

Machine learning classification has been widely used in malware detection
[1–5]. Several approaches [6, 7] have been presented that focus on classifying
executables specifying the malware category; e.g., Trojan horses, worms, viruses,
or even the malware family.

Regarding Android, the number of new malware samples is also increasing
exponentially and several approaches have already been proposed to detect mal-
ware. Shabtai et al. [8] built several machine learning models using as features:
the count of elements, attributes and namespaces of the parsed Android Package
File (.apk). To validate their models, they selected features using three selec-
tion methods: Information Gain, Fisher Score and Chi-Square. Their approach
achieved 89% of accuracy classifying applications into only 2 categories: tools or
games.

There are other proposals that use dynamic analysis for the detection of
malicious applications. Crowdroid [9] is an approach that analyses the behaviour
of the applications. Blasing et al. [10] created AASandbox, which is a hybrid
dynamic-static approximation. The dynamic part is based on the analysis of the
logs for the low-level interactions obtained during execution. Shabtai and Elovici
[11] also proposed a Host-Based Intrusion Detection System (HIDS) which uses
machine learning methods that determines whether the application is malware
or not. Google has also deployed a framework for the supervision of applications
called Bouncer. Oberheide and Miller [12] revealed how the system works: it is
based in QEMU and it performs both static and dynamic analysis.

In light of this background, we present MADS (Malicious Android appli-
cations Detection through String analysis), a novel approach for detection of
malware in Android. This method employs the strings contained in the dis-
assembled Android applications, constructing a bag of words model in order to
train machine-learning algorithms to provide detection of malicious applications.

In summary, our main contributions are:

1 http://online.wsj.com/public/resources/documents/

wsj-2009-0731-FCCApple.pdf

– We present a new technique for the representation of Android applications,
based on the bag of words model formed by the strings contained in the
disassembled application.

– We adapt well-known machine learning classifiers to provide detection of
malicious applications in Android.

– We found out that machine-learning algorithms can provide detection of
malicious applications in Android using the strings contained in the disas-
sembled application as features.

The reminder of this paper is organized as follows. Section 2 presents and
details MADS, our new approach to represent applications in order to detect
malware in Android. Section 3 describes the machine-learning algorithms we
have used. Section 4 describes the empirical evaluation of our method. Finally,
section 5 discusses the obtained results and outlines the avenues of further work
in this area.

2 Representation of Applications using String Analysis

One of the most widely-used techniques for classic malware detection is the usage
of strings contained in the files [13, 2]. This technique extracts every character
strings within an executable file. The information that may be found in these
strings can be, for example, options in the menus of the application or malicious
URLs to connect to. In this way, by means of an analysis of these data, it
is possible to extract valuable information in order to determine whether an
application is malicious or not.

The process that we followed in MADS is the following. We start by disas-
sembling the application using the open-source Android disassembler smali2.
Hereafter, we search for the const-string operation code within the disassem-
bled code.

Using this disassembler, the representation of Android binaries are semanti-
cally richer than common desktop binaries. For example, the strings extraction
in desktop binaries are complex and it is usual that malware writers obfuscate
them to hide relevant information. Instead, the obfuscation of strings in the bi-
naries of Android is more difficult, given the internal structure of the binaries in
this platform.

In order to conform the strings, we tokenize the found symbols using the
classic separators (e.g., dot, comma, colon, semi-colon, blank space, tab, etc.).
In this way, we construct a text representation of an executable E , that is formed
by strings si, such as E = (s1, s2, ..., sn−1, sn) where n is the number of strings
within a file.
C is the set of Android executables E , {E : {s1, s2, ...sn}}, each comprising n

strings s1, s2, . . . , sn, we define the weight wi,j as the number of times the string
si appears in the executable Ej if si is not present in E , wi,j = 0. Therefore, an ap-
plication Ej can be represented as the vector of weights Ej = (w1,j , w2,j , ...wn,j).

2 http://code.google.com/p/smali/

In order to represent string collection, a common approach in text mining
area is to use the Vector Space Model (VSM) [14], which represents documents
algebraically as vectors in a multidimensional space.

This space consists only of positive axis intercepts. Executables are repre-
sented by a string-by-executable matrix, where the (i, j)th element illustrates
the association between the ith string and the jth executable. This association
reflects the occurrence of the ith string in executable j. Strings can represent can
be individually weighted, allowing the strings to become more or less important
within a given executable or the executable collection C as a whole.

We used the Term Frequency – Inverse Document Frequency (TF–IDF) [15]
weighting schema, where the weight of the ith string in the jth executable, de-
noted by weight(i, j), is defined by:

weight(i, j) = tfi,j · idfi (1)

where term frequency tfi,j is defined as:

tfi,j =
ni,j∑
k nk,j

(2)

where ni,j is the number of times the string si appears in a executable Ej , and∑
k nk,j is the total number of strings in the executable Ej . The inverse term

frequency idfi is defined as:

idfi = log

(
|C|

|C : ti ∈ E|

)
(3)

where |C| is the total number of executables and |C : si ∈ E| is the number of
executables containing the string si.

Once we have characterized the application, we must classify it. In order
to achieve it, we use machine learning algorithms. These algorithms allows us
to, given a training dataset, assign a category (i.e., malware or goodware) to a
evaluated sample.

3 Machine-learning Algorithms

Machine-learning is an active research area within Artificial Intelligence (AI)
that focuses on the design and development of new algorithms that allow com-
puters to reason and decide based on data [16].

Machine-learning algorithms can commonly be divided into three different
types depending on the training data: supervised learning, unsupervised learning
and semi-supervised learning. For supervised algorithms, the training dataset
must be labelled (e.g., the class of an executable) [17]. Unsupervised learning
algorithms try to determine how data are organised into different groups named
clusters. Therefore, data do not need to be labelled [18]. Finally, semi-supervised
machine-learning algorithms use a mixture of both labelled and unlabelled data
in order to build models, improving the accuracy of solely unsupervised methods
[19].

Because executables can be properly labelled, we use supervised machine-
learning; however, in the future, we would also like to test unsupervised and
semi-supervised methods for detection of malware in Android.

3.1 Bayesian Networks

Bayesian Networks [20], which are based on the Bayes Theorem, are defined as
graphical probabilistic models for multivariate analysis. Specifically, they are di-
rected acyclic graphs that have an associated probability distribution function
[21]. Nodes within the directed graph represent problem variables (they can be
either a premise or a conclusion) and the edges represent conditional dependen-
cies between such variables. Moreover, the probability function illustrates the
strength of these relationships in the graph [21].

The most important capability of Bayesian Networks is their ability to de-
termine the probability that a certain hypothesis is true (e.g., the probability of
an executable to be malware) given a historical dataset.

3.2 Decision Trees

Decision Tree classifiers are a type of machine-learning classifiers that are graphi-
cally represented as trees. Internal nodes represent conditions regarding the vari-
ables of a problem, whereas final nodes or leaves represent the ultimate decision
of the algorithm [22].

Different training methods are typically used for learning the graph structure
of these models from a labelled dataset. We use Random Forest, an ensemble
(i.e., combination of weak classifiers) of different randomly-built decision trees
[23], and J48, the WEKA [24] implementation of the C4.5 algorithm [25].

3.3 K-Nearest Neighbour

The K-Nearest Neighbour (KNN) [26] classifier is one of the simplest supervised
machine-learning models. This method classifies an unknown specimen based on
the class of the instances closest to it in the training space by measuring the
distance between the training instances and the unknown instance.

Even though several methods to choose the class of the unknown sample
exist, the most common technique is to simply classify the unknown instance as
the most common class amongst the K-nearest neighbours.

3.4 Support Vector Machines (SVM)

SVM algorithms divide the n-dimensional space representation of the data into
two regions using a hyperplane. This hyperplane always maximises the margin
between those two regions or classes. The margin is defined by the farthest
distance between the examples of the two classes and computed based on the
distance between the closest instances of both classes, which are called supporting
vectors [27].

Instead of using linear hyperplanes, it is common to use the so-called kernel
functions. These kernel functions lead to non-linear classification surfaces, such
as polynomial, radial or sigmoid surfaces [28]

4 Experimental Results

In this section we describe the empirical validation of our method for Android
malware applications detection.

4.1 Dataset Description

In this subsection, we detail how the dataset has been composed. The require-
ments that the final dataset has to meet are the following:

– It must be heterogeneous. It should show the diversity in the types of appli-
cations that are available in the Android market.

– It must be proportional to the number of samples that already exist of each
type of application. To this end, two different datasets were created. The
first one is composed by the benign applications whilst the second one is
formed by malicious software.

Malicious Software To compile the malware dataset, the samples were ob-
tained from the company VirusTotal3. VirusTotal offers a series of services called
VirusTotal Malware Intelligence Services, which allow researchers to obtain sam-
ples from their databases.

To generate the dataset, we first selected the samples. Initially, we collected
2,808 samples. Next, we normalize the values given by the different antivirus
vendors. The goal of this step was to determine their reliability detecting malware
in Android.

To this end, we assumed that every sample that was detected as malware by
at least one antivirus was malware, based on the given name of the antivirus.
Then, we evaluated the detection rate of each antivirus engine with respect to
the complete malware dataset:

aw =
n

nt
(4)

where n is the number of samples detected by the antivirus and nt is the total
number of each antivirus detecting malware on the Android platform. Then, we
evaluated each malware sample taking into account the weights of each antivirus.

For this evaluation, we applied the next metric:

mw =
∑

aw|∀a ∈ A (5)

3 http://www.virustotal.com

being A = (a1, a2, , a`) the set of the weights of the antivirus computed before,
for the antiviruses that detect the sample. Therefore, mw rates the detection
taking into account the antiviruses that detect the sample.

We determined a threshold below which a sample cannot enter the dataset, in
order to ensure that the samples belonging to it are relevant enough. The thresh-
old was set empirically to 0.1, which provided us a total number of 1,202 malware
samples. Besides, we focused on the results given by the different antiviruses to
determine whether the samples were actually Android-based applications. This
was performed using the naming convention of the different antivirus engines.
Finally, we also removed any duplicated samples.

We finally acquired a malware dataset composed of 333 unique samples.
According to the report elaborated by LookOut4, this dataset represents the
75% of the malware that existed in July, 2011.

Benign Software To generate this dataset, we gathered 1,811 Android samples
of diverse types. To classify them adequately, we categorised them using the
same scheme that Android market follows. To this extent, we categorised the
applications by means of an unofficial library called android-market-api5. Once
the samples were classified, we selected a subgroup of samples to be part of the
final benign software dataset. The employed methodology was the following:

Table 1. Number of samples for each category.

Arcade and Action 32 Multimedia & Video 23
Books 10 Music & Audio 12
Business 1 News & magazines 7
Card Games 2 Personalization 6
Casuals 10 Photography 6
Comics 1 Productivity 27
Communication 20 Puzzles 16
Education 0 Races 2
Enterprise 4 Sales 3
Entertainment 16 Society 25
Finance 3 Sports 5
Health 3 Tools 80
Libraries & Demos 2 Transportation 2
Lifestyle 4 Travels 8
Medicine 1 Weather 2

Total number of benign applications: 333

4 https://www.mylookout.com/_downloads/lookout-mobile-threat-report-2011.

pdf
5 http://code.google.com/p/android-market-api/

1. Determine the number of total samples. To facilitate the training of the
machine-learning models, it is usually desirable for both categories to be
balanced. Therefore, given that the number of malware samples is inferior to
the benign category, we opted to reduce the number of benign applications
to 333.

2. Determine the number of samples for each benign category. Second, we de-
cided to follow the proportion present in the Android market and, therefore,
selected the number of applications accordingly.

3. Types of application. There are different types of applications: native ones
(developed by means of the Android SDK), web (developed through HTML,
JavaScript and CSS) and widgets (simple applications displayed in the An-
droid desktop). All these applications have different features. To generate
the dataset, we made no distinction in the type of application and included
samples of the different types in the final dataset.

4. Selection of the samples for each category. Once the number of applications
for each category was determined, we selected the applications randomly
using a Monte Carlo sampling method, avoiding different versions of the
same application.

Following this methodology, we constructed the benign dataset. The number
of samples for each category is shown in Table 1.

4.2 Configuration

For the evaluation of the different machine learning algorithms we used the tool
WEKA (Waikato Environment for Knowledge Analysis) [24]. Specifically, the
algorithms used in this tool can be seen in Table 2. In those cases in which no
configuration parameters are specified, the configuration used was the default.

Table 2. Configuration of the algorithms.

Used Algorithms Configuration

NäıveBayes N/A
Bayessian Network K2 and TAN
SVM Polynomial and Normalized Polynomial Kernel
KNN K: 1, 3 and 5
J48 N/A
RandomForest N = 10, 50 and 100

The dataset was divided using the k-cross-validation technique [29, 30]. It
divides k times the input dataset in k complementary subsets using one shap-
ing sample data set, called test set, while the rest of subsets forming the joint
training. To obtain the error ratio for the final sample, the arithmetic mean of
the error rates obtained for each of the k iterations is calculated.

4.3 Evaluation

The evaluation was performed by measuring the following metrics:

– True Positive Ratio (TPR).

TPR =
TP

TP + FN
(6)

where TP is the number of malware cases correctly classified (true positives)
and FN is the number of malware cases misclassified as legitimate software
(false negatives).

– False Positive Ratio (FPR).

FPR =
FP

FP + TN
(7)

where FP is the number of benign software cases incorrectly detected as
malware and TN is the number of legitimate executables correctly classified.

– Accuracy. It is the total number of the classifier’s hits divided by the num-
ber of instances in the whole dataset:

Accuracy =
TP + TN

TP + FN + FP + TN
(8)

– Area under the ROC Curve (AUC). AUC establishes the relation be-
tween false negatives and false positives [31]. The ROC curve is obtained by
plotting the TPR against the FPR.

4.4 Results

Table 3 shows the obtained results for the tested algorithms.

Table 3. Obtained results.

Algorithm TPR FPR AUC Accuracy (%)

Näıve Bayes 0.93 0.17 0.90 88.07%
Bayesian Network: K2 0.71 0.13 0.89 78.68%
Bayesian Network: TAN 0.83 0.11 0.94 86,09%
SVM: Poly 0.93 0.03 0.95 94.70%
SVM: NPoly 0.77 0.04 0.86 86.45%
KNN K=1 0.35 0.02 0.84 66.24%
KNN K=3 0.22 0.03 0.82 59.85%
KNN K=5 0.17 0.03 0.79 56.75%
KNN K=10 0.08 0.04 0.77 51.77%
J48 0.83 0.12 0.86 85.54%
Random Forest N=10 0.92 0.13 0.96 89.74%
Random Forest N=50 0.93 0.09 0.97 91.81%
Random Forest N=100 0.94 0.09 0.97 92.04%

The best results were obtained the Random Forest configured with 100 trees,
obtaining an AUC of 0.97 and an accuracy of 92.04%. Regarding TPR, this clas-
sifier can detect the 94% of the malware, whilst a 9% of the legitimate appli-
cations are misclassified. TPR and FPR establish the cost of misclassification.
It is important to set the cost of false negatives (1 − TPR) and false positives,
in other words, establish whether is better to classify a malware as legitimate
or to classify a benign software as malware. In particular, if our framework is
devoted to detect new and unknown malware, one may think that it is more
important to detect more malware than to minimise false positives. However,
for commercial reasons, one may think just the opposite: a user can be bothered
if their legitimate applications are flagged as malware. Therefore, we consider
that the importance of the cost is established by the way our framework will
be used. If it is used as a complement to standard anti-malware systems then
we should focus on minimising false positives. Otherwise, if the framework is
used within antivirus laboratories to decide which executables should be further
analysed then we should minimise false negatives (or maximise true positives).
To tune the proposed method, we can apply two techniques: (i) whitelisting and
blacklisting or (ii) cost-sensitive learning. White and black lists store a signa-
ture of an executable in order to be flagged either as malware (blacklisting) or
benign software (whitelisting). On the other hand, cost-sensitive learning is a
machine-learning technique where one can specify the cost of each error and the
classifiers are trained taking into account that consideration [32].

4.5 Comparison with Related Work

To combat the problem of malware that has risen in recent years in Android,
researchers have begun to explore this area, using the experience acquired in
other platforms.

“Andromaly”[33], a framework for detecting malware on Android mobile
devices. This framework collected 88 features and events and, then, applied
machine-learning algorithms to detect abnormal behaviours. Their dataset was
composed of 4 self-written malware, as well as goodware samples, both separated
into two different categories (games and tools). Their approach achieved a 0.99
area under ROC curve and 99% of accuracy. Despite these results, their frame-
work had to collect a huge number of features and events, overloading the device
and, consequently, draining the battery. Our approach only needs information
extracted from .apk files, making the extraction process almost trivial. Although
our results are not as sound as theirs, our approach requires less computational
effort and our dataset is larger and sparser in malware samples than theirs.

On the other hand, Peng et al.[34] ranks the risks in Android using proba-
bilistic generative models. They selected the permissions of the applications as
key feature. Specifically, they chose the top 20 most frequently requested permis-
sions in their dataset, composed by 2 benign software collections, obtained from
the Google Play (157,856 and 324,658 samples, respectively) and 378 unique
samples of malware. They obtained a 0.94 area under ROC curve as best re-
sult. We complemented the information provided by the permissions with the

uses-features, enhancing the results and approaching them to those obtained by
previous methods.

5 Discussion and Conclusions

Smartphones are a first class citizen nowadays. Unfortunately, malware writers
are focused in this devices too. Malware detection techniques has moved from
desktop to mobile devices. The main difference between both environment are
available resources. Despite the evolution of the last years, current smartphones
have several limitations (i.e., computational performance or battery life). Due
to these limitations, the application of various techniques used in the desktop
environment in smartphones is doubtful.

In this paper we propose a new method for detecting Android malware using
string features to train machine-learning techniques. In order to validate our
method, we collected several malware samples of Android applications. Then,
we extracted the aforementioned features for each application and trained the
models, evaluating each configuration. Random Forest was the best classifier
obtaining very high accuracy levels. Nevertheless, there are several considerations
regarding the viability of our approach.

The use of supervised machine-learning algorithms for the model training,
can be a problem in itself. In our experiments, we used a training dataset that is
very small when compared with commercial antivirus databases. As the dataset
size grows, so does the issue of scalability. This problem produces excessive stor-
age requirements, increases time complexity and impairs the general accuracy
of the models [35]. To reduce disproportionate storage and time costs, it is nec-
essary to reduce the original training set [36]. In order to solve this issue, data
reduction is normally considered an appropriate preprocessing optimisation tech-
nique [37, 38]. Such techniques have many potential advantages such as reducing
measurement, storage and transmission; decreasing training and testing times;
confronting the curse of dimensionality to improve prediction performance in
terms of speed, accuracy and simplicity and facilitating data visualization and
understanding [39, 40]. Data reduction can be implemented in two ways. On the
one hand, Instance Selection (IS) seeks to reduce the evidences (i.e., number of
rows) in the training set by selecting the most relevant instances or re-sampling
new ones [41]. On the other hand, Feature Selection (FS) decreases the number of
attributes or features (i.e., columns) in the training set [42]. Both IS and FS are
very effective at reducing the size of the training set and helping to filtrate and
clean noisy data, thereby improving the accuracy of machine-learning classifiers
[43, 44].

Besides, our method has several limitations due to the representation of exe-
cutables. In this way, because the bag of words model is based on the frequencies
with which strings appear within executables, malware writers may start modi-
fying their techniques to evade filters. For example, in the field of spam filtering,
Good Word Attack is a method that modifies the term statistics by appending
a set of words that are characteristic of legitimate e-mails, thereby bypassing

spam filters. In case that happens in our domain, we can adopt some of the
methods that have been proposed, such as Multiple Instance Learning (MIL)
[45]. MIL divides an instance or a vector in the traditional supervised learning
methods into several sub-instances and classifies the original vector based on the
sub-instances [46].

Morever, because of the static nature of the proposed method, it cannot
counter packed malware. Packed malware is the result of cyphering the payload
of the executable and deciphering it when the executable is finally loaded into
memory. Indeed, static detection methods can deal with packed malware only
by using the signatures of the packers. Accordingly, dynamic analysis seems
a more promising solution to this problem [47]. Forensic experts are developing
reverse engineering tools over Android applications, from which researchers could
retrieve new features to enhance the data used to train the models.

Future work of this Android malware detection tool is oriented in three main
directions. First, we will enhance the representation of data using data reduction
techniques. Second, we will explore several attacks to this statistical model and
propose solutions. Finally, we will use dynamically extracted features in order
to improve our method.

Acknowledgements

This research was partially supported by the Basque Government under the re-
search project ‘BRANKA4U: Evolución de los servicios bancarios hacia el futuro’
granted by the ETORGAI 2011 program.

References

1. Schultz, M., Eskin, E., Zadok, F., Stolfo, S.: Data mining methods for detection
of new malicious executables. In: Proceedings of the 2001 IEEE Symposium on
Security and Privacy, 2001. S&P, IEEE (2001) 38–49

2. Santos, I., Devesa, J., Brezo, F., Nieves, J., Bringas, P.: Opem: A static-dynamic
approach for machine-learning-based malware detection. In: International Joint
Conference CISIS12-ICEUTE12-SOCO12 Special Sessions. Herrero, .; Snel, V.;
Abraham, A.; Zelinka, I.; Baruque, B.; Quintin, H.; Calvo, J.L.; Sedano, J.; Cor-
chado, E. (Eds.). Advances in Intelligent Systems and Computing. Volume 189.
(2012) 97–108

3. Santos, I., Nieves, J., Bringas, P.G.: Semi-supervised learning for unknown malware
detection. In: Proceedings of the 4th International Symposium on Distributed
Computing and Artificial Intelligence (DCAI). 9th International Conference on
Practical Applications of Agents and Multi-Agent Systems (PAAMS). (2011) 415–
422

4. Santos, I., Laorden, C., Bringas, P.G.: Collective classification for unknown mal-
ware detection. In: Proceedings of the 6th International Conference on Security
and Cryptography (SECRYPT). (2011) 251–256

5. Santos, I., Brezo, F., Ugarte-Pedrero, X., Bringas, P.G.: Opcode sequences as
representation of executables for data-mining-based unknown malware detection.
Information Sciences ??(??) ?? in press, DOI:10.1016/j.ins.2011.08.020.

6. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classifica-
tion of malware behavior. Detection of Intrusions and Malware, and Vulnerability
Assessment (2008) 108–125

7. Tian, R., Batten, L., Islam, R., Versteeg, S.: An automated classification system
based on the strings of trojan and virus families. In: Proceedings of the 4th Inter-
national Conference on Malicious and Unwanted Software (MALWARE). (2009)
23–30

8. Shabtai, A., Fledel, Y., Elovici, Y.: Automated static code analysis for classifying
android applications using machine learning. In: Proceedings of the International
Conference on Computational Intelligence and Security (CIS). (2010) 329–333

9. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based mal-
ware detection system for android. In: Proceedings of the 1st ACM workshop on
Security and privacy in smartphones and mobile devices, ACM (2011) 15–26

10. Blasing, T., Batyuk, L., Schmidt, A., Camtepe, S., Albayrak, S.: An android
application sandbox system for suspicious software detection. In: Proceedings of the
5th International Conference on Malicious and Unwanted Software (MALWARE).
(2010) 55–62

11. Shabtai, A., Elovici, Y.: Applying behavioral detection on android-based devices.
In: Proceedings of the 3rd International Conference on Mobile Wireless Middle-
ware, Operating Systems, and Applications: Mobilware. Volume 48., Springer Ver-
lag (2010) 235

12. Oberheide, J., Miller, J.: Dissecting the android bouncer. In: SUMERCON 2012.
(2012) http://jon.oberheide.org/files/summercon12-bouncer.pdf.

13. Santos, I., Penya, Y., Devesa, J., Bringas, P.: N-Grams-based file signatures for
malware detection. In: Proceedings of the 11th International Conference on Enter-
prise Information Systems (ICEIS), Volume AIDSS. (2009) 317–320

14. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999)

15. Salton, G., McGill, M.: Introduction to modern information retrieval. McGraw-Hill
New York (1983)

16. Bishop, C.: Pattern recognition and machine learning. Springer New York. (2006)

17. Kotsiantis, S., Zaharakis, I., Pintelas, P.: Supervised machine learning: A review of
classification techniques. Frontiers in Artificial Intelligence and Applications 160
(2007) 3

18. Kotsiantis, S., Pintelas, P.: Recent advances in clustering: A brief survey. WSEAS
Transactions on Information Science and Applications 1(1) (2004) 73–81

19. Chapelle, O., Schölkopf, B., Zien, A.: Semi-supervised learning. MIT Press (2006)

20. Pearl, J.: Reverend bayes on inference engines: a distributed hierarchical approach.
In: Proceedings of the National Conference on Artificial Intelligence. (1982) 133–
136

21. Castillo, E., Gutiérrez, J.M., Hadi, A.S.: Expert Systems and Probabilistic Network
Models. Erste edn., New York, NY, USA (1996)

22. Quinlan, J.: Induction of decision trees. Machine learning 1(1) (1986) 81–106

23. Breiman, L.: Random forests. Machine learning 45(1) (2001) 5–32

24. Garner, S.: Weka: The Waikato environment for knowledge analysis. In: Proceed-
ings of the 1995 New Zealand Computer Science Research Students Conference.
(1995) 57–64

25. Quinlan, J.: C4. 5 programs for machine learning. Morgan Kaufmann Publishers
(1993)

26. Fix, E., Hodges, J.L.: Discriminatory analysis: Nonparametric discrimination:
Small sample performance. Technical Report Project 21-49-004, Report Number
11 (1952)

27. Vapnik, V.: The nature of statistical learning theory. Springer (2000)
28. Amari, S., Wu, S.: Improving support vector machine classifiers by modifying

kernel functions. Neural Networks 12(6) (1999) 783–789
29. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation

and model selection. In: International joint Conference on artificial intelligence.
Volume 14., LAWRENCE ERLBAUM ASSOCIATES LTD (1995) 1137–1145

30. Devijver, P., Kittler, J.: Pattern recognition: A statistical approach. Prentice/Hall
International (1982)

31. Singh, Y., Kaur, A., Malhotra, R.: Comparative analysis of regression and machine
learning methods for predicting fault proneness models. International Journal of
Computer Applications in Technology 35(2) (2009) 183–193

32. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the 2001
International Joint Conference on Artificial Intelligence. (2001) 973–978

33. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: andromaly: a be-
havioral malware detection framework for android devices. Journal of Intelligent
Information Systems (2012) 1–30

34. Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C.,
Molloy, I.: Using probabilistic generative models for ranking risks of android apps.
In: Proceedings of the 2012 ACM conference on Computer and communications
security, ACM (2012) 241–252

35. Cano, J., Herrera, F., Lozano, M.: On the combination of evolutionary algorithms
and stratified strategies for training set selection in data mining. Applied Soft
Computing Journal 6(3) (2006) 323–332

36. Czarnowski, I., Jedrzejowicz, P.: Instance reduction approach to machine learning
and multi-database mining. In: Proceedings of the 2006 Scientific Session organized
during XXI Fall Meeting of the Polish Information Processing Society, Informatica,
ANNALES Universitatis Mariae Curie-Sk lodowska, Lublin. (2006) 60–71

37. Pyle, D.: Data preparation for data mining. Morgan Kaufmann (1999)
38. Tsang, E., Yeung, D., Wang, X.: OFFSS: optimal fuzzy-valued feature subset

selection. IEEE transactions on fuzzy systems 11(2) (2003) 202–213
39. Torkkola, K.: Feature extraction by non parametric mutual information maximiza-

tion. The Journal of Machine Learning Research 3 (2003) 1415–1438
40. Dash, M., Liu, H.: Consistency-based search in feature selection. Artificial Intelli-

gence 151(1-2) (2003) 155–176
41. Liu, H., Motoda, H.: Instance selection and construction for data mining. Kluwer

Academic Pub (2001)
42. Liu, H., Motoda, H.: Computational methods of feature selection. Chapman &

Hall/CRC (2008)
43. Blum, A., Langley, P.: Selection of relevant features and examples in machine

learning. Artificial intelligence 97(1-2) (1997) 245–271
44. Derrac, J., Garcıa, S., Herrera, F.: A First Study on the Use of Coevolutionary

Algorithms for Instance and Feature Selection. In: Proceedings of the 2009 In-
ternational Conference on Hybrid Artificial Intelligence Systems, Springer (2009)
557–564

45. Dietterich, T., Lathrop, R., Lozano-Pérez, T.: Solving the multiple instance prob-
lem with axis-parallel rectangles. Artificial Intelligence 89(1-2) (1997) 31–71

46. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. Ad-
vances in neural information processing systems (1998) 570–576

47. Kang, M., Poosankam, P., Yin, H.: Renovo: A hidden code extractor for packed
executables. In: Proceedings of the 2007 ACM workshop on Recurring malcode.
(2007) 46–53

