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Abstract

Malware writers employ packing techniques (i.e., encrypt the real payload) to hide the
actual code of their creations. Generic unpacking techniques execute the binary within an
isolated environment (namely ‘sandbox’) to gather the real code of the packed executable.
However, this approach can be very time consuming. A common approach is to apply a filter-
ing step to avoid the execution of not packed binaries. To this end, supervised machine learning
models trained with static features from the executables have been proposed. Notwithstand-
ing, these methods need the identification and labelling of a high number of packed and not
packed executables. In this paper, we propose a new method for packed executable detection
that adopts collective learning approaches (a kind of semi-supervised learning) to reduce the
labelling requirements of completely supervised approaches. We performed an empirical val-
idation demonstrating that the system maintains a high accuracy rate when the number of
labelled instances in the dataset is lower.

Keywords: malware, machine-learning, collective-learning, packer detection.

1 Introduction

Malware is defined as any computer software that damages computers or networks [1, 2]. Since
the antivirus systems can only assure the detection of currently known threats, malware creators
employ obfuscation techniques that hide the actual code of the malware. Among these techniques,
one that is commonly used is executable packing. This method encrypts or compresses the actual
malicious code. Packed software has a decryption routine inside its code that deciphers the mali-
cious code which remains in a data section of the memory. According to a recent study [3], up to
the 80% of the detected malware is packed.

One simple approach commonly used for packer detection is signature scanning. For instance,
PEID [4] can detect a wide range of well-known packers, while Faster Universal Unpacker (FUU)
[5] identifies the packer and applies custom unpacking routines designed and specifically coded
for each different packer. However, signature-based detection has the same shortcomings as for
malware detection: it is not effective for unknown obfuscation techniques or custom packers (i.e.,
protectors implemented for certain malware samples). This limitation constitutes a significant
problem for malware analysis: according to Morgenstern and Pilz [6], the 35 % of malware is
packed by a custom packer.

These techniques introduce the necessity of an unpacking step in the malware analysis problem.
This unpacking step can be either specific or generic. Specific approaches apply unpacking routines
specifically coded for certain versions of a packer. This approach is efficient and allows malware
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analysts to unpack a high ammount of samples protected with common packers. Nevertheless,
specific unpacking routines are useless for unknown packers. Considering the ammount of custom
packers and new modified versions of existing ones, it is infeasible to create new routines for each
new packing scheme: generic unpacking methods are necessary. The main drawback of generic
approaches is their cost in terms of computing resources and time, that makes them infeasible to
process every single sample created every day. As a consequence, sample classification and filtering
becomes a very useful step to leverage the ammount of samples processed with generic and time-
consuming unpacking tools. In this way, a classification system able to differentiate between packed
and not packed samples can avoid the execution of not packed samples in such systems.

For years, machine-learning techniques have been proved as effective methods to face classifica-
tion problems. Supervised machine-learning techniques are commonly used to train models using
a set of previously labelled data. However, these supervised machine-learning classifiers require a
high number of labelled executables of each of the classes. It is quite difficult to obtain this amount
of labelled data for a real-world problem such as malicious code analysis. To gather these data, a
time-consuming process of analysis is mandatory and, in the process, some malicious executables
are able to surpass detection.

Semi-supervised learning is a type of machine-learning technique specially useful when a limited
amount of labelled data exists for each class [7]. More concretely, collective classification [8] is a
semi-supervised learning approach that uses the relational structure of the combined labelled and
unlabelled data-sets to enhance the classification accuracy. With these relational approaches, the
predicted label of an example will often be influenced by the labels of related samples.

The idea underlying collective classification is that the predicted labels of a test sample should
also be influenced by the predictions made for related test samples. Sometimes, we can determine
the topic of not just a single evidence but to infer it for a collection of unlabelled evidences. Col-
lective classification tries to collectively optimise the problem taking into account the connections
present among the instances. In summary, collective classification is a semi-supervised technique,
i.e., uses both labelled and unlabelled data — typically a small amount of labelled data and a large
amount of unlabelled data —, that reduces the labelling work. In addition, these approaches have
been successfully applied to different classification problems in the area of information security
such as spam filtering [9] or malware detection [10, 11]

In light of this background, we propose here the first approach that employs collective classifica-
tion techniques for the detection of packed executables based on structural features and heuristics.
These methods are able to learn from both labelled and unlabelled data to build accurate classi-
fiers. We propose the adoption of collective learning for the detection of packed executables using
structural information of the executable. For training the classifiers, we employ the same structural
and heuristic features used in our previous work [12, 13], which presented an anomaly detector for
packed executable filtering.

Summarising, our main contributions in this paper are:

• We describe how to adopt collective classification for packed executable detection.

• We empirically determine the optimal number of labelled instances and we evaluate how this
parameter affects the accuracy of the model.

• We compare the results obtained for collective classification with previous semi-supervised
[14], and supervised approaches.

• We demonstrate that labelling efforts can be reduced in the malware detection industry, while
still maintaining a high accuracy rate.

The remainder of this paper is organised as follows. Section 2 describes related work on malware
unpacking and packed software detection. Section 3 describes the structural features employed
for packed executable identification. Section 4 describes previous approaches used for packed
executable filtering. Section 5 describes different collective classification methods and how they
can be adopted for packed executable detection. Section 6 describes the experiments and presents
results. Finally, Section 7 concludes the paper and outlines avenues for future work.

2 Related Work

Dynamic unpacking approaches monitor the execution of a binary within an isolated environment
to retrieve its actual code. This isolated environment can be deployed as a virtual machine or as
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an emulator [15]. Then, the execution is traced and stopped when certain events occur.
Various dynamic unpackers (e.g., Universal PE Unpacker [16] and OllyBonE [17]) are based on

heuristics to determine the exact point where the execution flow jumps from the unpacking routine
to the original code and, once reached, they retrieve the memory content to obtain an unpacked
version of the malicious code. Nevertheless, concrete heuristics are not applicable to every packer
because not all of them work in the same way. For example, some packers do not unpack the code
before executing it [18]: original code is transformed and stored as a custom language and, then,
translated to actual code at runtime by an interpreter. Thereby, the malicious code will never be
present at the same time in memory.

In contrast, other proposed techniques are not so heuristic dependant. PolyUnpack [19] obtains
an static representation of the code and then compares it to the code dynamically generated during
its execution. If both codes differ, the executable is considered to be packed. Renovo [20] monitors
memory accesses and checks whether any memory area has been written and then executed or not.
OmniUnpack [21] statically analyses memory pages that have been over-written and then executed
only when a dangerous system call is performed. Finally, Eureka [22] determines the moment when
an executable reaches an stable state so it can be statically analysed. However, these methods
are very time consuming and cannot counter the conditional execution of unpacking routines, a
technique used for anti-debugging and anti-monitoring defense [23, 24, 25].

By using the structural information of PE executables, some methods (e.g., PE-Miner [26],
PE-Probe [27] and the method proposed by Perdisci et al. [28]) can determine if the sample under
analysis is packed or if it is suspicious of containing malicious code, in order to act as a pre-filter
to these time consuming generic unpacking techniques.

3 Structural Features of the PE Files

Given the conclusions obtained in previous work [26, 27, 28], we selected a set of 209 structural
characteristics from the PE executables. Some of the characteristics were obtained directly from
the PE file header, while the rest were calculated values based on certain heuristics commonly used
by the scientific community. Given the success of the heuristics proposed by Perdisci et al. [28],
we included them in our feature set.

We consider that one of the main requisites of our detection system has to be the speed, as it
constitutes a filtering step for a heavier unpacking process. For this reason, we selected a set of
characteristics whose extraction does not require large processing efforts, and avoided techniques
such as code disassembly, string extraction or n-gram analysis [28, 29], which could slow down
sample comparison.

Particularly, in this paper, we use an improved dataset adding a total of 2,000 binaries to the
one used in previous work [30]. In this new dataset, some executables contained headers for 64-bit
machines. To extract as much data as possible, these header fields where represented as 29 extra
structural characteristics.

Features can be divided into four main groups: 154 raw header characteristics, 31 section
characteristics (i.e., number of sections that meet certain properties), 29 characteristics of the
section containing the entry point (i.e., the section which will be executed first once the executable
is loaded into memory) and, finally, 24 entropy values (i.e., byte randomness in the file).

Furthermore, we have measured each characteristic relevance based on Information Gain (IG)
[31] which is defined as the change in information entropy from the state of the original dataset to
the state of the dataset when a certain attribute is given:

IG(T , a) = H(T )−H(T |a)

where T is the training dataset, a is the attribute for which the IG is being calculated and H(x)
is the information entropy of a dataset. Practically, IG measures the variation in entropy when
an attribute in the dataset is given. It is calculated as the difference between the entropy of the
original dataset and the average entropy of the dataset subsets formed by the instances having the
attribute a set to every value in Va (i.e., the set of possible values for the attribute a).

IG provides a ratio for each characteristic that measures its importance to consider if a sample
is packed or not. This ratio is commonly used in the classical C4.5 algorithm for decision tree
generation. These values were calculated from a dataset composed of 2,000 packed executables
(from which 1,000 belong to the Zeus malware family and the other 1,000 are executables packed
with 10 different packers available on-line), and 2,000 not packed executables. The set of binaries
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Table 1: Most relevant features extracted from the executable files. IG value measures the relevance
of each feature to classify samples between packed and not packed.

Feature Information Gain

File header block
Time stamp 0.19974
Number of sections 0.14096

Optional header block
Import Address Table (IAT) size 0.27292
Import Address Table (IAT) address 0.26561
Import Table (.idata section) size 0.24567
Size of code 0.22522
Major linker version 0.20092
Import Table (.idata section) address 0.19990
Size of image 0.19349
Base of data 0.18165
Size of initialized data 0.17564
Dll characteristics 0.15255
Address of entry point 0.15015
Checksum 0.14860

Section characteristics
Minimum raw data per virtual size ratio 1 0.27505
Maximum raw data per virtual size ratio 0.22478
Number of non standard sections 0.20581
Number of executable sections 0.20422
Virtual size of all the sections 0.19788
Mean virtual size of the sections 0.18014
Number of readable and executable sections 0.17102
Number of sections with virtual size greater than raw data 0.16090
Raw data size of all sections 0.16033
Number of readable, writeable and executable sections 0.14904
Mean raw size of all the sections 0.14564
Number of readable sections 0.14528

Section of entry point characteristics
Virtual size 0.32969
Raw data per virtual size ratio 0.30717
Pointer to raw data 0.25724
Raw characteristics field 0.23985
Virtual address 0.23137
Size of raw data 0.20986
Writeable section 0.20616

Entropy values
Global file entropy 0.57561
Maximum entropy 0.56056
Mean section entropy 0.52168
Mean code section entropy 0.41589
Section of entry point entropy 0.39560
Mean data section entropy 0.38755
The number of sections with entropy in the range between 7.5 and 8 0.29999
Header entropy 0.16333
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manually packed was composed of 500 malware samples and 500 benign samples. Similarly, the set
of not packed samples was composed of 1,000 malicious and 1,000 benign binaries. We reduced the
amount of selected characteristics to obtain a more efficient classification, given that 38 of them
have a zero IG value. Table 1 shows the most relevant features extracted and their IG values for
the dataset described.

3.1 DOS header characteristics

The first bytes of the PE file header correspond to the 31 DOS executable fields. IG results
showed that these characteristics are not specially relevant, having a maximum IG value of 0.10,
corresponding to a reserved field. 14 values range from 0.05 to 0.10, and the rest present a relevance
bellow 0.05.

3.2 File header block

This header block is present in both image files (i.e., “.exe”), and object files (i.e., “.dll”). From a
total of 23 characteristics, 18 have an IG value greater than 0, and only 2 have an IG value greater
than 0.10.

3.3 Optional Header Block

The 100 features of this optional block, which is only part of image files, contain data about how
the executable must be loaded into memory. The 29 fields corresponding to 64-bit binary header
fields are included in this group. 80 characteristics have an IG value over 0, and 12 have an IG
value over 0.10.

3.4 Section characteristics

From the 31 characteristics that conform this group, 22 have an IG value greater than 0 and 12
have an IG value over 0.10.

3.5 Section of entry point characteristics

This group contains 29 characteristics relative to the section which will be executed once the
executable is loaded into memory. 26 characteristics have an IG value greater than 0, from which
7 have a significant relevance (> 0.10).

3.6 Entropy values

We have selected 24 entropy values (a measure employed in previous work [32]), which have an IG
value greater than 0. Concretely, 9 have a relevant IG value (> 0.10).

4 Previous Approaches

Packed executable detection is a problem that has been faced previously. Different machine learning
approaches have been applied to perform this task.

Machine learning is a branch of Artificial Intelligence (AI) that is focused on the design and
development of algorithms that allow computers to learn and make predictions from empirical data
(i.e., computer learning) [33]. Machine Learning is commonly used for classification problems.

Machine-learning algorithms can be classified into three different subsets: supervised learning,
unsupervised learning and semi-supervised learning. On the one hand, supervised algorithms need
the training dataset to be labelled [34]. On the other hand, unsupervised learning approaches do no
need the data to be labelled [35]: these algorithms try to determine the way data is organised into
groups or clusters. Finally, a third type of machine-learning algorithms enables to train models
when the data is partially labelled (i.e., using both labelled and unlabelled instances). These
algorithms can improve the accuracy of unsupervised methods [7].

Several approaches have applied supervised machine learning algorithms to packed executable
classification. In addition, we previously proposed the application of the LLGC semi-supervised
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learning algorithm for the same task [14]. In the remainder of this section we describe some of the
algorithms employed previously.

4.1 Bayesian Networks

Bayesian networks [36], which are based on Bayes’ Theorem [37], are defined as graphical prob-
abilistic models for multivariate analysis. Specifically, they are directed acyclic graphs that have
associated probability distribution functions [38]. The nodes of the directed graph represent prob-
lem variables (either premises or conclusions), and the edges represent conditional dependencies
between such variables. Moreover, the probability function illustrates the strengths of these rela-
tionships in the graph [38]. The most important capability of Bayesian networks is their ability to
determine the probability that a certain hypothesis is true (e.g., the probability that a binary is
packed or not) given a historical dataset.

4.2 Decision Trees

Decision tree classifiers are a type of machine-learning classifier usually graphically represented as
a tree. The internal nodes represent conditions on the variables of a problem, whereas the final
nodes or leaves represent the possible ultimate decisions of the algorithm [39]. Different training
methods are typically used for learning the graph structure of these models from a labelled dataset.
We use Random Forest, an ensemble (i.e., combination of weak classifiers) of different randomly
built decision trees [40], J48, the WEKA [41] implementation of the C4.5 algorithm [39]), and
Bagged J48. Bagging is a technique used to aggregate multiple versions of classifiers trained with
bootstrap replicates of the original dataset in order to reduce the variance when changes in the
learning set produce significant changes on the classifiers constructed[42].

4.3 K-Nearest Neighbour

The K-Nearest Neighbour (KNN) [43] classifier is one of the simplest supervised machine learning
models. This method classifies an unknown specimen based on the class of the instances closest to
it in the training space by measuring the distance between the training instances and the unknown
instance. Although several possible methods can be used to choose the class of the unknown sample,
the most common technique is simply to classify the unknown instance as the most common class
amongst the K-nearest neighbours.

4.4 Support Vector Machines(SVM)

SVM algorithms divide the n-dimensional space representation of the data into two regions using a
hyperplane. This hyperplane always maximises the margin between the two regions or classes. The
margin is defined by the longest distance between the examples of the two classes and is computed
based on the distance between the closest instances of both classes to the margin, which are
called supporting vectors [44]. Instead of using linear hyperplanes, many implementations of these
algorithms use so-called kernel functions. These kernel functions lead to non-linear classication
surfaces, such as polynomial, radial or sigmoid surfaces [45].

4.5 Neural Networks

Artificial Neural Networks are mathematical models inspired by biological neural networks. [46].
Formally, a neural network is defined as a sorted triple (N,V,w) with two sets N,V and a function
w, where N is the set of neurons and V a set {(i, j|i, j ∈ N)} whose elements are called connections
between neuron i and neuron j. The function w : V → R defines the weights [46]. In our case, we
focus on the most widely used neural networks: feedforward multilayer networks, also known as
multilayer perceptrons (MLP’s) [47].

4.6 A Semi-supervised Algorithm: Learning with Local and Global Con-
sistency (LLGC)

(LLGC) [48] is a semi-supervised algorithm that provides smooth classification with respect to
the intrinsic structure revealed by known labelled and unlabelled points. It is based in the next
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assumptions: (i) nearby points are likely to have the same label and (ii) points on the same
structure are likely to have the same label [48].

5 Collective Classification for Packed Executable Detection

Collective classification is a combinatorial optimisation problem, in which we are given a set of
executables, or nodes, E = {e1, ..., en} and a neighbourhood function N , where Ni ⊆ E \ {Ei},
which describes the underlying network structure [49]. Being E a random collection of executables,
it is divided into two sets X and Y, where X corresponds to the executables for which we know
the correct values and Y are the executables whose values need to be determined. Therefore, the
task is to label the nodes Yi ∈ Y with one of a small number of labels, L = {l1, ..., lq}.

In the remainder of this section we review the collective algorithms used in the empirical
evaluation.

5.1 CollectiveIBK

This model uses internally WEKA’s classic IBK algorithm, an implementation of the K-Nearest
Neighbour (KNN), to determine the best k instances on the training set and builds then, for all
instances from the test set, a neighbourhood consisting of k instances from the pool of train and
test set (either a näıve search over the complete set of instances or a k-dimensional tree is used
to determine neighbours). All neighbours in such a neighbourhood are sorted according to their
distance to the test instance they belong to. The neighbourhoods are sorted according to their
‘rank’, where ‘rank’ means the different occurrences of the two classes in the neighbourhood.

For every unlabelled test instance with the highest rank, the class label is determined by
majority vote or, in case of a tie, by the first class. This is performed until no further test instances
remain unlabelled. The classification terminates by returning the class label of the instance that
is about to be classified.

5.2 CollectiveForest

It uses WEKA’s implementation of RandomTree as base classifier to divide the test set into folds
containing the same number of elements. The first iteration trains the model using the original
training set and generates the distribution for all the instances in the test set. The best instances
are then added to the original training set (being the number of instances chosen the same as in a
fold).

The next iterations train the model with the new training set and generate then the distributions
for the remaining instances in the test set.

5.3 CollectiveWoods & CollectiveTree

CollectiveWoods works like CollectiveForest using CollectiveTree algorithm instead of RandomTree.
Collective tree is similar to WEKA’s original RandomTree classifier. It splits the attribute at a

position that divides the current subset of instances (training and test instances) into two halves.
The process finishes if one of the following conditions is met:

• Only training instances are covered (the labels for these instances are already known).

• Only test instances in the leaf, case in which distribution from the parent node is taken.

• Only training instances of one class, case in which all test instances are considered to have
this class.

To calculate the class distribution of a complete set or a subset, the weights are summed
up according to the weights in the training set, and then normalised. The nominal attribute
distribution corresponds to the normalised sum of weights for each distinct value and, for the
numeric attribute, distribution of the binary split based on median is calculated and then the
weights are summed up for the two bins and finally normalised.
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5.4 RandomWoods

It works like WEKA’s classic RandomForest but using CollectiveBagging (classic Bagging, a ma-
chine learning ensemble meta-algorithm to improve stability and classification accuracy, extended
to make it available to collective classifiers) in combination with CollectiveTree. RandomForest,
in contrast, uses Bagging and RandomTree algorithms.

6 Empirical Validation

The research questions we seek to answer through this empirical validation are the following ones:

What is the minimum number of labelled instances required to assure a suitable perfor-
mance in packed executable detection using collective classification?

What is the effect in terms of classification accuracy when collective learning algorithms
are applied, in comparison to supervised approaches?

To asses these research questions and, therefore, evaluate our collective packed executable detec-
tor, we collected a dataset comprising 2,000 not packed executables and 2,000 packed executables.
The first one is composed of 1,000 benign executables and 1,000 malicious executables gathered
from the website VxHeavens [50]. The packed samples are divided into 1,000 executables manually
packed and 1,000 variants of the malware family ‘Zeus’ protected by different custom packers. On
the one hand, the 1,000 executables manually packed were executables initially not packed, which
were protected with 10 different packing tools with different configurations: Armadillo, ASProtect,
FSG, MEW, PackMan, RLPack, SLV, Telock, Themida and UPX. On the other hand, the 1,000
variants of the ‘Zeus’ family were protected with packers that PEiD [4] (updated to the last signa-
ture database) was unable to identify. The ‘Zeus’ family is reported to use multiple-layer packing
techniques: the first layer of protection is performed by a custom packer, and a second layer is
provided by a well-known packer [51]. All the samples initially considered as not packed were
analysed by PEiD [4]. Similarly, all the binaries classified as goodware were obtained from a clean
Windows XP installation and were checked as not infected by the ESET NOD32 antimalware tool,
updated with the last signature base. It is important to highlight that the malware classification
problem was stated as an undecidable problem by Cohen [52]. Likewise, Royal et al. [19] formu-
lated the detection of the unpack-execution of a binary as the problem of determining whether a
universal Turing machine simulates a Turing machine on its input tape, also proved as an unde-
cidable problem. This fact implies that we cannot be completely sure about the labels assigned to
the binaries included in the dataset. Nevertheless, we consider that the classification provided by
the tools employed is the most accurate categorisation we can achieve without manually analising
each sample, a task that is beyond our possibilities due to the required labelling efforts.

By means of this dataset, we conducted the following methodology to answer the research
question and thus, evaluate the proposed method:

1. Structural Feature Extraction. We extracted the features described in Section 3.

2. Training and Test Generation. We constructed an ARFF file [53] (i.e., Attribute Relation
File Format) with the resultant representations of the executables to build the aforementioned
WEKA’s classifiers.

We employed K-fold cross-validation [54], a technique which consists on dividing the dataset
into K folds, using the instances corresponding to K − 1 folds for training the model, and
the instances in the remaining fold for testing. K training rounds are performed using a
different fold for testing each time, and thus, training and testing the model with every
possible instance in the dataset.

In the case of collective and semi-supervised approaches, it is very interesting to evaluate the
performance of the algorithms when a different percentage of instances is labelled (training
set), in order to evaluate how the algorithms perform when the ammount of labelled data
is very low. K-fold cross-validation [54] allows us to test the algorithms for a 90%, 80%,
75%, 66% and 50% of labelled instances (training instances) for k = 10, k = 5, k = 4, k = 3
and k = 2 respectively. Nevertheless, the tool WEKA does not include the option to use
lower rates of training instances for cross-validation. In order to solve this limitation, we
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modified the Semi-Supervised Learning and Collective Classification package2 for the well-
known machine-learning tool WEKA [41] to enable fold inversion3. Fold inversion inverts
the training and testing instances. In this way, k = 10 inverted fold validation will divide the
dataset into 10 folds, using 1 fold for training and 9 folds for testing: (10% - 90%) instead
of (90% - 10%). We used this modified version of WEKA to configure the experiments
conducted to evaluate the algorithms described.

As aforementioned, we used this tool to test different collective algorithms configured with
their default parameter. In addition, we also tested the semi-supervised LLGC algorithm and
different supervised algorithms used in previous work in order to compare the results obtained
and the effects of the collective approach over the performance of the classifiers. In the same
way, we evaluated supervised algorithms using the same training and test percentages to
evaluate their performance on the generated dataset, and to compare both approaches under
the same conditions. More concretely, the different algorithms tested were:

• Collective algorithms. More specifically, we used the CollectiveIBK (k = 10), Col-
lectiveForest (10 trees), CollectiveWoods (10 trees), CollectiveTree (10 trees) and Ran-
domWoods (10 trees) algorithms.

• LLGC. We used the LLGC implementation provided by the Semi-Supervised Learning
and Collective Classification package for the well-known machine-learning tool WEKA
[53]. Specifically, we configured it with a transductive stochastic matrix, an stochastic
matrix and a graph kernel [48] and we employed the Euclidean distance.

• IBK. The KNN algorithm was configured for k = 10.

• J48. This algorithm was configured with the default parameters in WEKA [41].

• Bagged J48. This algorithm was configured with 10 iterations and 100% of bag size.

• RandomForest. The algorithm was configured with 10 trees.

3. Testing the Models. To test the approach, we measured the True Positive Rate (TPR),
i.e., the number of packed executables correctly detected divided by the total number of
packed files:

TPR =
TP

TP + FN
(1)

where TP is the number of packed instances correctly classified (true positives) and FN is
the number of packed instances misclassified as legitimate software (false negatives).

We also measured the False Positive Rate (FPR), i.e., the number of not packed executables
misclassified as packed divided by the total number of not packed files:

FPR =
FP

FP + TN
(2)

where FP is the number of not packed executables incorrectly detected as packed and TN
is the number of not packed executables correctly classified.

Furthermore, we measured accuracy, i.e., the total number of the hits of the classifiers divided
by the number of instances in the whole dataset:

Accuracy(%) =
TP + TN

TP + FP + TP + TN
(3)

Besides, we measured the Area Under the ROC Curve (AUC), which establishes the relation
between false negatives and false positives [55]. The ROC curve is obtained by plotting the
TPR against the FPR. All these measures refer to the test instances.

2Available at: http://www.scms.waikato.ac.nz/˜fracpete/
projects/collective-classification/downloads.html

3The modified version of the Semi-Supervised Learning and Collective Classification package is available at the
authors’ personal webpage: https://sites.google.com/a/deusto.es/xabier-ugarte/downloads/weka-37-modification
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(a) TPR results. The TPR axis (Y axis) has
been scaled from 0.92 to 1 in order to appreciate
better the results obtained for the different con-
figurations. CollectiveForest is, together with
RandomForest, the best performing algorithm
for all the configurations. The remainder of the
classifiers obtained a detection rate of more than
0.93 with a 10% of training size.

(b) Accuracy results. The accuracy axis (Y
axis) has been scaled from 0.92 to 1 in order
to appreciate better the evolution of the algo-
rithms. CollectiveForest presents similar results
as RandomForest for all the training configura-
tions. The rest of the classifiers obtained accura-
cies higher than 0.92 using only a 10% of labelled
instances.

(c) FPR results. The FPR is scaled from
0 to 0.08 in order to magnify the differences
among the configurations. In general, the higher
the amount of labelled instances, the lower the
FPR. However, the FPR is always lower than
0.08. CollectiveForest and RandomForest are
best performing algorithms in terms of FPR, to-
gether with CollectiveWoods.

(d) AUC results. The AUC axis (Y axis) has
been scaled from 0.5 to 1 in order to appreci-
ate better the evolution of the algorithms. As it
happened with accuracy, CollectiveForest was,
together with RandomForest, the best algorithm
among the ones based on decision-tree learning.
Anyhow, the rest of the classifiers obtained AUC
values higher than 0.9 using only a 10% of la-
belled instances.

Figure 1: Results of our collective-classification-based packed executable detection method. Col-
lective Forest was the overall classifier with the highest accuracy, TPR and AUC.

Figures 1 and 2 show the obtained results for the collective algorithms and their supervised
equivalents tested in terms of accuracy, TPR, FPR and AUC. Our results show that, obviously, the
higher the number of labelled executables in the dataset the better the results achieved. However,
by using only the 10% of the available data, with the exception of CollectiveIBK, the collective
classifiers were able to achieve accuracy rates higher than 94%, TPRs higher than 96% and FPRs
lower than 7%. In particular, CollectiveForest trained with the 10% of the data obtained 96.52%
of accuracy, 98% of TPR, 5% of FPR and 0.99 of AUC. With the exception of CollectiveIBK,
collective algorithms present results similar to their supervised equivalents. Figure 1(b) shows the
accuracy results of the proposed method. CollectiveForest presents results similar to RandomFor-
est. CollectiveWoods and RandomWoods, in contrast, present a lower accuracy than these two
algorithms, but higher than J48 and Bagged J48.

In the case of decision-tree based classifiers, the algorithm which produced the best results in
general was Collective Forest, with an accuracy of 96.52% using a 10% of labelled instances for
training. Figure 1(a) shows the obtained results in terms of correctly classified packed executables.
In this way, Collective Forest was also the best detecting the 98% of the packed executables with
only a 10% of the dataset labelled. Figure 1(c) shows the FPR results. In this case, Collective-
Forest presents slightly better results than RandomForest. Regarding AUC, shown in Figure 1(d),
Collective Forest was again the best, with results higher than 99% for every configuration.

In the case of CollectiveIBK and IBK, shown in Figure 2, the difference between the collective
approach and the supervised approach is higher. In this case, the collective algorithm has a
significant negative effect on the results in terms of accuracy (shown in Figure 2(b)), TPR (shown
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in Figure 2(a), and AUC (shown in Figure 2(d). In contrast, despite being the algorithm with
worst overall results, it was the algorithm which achieved the lowest FPR, with results below 2%
for all configurations.

(a) TPR results. CollectiveIBK was the only
collective classifier that obtained considerably
worse results than its supervised equivalent algo-
rithm. In particular, this classifier only achieves
a TPR higher than 75% using a labelled dataset
size of 75% or higher.

(b) Accuracy results. The accuracy axis (Y
axis) has been scaled from 50% to 100% in or-
der to appreciate better the evolution of Collec-
tiveIBK. This classifier was the only one that
was highly sensitive to the increase of the train-
ing dataset.

(c) FPR results. The FPR is scaled from
0.00% to 7% in order to magnify the differences
among the configurations. In contrast to TPR,
Collective IBK performs better than its super-
vised equivalent algorithm in terms of FPR.

(d) AUC results. The AUC axis (Y axis) has
been scaled from 50% to 100% in order to appre-
ciate better the evolution of CollectiveIBK. As
it happened with accuracy, CollectiveIBK was
more sensitive to the increase of the training
dataset than its supervised equivalent algorithm.

Figure 2: Results of our collective-classification-based packed executable detection method. Col-
lective Forest was the overall classifier with the highest accuracy, TPR and AUC.

Table 2 shows the results for the experimental configurations which achieved the best possible
results in terms of AUC using the lowest possible number of instances labelled. We can observe
that, while Collective Forest achieved an AUC close to 1 with only a 20% of labelled instances,
and Collective Woods needed a 25%, Random Woods needed a 50%, and Collective IBk needed a
90% to achieve a 0.94 AUC.

Table 2: Best results obtained for the different semi-supervised algorithms tested. In each case,
it was chosen the training-set which had the least possible number of instances labelled while
maintaining the best possible results in terms of AUC.

Labelled % ACC. TPR FPR AUC

Previous semi-supervised approaches
LLGC 50% 89% 0.84 0.07 0.89

Collective learning
CollectiveIBK 90% 93.73% 0.89 0.02 0.94
CollectiveForest 20% 97.59% 0.99 0.04 1
CollectiveWoods 25% 97.01% 0.98 0.03 1
RandomWoods 50% 97.75% 0.99 0.03 1
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In conclusion, the results indicate that it is only necessary a 10% of labelled instances in
order to guarantee results higher than 96.52% in terms of accuracy, in the case of Collective
Forest. Moreover, when the number of labelled instances increases, Collective Forest is still the
best algorithm achieving a 96.52% of accuracy for a 90% of labelled instances.

(a) Accuracy, TPR and AUC results. Ac-
curacy, TPR and AUC are scaled from 0.60
to 0.90, in order to appreciate the evolution of
the results when more training instances are la-
belled. In general, LLGC presents better results
in terms of accuracy and AUC when the number
of instances labelled increases, whereas the TPR
is constant for all configurations.

(b) FPR results. The FPR is scaled from 0.05
to 0.35 in order to magnify the differences among
the configurations. The evolution of the FPR
shows us that increasing the number of labelled
instance produces a decrease in the FPR.

Figure 3: Results of the semi-supervised LLGC algorithm based packed executable detection
method. The only configuration that achieved significant results was the transductive stochas-
tic matrix, whose evolution is shown in this figure. The configurations corresponding to a 33% of
labelled instances and 66% of labelled instances did not achieve sound results because the odd fold
division affects the algorithm’s performance.

In Figure 3(a) we can see the results achieved by the LLGC algorithm in terms of Accuracy,
TPR, and AUC. Figure 3(b) shows the results obtained in terms of FPR. LLGC presents the
same evolution of the collective algorithms: the higher the number of instances used for training,
the better the results. However, the configurations corresponding to a 33% and 66% of labelled
instances present significantly different results. In these cases, the accuracy achieved is between
60% and 65%. The LLGC algorithm is negatively affected by odd fold cross validation configu-
rations. More concretely, we obtained 89% of accuracy for a 50% of labelled instances, being the
highest accuracy achieved for all the configurations. In general we can state that collective learning
algorithms achieve a better performance than the semi-supervised LLGC algorithm.

In reference to the first research question presented in this section, what is the minimum number
of labelled instances required to assure a suitable performance in packed executable detection using
collective classification?, the response is that our collective learning based method requires only
a 10% of the whole dataset in order to guarantee an accuracy higher than 96%, and a 70% to
80% of labelled instances to achieve an accuracy similar to the best results obtained by supervised
approaches.

Regarding the second research question presented: what is the effect in terms of classification
accuracy when collective learning algorithms are applied, in comparison to supervised approaches?,
we can state that, for this dataset, collective algorithms do not present a performance signifi-
cantly sounder than supervised approaches. In some cases, decision-tree based collective algorithms
present higher accuracy rates than supervised ones (J48 or Bagged J48). In turn, RandomForest
achieves accuracy rates as high as CollectiveForest, the best performing collective algorithm. In
fact, the CollectiveForest algorithm configured with a 90% of labelled instances achieved a 99.08%
of accuracy, slightly higher than the 98.80% of accuracy achieved by the supervised Random Forest
algorithm. The results show that the classification of the dataset proposed is a relatively easy task
for supervised algorithms, and that collective and semi-supervised approaches have not demon-
strated their actual capacity to outperform supervised approaches when the amount of labelled
data is limited.

Finally, if we compare the results achieved with previous packed executable identification meth-
ods, we can see that collective learning algorithms and RandomForest outperform other algorithms
used in previous work [28, 56]. Table 3 compares the work of Perdisci et al. [28, 56] with several
supervised learning algorithms. In order to compare the results of the different approaches we
tested the algorithms employed by Perdisci et al. with two different feature sets: the features ex-
tracted by Perdisci et al., and the features we describe in section 3. It is important to remark that
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Table 3: Results obtained for the algorithms employed in the work of Perdisci et al. [28] extracting
their 9 features from our dataset. In this way we compare the results obtained for the different
feature sets under the same conditions. We applied k-fold cross validation for k = 10 for both
feature sets. In addition to the supervised algorithms described previously, we have tested Naive
Bayes and Multi-layer Perceptron (configured with their default parameters in WEKA [41]).

ACC. TPR FPR AUC

Method of Perdisci et al. [28] applied to our dataset
Naive Bayes 78.19% 0.64 0.07 0.92
J48 95.69% 0.96 0.05 0.96
Bagged J48 96.37% 0.97 0.04 0.99
IBk k = 3 97.19% 0.98 0.04 0.99
MLP 94.34% 0.96 0.07 0.96
Entropy Thres. 88.62% 0.88 0.10 0.89

Supervised approaches
NaiveBayes 67.55% 0.38 0.03 0.94
J48 97.45% 0.98 0.03 0.98
Bagged J48 98.35% 0.99 0.02 1.00
IBK - k = 3 97.83% 0.98 0.03 0.99
MLP 94.52% 0.96 0.07 0.95

our feature set includes the features proposed by Perdisci et al. and adds values extracted from
the PE structure of the executable. We can observe that our feature set outperforms the work of
Perdisci et al. for the J48, Bagged J48 and IBk with k=3. In addition, we applied more supervised
machine learning algorithms to our feature set, obtaining the best results with the RandomForest
algorithm configured with 10 trees, achieving a 98.80% of accuracy. In conclusion, we can state
that our feature set produces sounder results for several of the algorithms proposed by Perdisci et
al..

7 Discussion and Concluding Remarks

Our main objective was to pre-filter packed executables, as an initial phase to decide whether it
is necessary to analyse samples using a generic unpacker or not. More concretely, the aim of this
collective-learning approach was to achieve high accuracy rates while reducing the required number
of labelled executables. The results obtained show that the method proposed has accomplished
this goal. However, there are several shortcomings that should be discussed:

• Our approach is not able to identify neither the packer nor the family of the packer used to
cypher the executable. This information can help malware analysts to unpack the executable
and to create new unpacking routines. Sometimes, generic unpacking techniques are very
time consuming or fail and it is easier to use specific unpacking routines, created for most
widespread packers.

• The features extracted can be modified by malware writers to bypass the filter. In the case
of structural features, packers can build executables using the same flags and patterns as
common compilers, for instance importing common DLL files or creating the same number
of sections. Heuristic analysis, in turn, can be evaded using standard sections instead of not
standard ones, or filling sections with padding data to unbalance byte frequency and obtain
lower entropy values. Our system is very dependant on heuristics due to the relevance values
obtained from IG, making it vulnerable to such attacks.

The last limitation of our approach is also applicable to other methods for detecting packed
executables. In fact, in our approach we use every feature that has been used in previous work
[26, 27, 28] and we add several of our own, such as different entropy values or ratio between data
and code sections. Nevertheless, these features are heuristics employed by common packers. For
instance, new packing techniques like virtualisation [57, 58, 18], which consists on generating a
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virtual machine to execute the malicious behaviour using an unknown set of instructions within it,
do not necessarily increase the entropy of the file.

Despite the ability of malware packers to surpass these heuristics is a real problem, the majority
of the packed executables are packed with known packers like UPX. Besides, there is an increasing
number of malicious executables packed with custom packers. In our validation, we have included
a big number of this type of malware: 1,000 variants of the Zeus family, gathered from 2009 to
2011, for which PEiD was not able to detect the packer employed. More concretely, this family is
reported to be protected with custom packers [51].

In any case, our approach was able to detect the majority of these custom packers. Our
results show that, although some of the features mentioned in section 3 may be evaded by different
techniques, it is not trivial to evade all of them while maintaining the whole functionality.

Malware detection is a critical topic of research due to its increasing ability to hide itself.
Malware writers usually employ executable packing techniques that hide the real malicious code
through encryption or similar techniques. Generic unpacking techniques that use a contained envi-
ronment pose as a solution in order to face these executables. However, these environments perform
their task in a high-resource-consuming fashion. Therefore, approaches for executable pre-filtering
have been also proposed that, based on several static features, are capable of determining whether
an executable is packed or not. These approaches usually employ supervised learning approaches
in order to classify executables. The problem with supervised learning is that a previous work of
executable labelling is required. This process in the field of malware can introduce a high perfor-
mance overhead due to the number of new threats in-the-wild. In this paper, we have proposed
the first collective-learning-based packed executable detection system that based upon structural
features and heuristics is able to determine when an executable is packed. We have empirically
validated our method using a dataset composed of packed executables (protected with known
packers and custom packers), and not packed executables, showing that our technique, despite
having less labelling requirements, still presents sound results. In addition, we have compared the
results obtained with several supervised machine learning algorithms. In this case, although Col-
lectiveForest achieves slightly sounder results than any of the supervised algorithms tested, there
is not a considerable difference between both approaches due to the properties of the dataset. In
any way, little differences in detection accuracy in this kind of problems can make the difference
between detecting a new malware binary or not detecting it, or, in other words, avoiding potential
productivity losses for the companies or not.

The avenues of future work are oriented in three main ways. First, we plan to extend this
approach with an specific packer detector able to discriminate between executables packed with a
known packer and the ones with a custom packer in order to apply a concrete unpacking routine
or a dynamic generic step. Second, we plan to test more semi-supervised techniques in order to
reduce the labelling efforts required for the machine-learning classifier training process. Finally,
we plan to study the attacks that malicious software filtering systems can suffer.
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