
Procedural Playable Cave Systems
based on Voronoi Diagram and Delaunay Triangulation

Aitor Santamarı́a-Ibirika, Xabier Cantero, Sergio Huerta, Igor Santos, Pablo G. Bringas
S3lab

University of Deusto
Bilbao, Spain

{a.santamaria, xabier.cantero, shuerta, isantos, pablo.garcia.bringas}@deusto.es

Abstract—The volumetric approach for terrain representa-
tion is a technique used by several video-games and other
graphic applications to manage both surface and geological
data from the virtual world. To enhance the exploration expe-
rience and due to the amount of data required by this approach,
volumetric terrains are usually generated with procedural
methods. Nevertheless, one of the main issues of those methods
is the generation of cave systems with playable features and a
natural appearance.

In this paper we propose a new method to generate playable
cave systems for 2D and 3D volumetric terrains, based on
Voronoi diagrams and Delaunay triangulations. Our approach
is completely customizable by the designer by a set of pa-
rameters directly related to the cave itself avoiding technical
concepts. Additionally, the method runs in a completely inde-
pendent way, with no interactive steps.

Keywords-procedural terrain; procedural caves; volumetric
terrain;

I. INTRODUCTION

The terrain representation issue has been handled using
different approaches, such as height maps (which can rep-
resent only the surface data of the terrain) or volumetric
terrains (which contains both surface and geological data).
Usually, video-games which use volumetric terrains base
their mechanics and playability on the exploration of the vir-
tual world. So, the exploration of the underground structures
of those terrains is a crucial feature for them. Additionally,
procedural methods are widely used by those video-games
to generate infinite and unexpected terrains, improving the
exploration experience.

One of the main issues in this situation is the procedural
generation of underground cave systems with a natural
appearance, but keeping in mind the playable features to
create interesting structures to be explored by the players.

In this paper, we present a novel approach to procedu-
rally generate cave systems for two-dimensional and three
dimensional virtual worlds. Our method is based on Voronoi
diagrams and Delaunay triangulations, and it enables the
designer to establish the type of the cavities a cave system
should contain to be playable (e.g. treasure areas, encounters
with enemies, merchants or exits) and their characteristics
(e.g. the depth or the number of connections with other

Figure 1. Slice of terrain with a cave generated with our approach.

stances). Additionally, the input data is completely related
to the cave itself, avoiding technical concepts related to the
mathematical method used.

The remainder of this paper is organized as follows:
First, section II presents a review of the existing literature
about this topic. Next, section III makes an overview of our
method, and section IV presents the mathematical methods
used. Section V describes the algorithm. Then, the results
obtained by our method are displayed in section VI, dis-
cussing them in section VII. Finally, the paper ends with a
conclusion and a proposal for future work in section VIII.

II. RELATED WORK

Procedural generation is a popular topic, existing several
approaches for procedural terrains, cities or buildings [1].
On the contrary, procedural cave generation is an area not
extensively researched.

Boggus and Crawfis proposed a method which simulates
the action of the water and the erosion of the rock [2], [3].
This method limited the caves to only two surfaces (the
floor and the roof). They overcame this limitation in their
following research [4], obtaining more realistic results.

Peytavie et al. [5] presented a complete framework for
generating volumetric terrains based on voxels. Their system
simulates Thermal and fluvial erosion, generating caves and
complex rock formations.

Johnson et al. [6] proposed a new approach based on
cellular automatons which generates infinite cave levels in
real time. The main issue of this method is that it can not
generate three dimensional caves.



Cui et al. [7] proposed a method to generate caves using
three dimensional noise, and they improved it generating
stalactites and the stalagmites [8]. Those structures have
been also researched by Tortelli and Walter [9].

(a) (b)

Figure 2. A terrain plot with a cave.

III. OUR APPROACH

Against this background, our method presents the follow-
ing features:

Playability based on points of interest:
Resulting cave systems are constructed using a set of points
of interest (POI). A POI is a point of the cave with a special
playable interest, such as a treasure chamber or an encounter
with a monster. Those points are defined by the designer,
establishing features such as their depth in the terrain or the
relationship with other POIs.

Gallery based cave systems:
Our method generates the cave with underground galleries,
which are constructed using the relations between POI types
(defined by the designer). This feature enables the process to
generate cave systems with a playable criteria (e.g. after an
encounter against enemies, the player will found a treasure).

Usability:
The input parameters are transparent to the technical meth-
ods used in the process. That is, all the parameters are related
to the cave system itself.

Autonomous execution:
The execution of the generator is completely autonomous. It
does not require interactive steps, so, it can be executed in
the systems of the players, generating different cave systems
in each execution.

Based on our reality:
The results of our proposed approach are not simulations of
the real world. In spite of that, the cave systems present a
natural appearance and its realism is similar to the realism
of the caves used in other interactive applications.

We can observe some caves generated with our approach
in figures 1, 2 and 8.

IV. MATERIALS AND METHODS

The generation method is based on two mathematical
constructions: Voronoi diagrams [10] and Delaunay trian-
gulations [11].

(a) (b) (c)

Figure 3. Voronoi diagram (a), Delaunay triangulation (b) and their relation
(c). They are constructed using 120 random seeds in a two dimensional
space.

A. Voronoi Diagrams

A Voronoi diagram [10] is a way of dividing space into
regions (called Voronoi cells) basing the division on a set
of points (called seeds). For each seed there will be a
corresponding region consisting of all points closer to that
seed than to any other. Figure 3(a) shows a two dimensional
Voronoi diagram. They have been widely used in scientific
and technical areas for several purposes [12], including
procedural terrain generation [13].

B. Delaunay Triangulations

A Delaunay triangulation [11] is a mathematical technique
to triangulate the space using a set of points. Formally, it is
a triangulation such that the circumcircle of any triangle has
no point inside (circumsphere of any tetrahedron for 3D).
Higher dimension triangulations are also available. Figure
3(b) shows a two dimensional Delaunay triangulation. This
technique has been extensively used for mesh generation
[14].

The Delaunay triangulation corresponds to the dual graph
of the Voronoi diagram. That is, the centers of the circum-
circles of the triangles in the Delaunay triangulation are the
vertex of the Voronoi cell of the Voronoi diagram. Figure
3(c) shows this relation overlapping a Voronoi diagram and
the Delaunay triangulation of their seeds. The consequence
of this characteristic is that the points connected in the
triangulation have their Voronoi cells adjoining 1.

V. CAVE GENERATION PROCESS

A. Input Data

Before the generation of the terrain, the designer must
establish a set of input parameters. The input data is divided
in three main sets of parameter: the descriptors of the POIs,
the descriptors of the POIs relationships and the global
parameters.

First, the descriptors of the POI types are provided:
· ID: Unique ID of the POI type.
· Name: The name of the POI type.

1In the rest of the paper we call neighbor cells to each pair of cells of
the Voronoi diagram with their seeds interconnected in the triangulation.



Table I
EXAMPLE OF A SET OF DESCRIPTORS OF THE POI TYPES

ID Name Location Depth Parameters Cavity size Branches
min/opt/max min/opt/max min/opt/max

0 Entrance surface start(1) 0.5 / 1 / 1 1 / 1 / 1
1 Encounter inside 0 / - / 1 none 1 / 1.5 / 2 1 / 1 / 3
2 Treasure inside 0 / 0.5 / 1 none 0.5 / 0.5 / 2 0 / 1 / 3
3 Route inside 0 / - / 1 union(0.5) 1 / 1 / 1 0 / 1 / 3
4 Exit surface none 0.5 / 1 / 1 0 / 0 / 0

An optimum parameter with a - value indicates that the elements follows a white noise distribution among the minimum and the maximum value.
Surface POIs do not include information of their depth.

Table II
EXAMPLE OF POIS RELATIONSHIPS (ENCOUNTER(2) WITH OTHERS)

POIs Crossable Affinity Galleries Sinuosity Distance
Prev./Next min/opt/max min/opt/max min/opt/max

1 / 0 - 0 - - -
1 / 1 true 0.01 1 / 1 / 3 0.1 / 0.5 / 1 0 / 0.5 / 1
1 / 2 true 1 1 / 1 / 1 0 / 0.5 / 0.5 0 / 0.1 / 0.2
1 / 3 true 0.5 1 / 1 / 3 0 / 0.5 / 1 0 / 0.5 / 1
1 / 4 true 0.1 1 / 1 / 3 0 / 0.5 / 1 0 / 0.5 / 1

Incompatible relations (affinity = 0) ignore crossable, galleries, sinuosity and distance parameters.

· Location: The desirable position of the POI. It can be
inside the terrain or at its surface. Figure 4(b) shows
this classification of the cells of a Voronoi diagram.
· Depth: The depth at which the POI is going to be

constructed. It is formed by three values (minimum,
maximum and optimum depth) relative to the terrain
depth. Only used if the location of the POI is defined
as inside.
· Special parameters: List of parameters of the POI

type which establish some special features for the point.
Those parameters have associated a sub-parameter.

start(N) Indicates the type for the first POIs in the
system (e.g. the entrance of the cave). The sub-
parameter N is the probability of a cave system to
start with this POI.
union(N) This parameter indicates that the POI is
able to be reached from more than one POI (e.g. a
crossroad). The sub-parameter N is the probability
of the POI to be reached from more than one POI.

· Cavity size: The size of the underground cavity
in which the POI is going to be constructed. It is
formed by three relative values (minimum, maximum
and optimum depth).
· Branches: The number of new POIs which are going

to be constructed connected to the POIs of this type,
generating forks in the cave. It is formed by three values
(minimum, maximum and optimum depth).

The table I presents an example of a set of descriptors of
the POIs used by our approach.

Second, the descriptors for the POIs relationships are
provided. Those parameters must be established for every
ordered pair of POIs previously defined.

· Previous POI: The ID of the first POI of the relation.

· Next POI: The ID of the last POI of the relation.
· Crossable: Boolean value which indicates if the

galleries between the two POIs of the relation are
crossable by other galleries. This should be false when
the relation between the POIs should not be interfered
by other elements of the cave (e. g. a big treasure before
the boss monster of the dungeon).
· Affinity: The affinity of the relation. It is provided

as a normalized value. While value 1 indicates the
maximum affinity, value 0 indicates incompatibility
between the two POI types.
· Number of galleries: The number of galleries which

connect the two POIs. It is formed by three values (min-
imum, maximum and optimum number of galleries).
· Sinuosity: The relative sinuosity of the galleries

connecting the two POIs. It is formed by three relative
values (minimum, maximum and optimum sinuosity).
· Distance: The relative distance from the first POI to

the second POI of the relation. It is formed by three
relative values (minimum, maximum and optimum dis-
tance).

The table II presents an example of a set of parameters
which defines the relationships of the POIs defined in the
table I. Due to the extension of this data, the table shows
only the relationship of the Encounter POI type.

Finally, global parameters are provided. Those parameters
are:
· Terrain depth: The depth of the terrain. Usually, this

parameter can be obtained from the volumetric terrain.
· Global sinuosity: An absolute value which establishes

the sinuosity of the galleries of the cave system. This
parameter modifies the relative sinuosity values of the
relationships of the POIs.
· Global distance between POIs: An absolute value



which establishes the distance between POIs of the cave
system. This parameter modifies the relative distance
values of the relationships of the POIs.
· Terrain scale: The scale of the terrain. It is determined

by a value representing the length of each voxel side in
points. A point is an abstract unit of length (the designer
decide if they represent meters, inches or other type of
unit).
· Underground cavity global size: A parameter which

establishes the size of the underground cavities. It
determines the average number of cubical points (a unit
established by the scale parameter) per underground
cavity.

B. Algorithm overview

(a) (b)

(c) (d)

Figure 4. Cave generation process. This cave has been generated with the
input data provided on the table I. (a) shows a Voronoi diagram generated
over a two dimensional terrain. (b) shows the classification of the cells:
surface (in red) and inside (in blue). (c) shows the cells selected by the
process to generate the cave. It is formed by 7 POIs (the numbers in the
POIs indicate the generation order), being the 4th and the 6th in the same
cell due to the union parameter. (d) shows the final cave hollowed on the
terrain with the POI types assigned.

The algorithm to generate the caves is formed by the
following steps:

Step 1: Voronoi diagram & Delaunay triangulation:
The first step in creating the cave system is the generation
of the Voronoi diagram and the Delaunay triangulation.

This process starts with the location of the seeds for the
Voronoi diagram. These seeds are random points following
a white noise distribution (so, they are uniformly distributed
over the terrain). The number of seeds is calculated using
the equation 1. N is the number of voxels of the terrain
plot in which the cave is going to be generated, C is the

underground cavity global size parameter and S is the terrain
scale.

Seeds =
N

C
S3 (1)

Next, the algorithm use these points to construct the
Voronoi diagram and the Delaunay triangulation. Figure 4(a)
shows a two dimensional terrain with a Voronoi diagram
generated over it.

Step 2: First point generation:
The next step is the generation of the first POI for the cave.

First, the POI type for the first point of the cave is chosen.
This selection is randomly performed using the probability
given in the start parameter of each POI type with this
parameter defined.

Second, the algorithm selects the cell of the Voronoi
diagram with the best characteristics to locate a POI of the
previously selected type. This process is explained in more
detail in section V-D.

Finally, the point is stored in a list of unfinished points.
This list contains all the points from which the algorithm is
going to construct the rest of the cave.

Step 3: Cave generation:
This step of the process is the generation of the cave
itself. It is iteratively performed, taking the first point of
the unfinished points list, removing it from the list and
constructing the next POIs and the galleries between them.

Once the first point is picked from the unfinished points
list, the number of branches is obtained. This value is
randomly selected using the values given in the input data
for this type of POI. The number of branches determines
the number of new POIs to be constructed from this point.
If this value is 0, no branch is constructed from it, and the
next point of the unfinished points list is taken, repeating
this step.

Next, if the branch number is higher than 0, the method
constructs a new POI per branch.

For each branch, it selects the POI type for the next POI in
the cave. This process is explained in depth in section V-C.
Then, the new point is located in the terrain (explained in the
section V-D) and the galleries between them are constructed.
The number of galleries between the two points is randomly
obtained using the values given by the number of galleries
parameter. defined in the relation between the two types of
POI. The generation process of each gallery is explained in
the section V-E.

Finally, when all branches are constructed, the new points
are added to the unfinished points list.

This process ends when the unfinished points list is empty.
Figure 4(c) shows an example of the result of this step.

Step 4: Hollow the cave:
The final step of the method is the physical generation of
the cave in the terrain. The difficulty of this step depends
on the terrain representation system. In this research we use



the volumetric terrain representation method proposed in our
previous research [15], [16].

We can observe an example of this process in the figure
2. Figure 2(a) shows a general view of the terrain plot and
the cave and figure 2(b) shows its entrance on the terrain
surface.

Figure 4(d) shows an example cave generated on a two
dimensional terrain.

C. POI type selection

The goal of this process is the selection of the next type
of POI to construct in the cave. This selection depends on
the last type of POI generated.

This process normalizes the affinities of the last POI type
in the cave with the rest of POI types. Then, the next type
is randomly selected using these normalized affinities. If the
affinity between the last type of POI with all the POI types
is 0, the method converts this point of the cave in a dead
end.

D. POI location

This process is responsible for locating the next POI type
in one cell of the Voronoi diagram. Additionally, if the point
to locate is not the first POI of the cave, it needs the data
of the last generated POI.

The steps to perform this process are different if the type
of the POI to locate has the union parameter defined.

On the one hand, if the union parameter is not defined,
the process has the following steps:

1. Candidate selection: First, the algorithm selects the
cells of the Voronoi diagram at the location defined in
the type of the POI to locate (inside the terrain or in
its surface. Figure 4(b) shows a terrain with the inside
cells in blue and the surface cells in red). Additionally,
already assigned cells, uncrossable cells (galleries with
the uncrossable flag active in the input data) and their
walls (their neighbors in the diagram) are removed
from this list of candidates.

2. Calculation of the desirable features: Next, the
algorithm calculates the desirable features of the un-
derground cavity to locate the POI. Those features are
the depth of the cavity, the size of the cavity and the
distance from the previous POI (only if the point is
not the first POI of the cave).
The values for those desirable features are calculated
multiplying the relative by the absolute values. On the
one hand, the process takes the relative values from
the descriptors of the POI types (the depth and the size
of the POI) and the descriptors of their relations (the
distance between the two types of POI). On the other
hand, the absolute values of those parameters are taken
from the global parameters (terrain depth, underground
cavity global size and global distance between POIs).

All the desirable features are formed by three values:
minimum, optimum and maximum.

3. Candidate removal: Then, the cells of the Voronoi
diagram out of the ranges defined by the desirable
features are removed from the candidate list. These
ranges are delimited by the minimum and the max-
imum values of the desirable features. If this step
removes all the candidates, the method considers that
this branch can not be constructed, discarding it from
the previous POI in the cave.

4. Best candidate selection: Finally, the method selects
the best candidate of the list. This process compares
the features of each candidate against the optimum
value of desirable features. If there is not an optimum
value defined, a random candidate is obtained. The
selected candidate is the cell where the next POI is
going to be located.

On the other hand, if the union parameter is defined, the
process is different. The union parameter indicates that the
POI is able to be reached from more than one POI. To
get this type of construction, those POIs are located in the
same cell of other POIs of the same type, obtaining several
entrances to the POI from different POIs. This process has
the following steps:

1. Union probability: First, a random value is obtained.
If this value is higher than the probability of the union
parameter, the process stops and locates the POI with
the steps for the POIs without the union parameter
defined. If the value is the same or lower than the
probability, the generation process continues.

2. Candidate selection: Second, the method selects all
the cells of the Voronoi diagram with the same type
of POI as the type of the POI to locate, creating a
candidate cell collection. If there is no cell with this
type of POI assigned, the process stops and locates
the POI with the steps for the POIs without the union
parameter defined.

3. Calculation of the desirable features: Third, the
desirable features are calculated. In this case, only the
distance from the last point of the cave is required.
This value is calculated multiplying the relative value
given in the POI descriptions (the distance of the
relation between the two POI types) by the absolute
value provided in the global parameters (the global
distance between POIs).

4. Candidate removal and best candidate selection:
The last two steps of the process are the same as
in the POIs with no union parameter defined locating
procedure.

E. Gallery generation between two POIs

This process generates an underground gallery between
two POIs already located in the terrain.



First, the method collects the impassable cells of the
Voronoi diagram. Those cells are:
· The set of cells of the Voronoi diagram with a POI

assigned.
· If the gallery which is going to be generated is defined

as uncrossable in the input parameters, the set of cells of
the Voronoi diagram of the already generated galleries.
· If the gallery which is going to be generated is not

defined as uncrossable in the input parameters, only
the set of cells of the Voronoi diagram of the galleries
created with a relation defined as uncrossable.
· All the neighbor cells in the Voronoi diagram of the

cells selected in the previous three sets (that is, all the
walls of the previously selected impassable cells).

Next, the sinuosity of the gallery is calculated. To this
extent, the relative sinuosity given in the description of the
relation between the POI types is multiplied by the global
sinuosity provided in the global parameters.

Finally, the method generates the underground gallery
with a pathfinding algorithm over the graph obtained by the
Delaunay triangulation. We use the A* search algorithm,
which is a method extensively used in computer games
[17]. Additionally, the sinuosity of the path is generated
adding an error to the movement cost of each node of the
A* algorithm. This error is randomly obtained between two
values: −sinuosity/2 and sinuosity/2.

The process ends when the algorithm reaches the final
node or when it has searched all the nodes and it can not
reach the final objective. In the first case, the gallery is used
in the cave, but in the second case the branch is discarded,
dismissing the second POI of the relation and the gallery.

F. Generating several caves in the same terrain plot

When several cave systems are going to be constructed in
the same terrain plot, the execution of the steps is different.

The first step of the process must be performed only once,
regardless of the number of caves which are going to be
constructed in the terrain. On the other hand, the second,
the third and the four steps must be performed one time per
cave.

Table III
MEASURED CONFIGURATIONS

Config. POI Branches Galleries between
types of each POI each pair of POI

A(simple) 4 1 1
A(complex) 4 1-2 1-2
B(simple) 8 1 1

B(complex) 8 1-2 1-2

VI. RESULTS

We measure the time of the cave generation using four dif-
ferent configurations. They have only one start POI type and
one end POI type (that is, with 0 branches), all their POIs

have the same affinity between them and all the galleries are
crossable with a sinuosity and length of (0.5 − 1.5). Table
III shows the differences between the four configurations.
The global cavity size is 100, the scale is 0.5, the global
sinuosity is 20 and the global distance between POI is 20.
They are constructed in a terrain formed by 40x50x40 voxels
(the terrain size only affects the time taken by the algorithm
to construct the Voronoi diagram).

Table IV
AVERAGE GENERATED ELEMENTS

Config. Number Number of gallery Number
of POIs cells of cells

A(simple) 3,53 10,67 100
A(complex) 5,56 20,45 100
B(simple) 4,53 15,16 100

B(complex) 7,41 29 100

We have tested our method on an Intel(R) Core(TM) i7
950 CPU, running at 3.07GHz.

We generate 200 caves for each configuration taking the
average values for each measured aspect. Table IV shows
the average number of POIs, the average number of galleries
between POIs and the average number of seeds obtained per
configuration.

Table V shows the time results of the process. We can
observe our method needs more than 10 seconds to generate
the cave regardless of the configuration. Figure 5 shows
these results visually.

Table V
EXECUTION TIME

Config. Average Standard Absolute
time (ms) deviation (ms) deviation (ms)

A(simple) 10,742.72 209.20 165.87
A(complex) 11,213.37 960.32 491.05
B(simple) 10,803.00 241.58 190.16

B(complex) 11,584.60 1118.79 686.36

Figure 5. Execution time



Additionally, we measure the time needed by our method
to perform different steps. First, we measure the time re-
quired by the Voronoi diagram and Delaunay triangulation
generation step (see table VI). Second, we measure the cave
generation process (see table VII). We can observe those
results graphically in the figures 6 and 7.

Table VI
DIAGRAMS CONSTRUCTION TIME

Config. Average Standard Absolute
time (ms) deviation (ms) deviation (ms)

A(simple) 10,690.72 184.93 146.45
A(complex) 10,791.29 212.42 162.60
B(simple) 10,700.74 208.97 161.85

B(complex) 10,707.71 223.25 173.44

Figure 6. Diagram construction time

Table VII
CAVE GENERATION TIME

Config. Average Standard Absolute
time (ms) deviation (ms) deviation (ms)

A(simple) 52 85.54 69.67
A(complex) 422.09 961.51 470.21
B(simple) 102.26 120.52 106.72

B(complex) 876.89 1118.95 682.45

VII. DISCUSSION

There are several interesting aspects to discuss about the
proposed method.

First, we can observe in the section VI that the main factor
which affects the execution time is the growing capability
of the cave. This aspect is determined by the number of
branches of each POI type, the affinity of each POI type
with the POI types with few branches, and the number of
galleries between the POI types.

Second, table VII shows that the random nature of the
proposed method causes a high variability in the time needed
to perform the cave generation process. Additionally, this

Figure 7. Cave generation time

table shows that if the input data allows more branches per
POI, both time and variability increase significantly. This
fact has three main consequences:
· It is very difficult to predict the time needed by the

generator to create the cave.
· It is very difficult to predict the size of the resulting

cave.
· The method is highly innovative, generating unexpected

elements and structures.
Although the third consequence is a good aspect for

procedural generators [15], the first and the second could
be terrible in some situations. It is possible to palliate those
effects with a carefully design of the input data, paying
special attention to the number of branches of each POI
and their affinity with other POIs.

Third, table V shows that the generator needs near to
11 seconds to obtain the result. Usually, this time is too
high to generate the results in real time. In spite of that,
we can observe that the diagrams generation is the main
time consuming step, needing only less than 1 second for
the generation of the cave itself (table VII). As we see in
the section V-F, the method can be executed performing the
Voronoi diagram and the Delaunay triangulation generation
step only the first time, generating more than one cave only
with the cave generation steps. So, the diagram generation
could be performed in a step previous to the execution
(for example, using a loading screen) and the cave can be
generated in real time.

VIII. CONCLUSION

In this paper we propose a novel method to procedurally
generate cave systems basing the process in a playability
defined by the game designers. Additionally, we measure
the time required by the process to perform the generation,
analyzing the results and discussing their advantages and
disadvantages.



(a) (b)

Figure 8. Slices of terrains with caves generated with our approach.

As future lines of work, we propose the acceleration of the
diagrams generation step, adapting the complete process to
the real time generation paradigm. Additionally, we propose
the increase of the realism of the results, adding elements
such as stalactites and stalagmites.

ACKNOWLEDGMENT

The authors would like to thank Mikel Salazar and Iván
Garcı́a for their support over the research process.

REFERENCES

[1] R. M. Smelik, K. J. De Kraker, T. Tutenel, R. Bidarra, and
S. A. Groenewegen, “A survey of procedural methods for
terrain modelling,” in Proceedings of the CASA Workshop on
3D Advanced Media In Gaming And Simulation (3AMIGAS).
Citeseer, 2009.

[2] M. Boggus and R. Crawfis, “Procedural creation of 3d
solution cave models,” in Proceedings of the 20th IASTED
International Conference on Modelling and Simulation, 2009,
pp. 180–186.

[3] ——, “Explicit generation of 3d models of solution caves for
virtual environments,” in Proceedings of the 2009 Interna-
tional Conference on Computer Graphics and Virtual Reality,
2009, pp. 85–90.

[4] ——, “Prismfields: a framework for interactive modeling of
three dimensional caves,” in Advances in Visual Computing.
Springer, 2010, pp. 213–221.

[5] A. Peytavie, E. Galin, J. Grosjean, and S. Merillou, “Arches:
a framework for modeling complex terrains,” in Computer
Graphics Forum, vol. 28, no. 2. Wiley Online Library, 2009,
pp. 457–467.

[6] L. Johnson, G. N. Yannakakis, and J. Togelius, “Cellular
automata for real-time generation of infinite cave levels,” in
Proceedings of the 2010 Workshop on Procedural Content
Generation in Games. ACM, 2010, p. 10.

[7] J. Cui, Y.-W. Chow, and M. Zhang, “A voxel-based octree
construction approach for procedural cave generation,” Inter-
national Journal of Computer Science and Network Security,
vol. 11, no. 6, pp. 160–168, 2011.

[8] ——, “Procedural generation of 3d cave models with stalac-
tites and stalagmites,” IJCSNS, vol. 11, no. 8, p. 94, 2011.

[9] D. M. Tortelli and M. Walter, “Modeling and rendering the
growth of speleothems in realtime,” in Proc. International
Conference on Computer Graphics Theory and Applications,
2009, pp. 27–35.

[10] G. Voronoı̈, “Nouvelles applications des paramètres continus
à la théorie des formes quadratiques.” Journal für die Reine
und Angewandte Mathematik, vol. 134, pp. 198–287, 1908.

[11] B. Delaunay, “Sur la sphere vide,” Izv. Akad. Nauk SSSR,
Otdelenie Matematicheskii i Estestvennyka Nauk, vol. 7, no.
793-800, pp. 1–2, 1934.

[12] F. Aurenhammer, “Voronoi diagrams—a survey of a funda-
mental geometric data structure,” ACM Computing Surveys
(CSUR), vol. 23, no. 3, pp. 345–405, 1991.

[13] J. Olsen, “Realtime procedural terrain generation,” University
of Southern Denmark, Tech. Rep., 2004.

[14] M. Bern and D. Eppstein, “Mesh generation and optimal
triangulation,” Computing in Euclidean geometry, vol. 1, pp.
23–90, 1992.

[15] A. Santamarı́a-Ibirika, X. Cantero, M. Salazar, J. Devesa,
I. Santos, S. Huerta, and P. G. Bringas, “Procedural approach
to volumetric terrain generation,” The Visual Computer, pp.
1–11, 2013.

[16] A. Santamarı́a-Ibirika, X. Cantero, M. Salazar, J. Devesa,
and P. G. Bringas, “Volumetric virtual worlds with layered
terrain generation,” in 2013 International Conference on
Cyberworlds (CW). IEEE, 2013, pp. 20–27.

[17] A. Nareyek, “Ai in computer games,” ACM Queue, vol. 1,
no. 10, p. 58, 2004.


