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Abstract. The error detection in software is a problem that causes the
loss of large amount of money in updates and patches. Many program-
mers spend their time correcting code instead of programming new fea-
tures for their applications. This makes early detection of software errors
become essential. Both in the fields of static analysis and model check-
ing, great advances are being made to find errors in the software before
the products are released. Although model checking techniques are more
dedicated to find malware, it can be adapted for errors in the software.
In this article we will discuss the techniques used today for the search
of patterns and vulnerabilities within the software to know what are the
possible solutions to this issue. We examine the problem from the point of
view of their algorithms and their effectiveness in finding bugs. Although
there are similar surveys, none of them addresses the comparison of best
static analysis algorithms against the best mathematical logic languages
for model checking, two fields that are becoming very important in the
search for errors in software.
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1 Introduction

The era of computer bugs began with the first computers in the late 1940’s. More
specifically, in 1947 was when the first computer bug arose [42]. Since then, there
have been many computer bugs causing the loss of thousands of dollars. In some
cases a computer bug costs millions of dollars, as we can observe in the arianne
5 case [31], or, in the worst cases, lives, as we can observe in the Therac-25 case
[30] in which seven people died because they received radiation 100 times higher
than normal. More recently, in 2012, the company “Knight Capital” lost more
than 400 million in the stock market because the program used to buy and sell
shares bought everything in the market for 45 minutes.

These kind of problems in computers show that a correct programming is
required. For this reason, many programmers analyse the source code manually,
but they lose a lot of time with this task, and the human error is always present.
For that purpose, programmers build tools to analyse source code and even the
binary file generated by the compiler.
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This survey is divided in four sections. In section 2 we analyse the algorithms
used today for the static analysis of code. In section 3 we show which are the
temporal logic languages most used in model checking. In section 4, we show
previous works in static analysis and model checking. And, finally, section 5
offers the conclusions and future work.

2 Static analysis

Although, nowadays, the use of dynamic analysis among programmers is arising,
the high computational requirements involved in this task make this technique
unproductive. Because of this, static analysis is the approach most frequently
used to perform code analysis.

Static analysis is not only used for the detection of computer bugs in the
source code, but is largely used for pattern searching that might lead to discover
if a binary file is malware or goodware. We can see an example of this research
in some of Christodorescu et al. works [6, 7] .

For this reason, almost from the beginning of computer history, many mathe-
maticians and computer theorists have developed some algorithms for searching
patterns in software.

In the next sections we will see some of the best algorithms to search patterns.

2.1 Hoare logic

One of the first steps in mitigating errors was developed by C.A.R. Hoare [23]
who created the Hoare Logic with the contributions of Robert Floyd.

The most important element in the Hoare logic is the Hoare Triple. The
Hoare Triple has the following form: “{Q} S {R}”. Where Q and R are the
precondition and the postcondition that a computer program has to met for the
code S to work correctly. In short, you could say that if it is true that the program
starts in a state Q and ends in a state R, the program will work correctly. Hoare
logic is able to avoid many bugs to make programming safer thanks to a correct
specification.

{Q ≡ 1 ≤ n ∧ n ≤ 1000}
fun maximum(a ∶ vect;n ∶ integer)dev(x ∶ integer)
{R ≡ (∀α ∈ {1..n}.x ≥ a [α])}

Fig. 1. Hoare logic example.

The pseudocode showed in Fig. 1, is a function to compute the maximum of
a vector of integers. With Q, we define what values are allowed in variable “n”,
in this case, “n” can not be less than 1 or greater than 1000. In the second line,
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we can see the specification of the function with its input and output variables
and the types of these variables. In the last line, we see the postcondition R, in
this example, it returns the highest value of the entire array.

Edsger W. Dijkstra [15] invented an extension of Hoare logic, Predicate trans-
former semantics, where he established the concept of the weakest precondition:

wp(S ,R ) (1)

Where S is a script to perform and R one postcondition that must be met.

2.2 Shape analysis

In 1967 Reynolds [38] created Shape analysis to inspect the heap pointers and to
know how these pointers access to the memory. This analysis is performed using
a graphic called shape graphs or alias graphs, where it is shown how pointers are
related to the memory locations that are being targeted.

One problem with this approach is that it is not sensitive to the flow of
the program, which may not detect many vulnerabilities. This makes the Shape
analysis become inaccurate, and can often generate errors showing program be-
haviours not corresponding to the actual ones.

The advantage of this technique is the clarity in the representation of re-
sults in its tools. With the graphical results you can know how the relationship
between pointers and memory addresses is.

2.3 Abstract interpretation

Abstract interpretation is an approach to the semantic structure of a program.
It was created by Cousot [13] as a method for static program analysis. Its main
applications are to decide optimisations and transformations, and error detec-
tion.

With abstract interpretation an application can be tested into a domain of
abstract values. With this, we obtain an abstract version of the application
with abstract data. Also, with this point of view is not necessary to run the
application, getting a broader view of program behaviour.

One advantage of this technique is that it is possible to know if the results
of the program could be obtained in a finite time. Another advantage, is that
the results describe the behaviour of some program executions. But abstract
interpretation also has a disadvantage, the information obtained in the analysis
is always an approximation of what really occurs in a program execution.

2.4 Value-Set analysis

Balakrishnan and Reps introduced the first way to recognise the values in mem-
ory using the Value-Set Analysis [3]. VSA is an abstract way of analysing an
executable to know what values will take each variable in a program.
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Summarising, we could say that VSA is a line by line analyser of all the
information that exists in the registers and variables in memory (on the stack,
which are called a-locks). An example of VSA at a given point of a function
could be:

esp→ (⊥,−44), var1 → (0,⊥), var2 → (0,⊥), eax→ (⊥,4[1,∞])

Fig. 2. Value-Set analysis example

In the example of Fig. 2, VSA checks the value of the main registers and
variables declared in the program. In this example, the ESP register is pointing
to a value which is located in the position -44, regarding the value of the stack.
The variable “var 1” is the first global variable, the same happens with the
variable “var 2” which, in this case, is the second global variable. The EAX
register contains the same value that the global variable has, which ranges from
1 to infinity, because it is not specified which is the highest value that the variable
can have.

To make the job easier VSA uses IDAPro [25] to find known addresses, stack
offsets, information on the limits of procedures and calls to system libraries
(using the FLIRT technology [21]). With all this, it generates a small database
which is used for subsequent analysis.

Balakrishnan et al. also published another work in which they doubted that
compilers were performing their job properly [4]. Balakrishnan et al. performed
tests which concluded that although a programmer had made the code perfectly,
the compiler could introduce mistakes in optimisation time and cause failures in
the program.

3 Model Checking

Model checking is a technique that, given a formal property checks whether that
specific property has been met in the state model, where the state model is
the description of the states and events of a system using a diagram or table.
The property is a formula that represents some behaviour within the system
described by the state model.

Model checking was introduced by Emerson et al. [17], Clarke et al. [8], [9],
and Queille and Sifakis [37]. But, if we have to talk about the first steps of model
checking in software verification, the pioneer was Holzmann [24].

For model verification, these systems need a system that shows the properties
of states and transitions. For this purpose, the researchers use temporal logic,
which was introduced by Pnueli [35] in 1977.

Although there are many applications today for model checking, the main
tools in this field are based on LTL or CTL to make their calculations. One of
the most used tools is SPIN [41], which use LTL to perform formal verification.
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Another widely used tool is NuSMV [34], which in this case is based on CTL,
but also partly based on LTL.

3.1 CTL

The creation of CTL was made by Emerson and Clarke [8], although the complete
axiomatisation was made by Ben-ari et al. [5] and Emerson and Halpern [18].

The basic operations in CTL are the same that in normal mathematical logic,
and we can see them in Fig. 3.

p q ∼p p ∨ q p ∧ q p ↔ q p → q

V V F V V V V

V F F V F F F

F V V V F F V

F F V F F V V

Fig. 3. Basic operations in CTL.

One of the benefits of CTL is the possibility to knwo whether it is feasible to
satisfy a certain condition over the time (see Fig. 4). This fact is possible because
there are several types of operations that do not exist in standard propositional
logic. CTL introduces Universal (∀) and existential (∃) operators, to determine
if a condition met in one or more paths in the graph.

In addition to these operators, CTL introduces new operators (◊ψ, #ψ, ◻ψ,
ψ Uφ) to perform operations with paths. The operator ◊ψ is used to indicate
if a path is going to satisfy a particular property at a given time. The operator
#ψ checks whether a property is going to satisfy in the second position of the
graph. The operator ◻ψ checks if a path satisfies a certain property in all states
of the graph. And finally the operation ψ Uφ, which checks if there is a path
that start with ψ and in any moment contain a path that met φ.

In CTL these operators can not be separated from the existential and uni-
versal quantifiers, in order to fulfil that condition operations must always be
defined as you have seen in Fig. 4.

3.2 LTL

LTL was created by Manna and Pnueli [32]. It is a temporal logic that reasons
about only one timeline, and uses the same operators as temporal logic.

As LTL has a single execution path, unlike CTL, so the universal and exis-
tential operators are not needed. The main feature that has LTL is that it can
chain temporal formulas, unlike in CTL, where the temporal operators should
always go with the universal or existential operator.

An example of an LTL formula that can not be done in CTL would be:
◊◻p. On the contrary, in LTL it would be imposible to define the following CTL
formula: ∀◊∀◻p.
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p

q

∃# p

∃◊ p ∃(q U p)

∃◻ p

∀◊ p

∀◻ p

∀(q U p)∀# p

Fig. 4. Graphic representation of some CTL formulas, where the black state satisfies
p, the white state satisfies q and the gray circle is any state.

3.3 CTL*

CTL* (pronuncied CTL star) was created by Emerson and Halpern [19]. This
logic is more expressive than the temporal logics seen so far, and for this reason
there are formulas that can be performed in CTL* which are not conceivable in
other temporal logics. Thus it can be said that CTL* comes directly from LTL
and CTL, because it contains the linear operators of LTL and the path operators
of CTL.

Although CTL* is more complete than the other temporal logics, it has
not been practically used for model checking. And this is even more surprising
because the computational complexity of CTL* is exactly the same as LTL,
PSPACE. One possible reason for this is that the complexity of CTL* formulas
can be very high, and may be difficult to verify their correctness.

3.4 CTPL

CTPL is a temporal logic created by Kinder et al. [27] to search malware in
binary files. The syntax used by CTPL is similar to that used by CTL, but for
Kinder et al. states are assembly instructions. Besides, CTPL uses the predicate
#loc(L) to control the order in which the arguments are passed to the stack.
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EF (mov eax, 937 ∧ AF(push eax))

Fig. 5. Example of CTPL formula.

In Fig. 5 we can see an example of the CTPL syntax. This example searches
the instruction mov eax 937 and later the instruction push eax is encountered,
regardless of the execution path of the binary.

In this approach, the first thing that Kinder did was unpack the binaries
with different tools (UnFSG, Petite Enlarger, etc.). Packing the binary is a very
common technique among malware programmers to prevent the code from being
detected as malware. Once unpacked, the binary assembly code was ready to be
extracted using a dedicated tool, IDA Pro [25].

In 2012, Song and Touili [39, 40] developed SCTPL, an extension of CTPL.
SCTPL allows building predicates with the stack. With this feature it is pos-
sible to increase the detection of malware. Song translated binary code into a
pushdown system that mimicked the program’s behaviour.

3.5 µ-calculus

µ-calculus can be seen as an extension of CTL. It was created by Kozen [29]
in 1983. The µ-calculus uses the same operations that are used in CTL. One
difference is that, instead of using existential and universal operators, µ-calculus
uses <> for the existential operator operations, and [] for the universal operator
operations.

The main difference between CTL and µ-calculus is the use of fixpoints. The
µ-calculus has least fixpoint (µ) and a greatest fixpoint (ν), which makes it
possible to give an external fixpoint characterisation of correctness properties.

3.6 State explosion problem

One of the biggest problems in model checking is the large amount of data that
must be managed. Some problems can arise for this reason, but the most relevant
is the time needed to compute all data. This problem is called “state explosion
problem”, and some researchers are fighting against this problem for many years
[11, 10].

Some techniques tried to abstract from the data to make it more workable.
Cousot and Cousot [14] tried this approach and then verified that abstraction.
Alur et al. [1] analysed the data, then used the information obtained in the
previous step to abstract from the data, and finally verified the abstractions.

4 Related work

Studies on the static analysis and model checking have previously been presented
by D’Silva et al. [16], but temporal logics are not mentioned in the article.
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D’Silva’s study is about the verification of source code, but as we know the
compiler can introduce errors in the compilation process.

Kunur [28] performed a study of temporal logic in 2010. In this study we
can observe the different temporal logics that have appeared in recent years, but
many of these have not been used in model checking.

Engler and Musuvathi [20] performed a study in which they checked the
effectiveness of static analysis against model checking. This study concluded that
although the static analysis detected more errors, the model checking detects
errors that a static analysis can not detect, but it took much longer to prepare
the tests.

These studies demonstrated that static analysis techniques are very powerful
in finding errors in the source code (Hoare logic, Shape analysis, Abstract inter-
pretation) or x86 assembler (Value-Set Analysis). They get good results quickly
for general and known errors, for example well documented buffer overflows(e.g.
strcpy). If we are talking about finding poorly documented errors, model check-
ing is the best option. It is also able to find errors in both, the source code
(CTL, LTL, CTL *), and x86 assembly code (CTPL). The problem with model
checking is that you can only know if the source code contains the error or not,
often making it very difficult correction.

All algorithms showed in this article have tools that demonstrate its ef-
fectiveness, for example Frama-C [22] (abstract interpretation), Java+ITP [26]
(Hoare logic), Predator [36] (Shape analysis), CodeSurfer [12] (Value-Set anal-
ysis), NuSMV [34] (CTL), SPIN [41] (LTL), ARC [2] (CTL*) or mCRL2 [33]
(µ-calculus). The only algorithm that has no tool with which we can test their
effectiveness, is CTPL. This algorithm was developed only for scientific purposes
and there is not a tool or source code available.

5 Conclusions

As we have seen, techniques to find bugs in software are evolving to become more
accurate. Both in the field of static analysis and model checking, the researchers
are getting more information from an executable without the source code.

Each year there are new techniques to improve the proposed algorithms in
different ways. In many cases the analysis try to be as accurate as possible and
others try to do the algorithm as fast as possible. Although it seems that the
trend is to improve the algorithms, it is possible that new techniques will make
obsolete current algorithms.

Static analysis and model checking have limitations. In static analysis the
time required to generate results can consume a lot of CPU time, so the time
needed to make an analysis will be bigger than in other techniques. In model
checking, the analyses are faster but in a lot of cases a Boolean result can be
insufficient. With Model Checking it is possible to know if a binary file is malware
or contains an error, but it is impossible to know, where is the bug in the code,
or where is the malicious code in malware.
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For future work, we are planning to improve the model checking techniques
using set theory to get more accurate results instead of the boolean output
used in of traditional model checking. This approach can be considered a hybrid
system between the techniques of model checking and static analysis, because it
will have the accuracy that the formulas of model checking have and the ease of
bug correction that provide static analysis techniques.
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