
The Visual Computer manuscript No.
(will be inserted by the editor)

Procedural Approach to Volumetric Terrain Generation

Aitor Santamarı́a-Ibirika · Xabier Cantero · Mikel Salazar · Jaime Devesa ·
Igor Santos · Pablo G. Bringas

Received: date / Accepted: date

Abstract The recent outbreak of indie games has popular-
ized volumetric terrains to a new level, although video games
have used them since decades. These terrains contain geo-
logical data, such as materials or cave systems. To improve
the exploration experience and due to the large amount of
data needed to construct volumetric terrains, industry uses
procedural methods to generate them. However, they use
their own methods, which are focused on their specific prob-
lem domains, lacking of customization features. Besides, the
evaluation of the procedural terrain generators remains an
open issue in this field since no standard metrics have been
established yet.

In this paper we propose a new approach to procedu-
ral volumetric terrains. It generates completely customizable
volumetric terrains with layered materials and other features
(e.g., mineral veins, underground caves, material mixtures
and underground material flow). The method allows the de-
signer to specify the characteristics of the terrain using intu-
itive parameters. The method uses a specific representation
for the terrain based on stacked material structures, reducing
memory requirements. To overcome the problem in the eval-
uation of the generators, we propose a new set of metrics for
the generated content.

Aitor Santamarı́a-Ibirika
Xabier Cantero
Mikel Salazar
Jaime Devesa
Igor Santos
Pablo G. Bringas
E-mail: {a.santamaria, xabier.cantero, mikel.salazar, jaime.devesa,
isantos, pablo.garcia.bringas}@deusto.es

University of Deusto
Avda. de las Universidades, 24
48014 Bilbao, Bizkaia, Spain
Tel.: +34 944139064
Fax: +34 944139101

Keywords procedural generation · virtual worlds ·
volumetric terrain · terrain modelling

1 Introduction

Interactive graphic software has evolved in the last two decades
due to several reasons, including the rapid hardware evolu-
tion (arguably the most important factor). These advances
have expanded the possibilities of virtual world simulations.
For instance, the level of detail of virtual environments has
grown to almost-realistic levels. Therefore, a significant num-
ber of real time graphic applications make use of highly de-
tailed virtual worlds, even with volumetric terrains.

Volumetric terrains are usually procedurally generated
without human interaction. This process has two main ad-
vantages against the traditional design. First, it avoids ter-
rain modeling steps, saving time and money. Second, it is
possible to create interesting and unpredictable terrains to
be explored (in some cases, even theoretically infinite).

Traditionally, terrains have been generated using a height
matrix called heightmap. These techniques define the sur-
face data, but they present limitations on the complexity of
some structures (such as bridges or caves).

First approaches to procedural terrains were based on
fractals [9, 4, 20]. These methods generate realistic terrains,
but have low interaction possibilities. Miller [9] used a grid
subdivision technique to generate them, subdividing a grid
with the terrain heights recursively. Fournier et al. [4] and
Voss [20] proposed different methods based on Perlin noise
[15].

Current research in fractal terrain generation focuses on
two main aspects: erosion simulation and higher design con-
trol.

Erosion simulation improves the realism of the results.
Musgrave et al. [10, 11] simulated fluvial and gravitational



2 Aitor Santamarı́a-Ibirika et al.

Fig. 1 A terrain generated with our method.

erosion and Olsen [13] analyzed some speed optimizations.
Meanwhile, Benes and Frosbach [1] proposed a method to
erode volumetric terrains.

However, the lack of control over generated results is
an endemic problem in fractal generation. Kamal et al. [8]
proposed a method to enhance the control of the designer,
but it requires technical parameters. Doran et al. [3] used
an agent-based approach to customize the terrain with ad-
ditional parameters. On the other hand, Gain et al. [6], Zou
et al. [21], Hnaidi et al. [7] and Carpentier and Bidarra [2]
suggested innovative approaches based on direct painting on
the terrain surface.

Albeit fractal methods have been the main trend in ter-
rain generation, evolutionary algorithms can also be used for
this objective. They provide designers with higher control
over the process, adapting the results to different objectives
[18, 17]. There are several evolutionary approaches, each
one focused on specific goals such as playability or realistic
appearance [14, 19, 5].

Some researches focused on the validation of those type
of generators. Ong et al. [14] proposed four aspects that gen-
erators should meet (adaptive, innovative, scalable and intu-
itive). Saunder [16] defined the ideal generator with a set of
desirable features (require low degree of human input, re-
quire high degree of human control, be intuitive, be able to
generate realistic and recognizable terrains, produce terrains
at arbitrary scale, be able to run in real time and be exten-
sible to support new types of terrains). Doran and Parberry
[3] proposed another set of properties for an ideal generator
(novelty, structure, interest, speed and controllability).

However, to the best of our knowledge, there is no pro-
cedural approach in the literature to generate volumetric ter-
rains. Besides, current industrial approaches are completely
focused on their own problem domain and do not allow the
customization of the results. Moreover, there is not a stan-

dard method to validate procedural terrain generators, exist-
ing a lack of metrics to evaluate this type of generators and
their results.

Against this background, we propose a real time method
to procedurally generate volumetric terrains. Our approach
is highly customizable, enabling the designer to specify ter-
rain materials, including their characteristics and their inter-
relations. In addition, we propose a new approach to rep-
resent the volumetric terrain data, based on stacked mate-
rial columns, allowing us to greatly reduce the memory size
required. Besides, there is a classic problem evaluating the
quality of generators. The lack of metrics and procedures to
measure highly important aspects (like the interest of the re-
sults or the obtained realism) disables the evaluation with no
subjectivity factors. To avoid this problem in the validation
of our method we propose a new set of metrics.

Summarizing, the main contributions of the paper are:

– A new customizable online method to generate procedu-
ral volumetric terrains.

– A new system to represent volumetric terrains.
– A new set of metrics and requirements to validate proce-

dural generators.

The remainder of this paper is organized as follows. First,
section 2 presents an overview of the contributions of this
article. Next, section 3 explains the volume representation
system and section 4 outlines the generation process. We
present the results in section 5. Finally, section 6 presents
the conclusion of our research, with an strengths and weak-
nesses analysis and recommendations for future work.

2 General overview

This section provides a general overview of the contribu-
tions of this paper.

2.1 Evaluation Metrics

Some authors have established a set of prerequisites a terrain
generator must satisfy [3, 16, 14]. We synthesize them in a
set of aspects which the procedural generators must meet.
Additionally, we assign a metric to each aspect to allow the
measurement of the requisite.

Innovation Ability of the procedural generator to obtain
unexpected elements.

0. No innovation. The results are completely predictable.
1. The method generates the same elements in all the re-

sults, but with different properties.
2. The results have unexpected elements.



Procedural Approach to Volumetric Terrain Generation 3

Structure Ability of the procedural generator to obtain rec-
ognizable coupled elements.

0. Random. The results are similar to the random noise.
1. The results have independent recognizable elements.
2. The results have recognizable coupled elements.

Interest Ability of the procedural generator to obtain inter-
esting results to interact with.

0. The terrains are no explorable.
1. The terrains are explorable.
2. The terrains motivate the exploration.

Speed Speed of the generator obtaining the result.

0. Offline.
1. Hybrid approach. It is fast enough to be executed in the

previous step to the interaction (such as a loading screen),
but it can not be executed online.

2. Online.

Usability Ability of the procedural generator to hide tech-
nical aspects to the designer.

0. N/A. The method has not input parameters.
1. The parameters are related to the technique.
2. The parameters are related to the result.

Control Ability of the procedural generator to allow the de-
signer to specify the generated contents features.

0. The designer can specify no aspect of the result.
1. The designer can specify some aspects of the result.
2. The designer can specify all the aspects of the result.
3. The designer can specify all the aspects of the result,

correcting them iteratively.

Ampliability Ability of the procedural generator to obtain
different types of results.

0. None. It is impossible to obtain other type of results.
1. The procedural generator needs internal changes to ob-

tain other type of results.
2. It obtains other type of results by modifying the input.

Scalability Ability of the procedural generator to obtain re-
sults at different scales and level of detail.

0. The results are always at the same scale.
1. Scalable. The procedural generator can obtain results at

different scales and level of detail.

Realism Ability to obtain plausible results.

0. Impossible in any reality. For example, random noise.
1. Plausible in other realities. For example, flying isles.
2. Based on our reality, but not a simulation (called data

free approach by Natalie et al. [12].)
3. Simulation of our reality. (called sparse-data and dense-

data approach by Natalie et al. [12].)

2.2 Our Method

The main objective of this paper is to obtain a valid gener-
alist method to get volumetric terrains. To this end, based
on the metrics established before, our method has to meet
the requirements shown in Table 1. We choose the maxi-
mum value of each metric excluding control and realism.
We choose a level 2 of control because a level 3 require an
interactive process, making impossible to execute it online.
Aditionally, we establish the required level of realism at 2
because this is a constant in the video game industry, due to
the high requisites in computation for a realistic simulation.

To satisfy these requisites we propose a method with the
following features:

– Probabilistic generation: Our approach is based on
probabilities, making impossible the prediction of what
element is going to be constructed next.

– Underground layers, veins and caves: Generated ter-
rains are structured in underground layers formed with
material mixtures. This feature allows the terrain to avoid
sharp limits between materials, connecting them with
realistic progressive changes. Additionally, our method
generates caves and mineral veins among layers, moti-
vating the exploration.

– Real time generation: Our approach is fast enough to
generate the terrain online.

– Designer control: Previous characteristics are control-
lable by the designer. Input parameters allow the gener-
ation of multiple terrain types, such as realistic or fan-
tastic terrains, at different scales. Additionally, these pa-
rameters are directly related to the terrain, avoiding tech-
nical concepts and being friendly for non-expert users.

– Reduced memory size: We use an optimized represen-
tation for the terrain, designed to accelerate the genera-
tion process and to reduce its size in memory.

3 Volume representation

Traditionally, volumetric terrains are represented by voxels.
A voxel is the minimal unit of volume, organized in a three-
dimensional regular grid, storing different data like color,
hardness or density.

The main problem of this representation is the mem-
ory usage, because a Nt×Mt×Lt terrain stores the values for
Nt×Mt×Lt voxels. This is not optimal for interactive envi-
ronments, where the speed is a critical aspect.

To avoid this issue, our technique is based in Benes and
Frosbach representation [1], dividing the volumetric data in
three levels: chunks, columns and limits.

In our approach, the chunk is the highest unit of volume.
We define it as a three-dimensional portion of terrain with a
size of N×M×L voxels. This size is the same for all chunks



4 Aitor Santamarı́a-Ibirika et al.

Table 1 Requirements for a procedural generator.

Metric Ideal value Our requirement Notes

Innovation 1, 2 2 The ideal value depends on the scope and the objective of the problem, and the
desired level of heterogeneity between the results.

Structure 2 2 The results must always present recognizable and structured elements.
Interest 0, 1, 2 2 The ideal value depends on the scope and the objective of the problem and the area

in which the results are going to be used.
Speed 0, 1, 2 2 The ideal value depends on the purpose of the problem. The results must be ready

when they are needed.
Usability 2 2 The generator must always hide the technical aspects.
Control 2, 3 2 The ideal value should be 3 only if the method is offline.

Ampliability 2 2 The generator must be easily adapted to obtain different types of results.
Scalability 1 1 The ideal generator must be able to generate content at different scales.

Realism ≥1 2 The ideal value depends on the objective of the problem and the area in which the
results are going to be used.

Fig. 2 Volume management example. This column has three limits: at
the top, at the bottom and at the frontier between two different layers.

of the terrain, but it is variable and can be adapted for differ-
ent needs. Figure 2 showcases a chunk in green.

Next, we subdivide the chunks into N×L columns in a
regular grid. Each of these columns represents the data of M
voxels. Figure 2 shows a column in blue.

Finally, the columns are formed by stacked material lim-
its. These limits determine the properties of the volume at a
specific height. Each column has at least 2 limits (the col-
umn top and bottom) and a maximum of M limits. Figure 2
shows an example of a column and its limits in red.

Using this representation of the volumetric data we can
obtain any voxel dynamically. If the voxel is at the same
chunk, column and height of one of the limits, the proce-
dure generates it with the data stored in this limit. Other-
wise, the method generates it interpolating between the lim-
its surrounding the voxel. For example, if we want a voxel
at height 2 from the blue column in figure 2, the procedure
interpolates it between the two limits at the bottom.

This representation can store different types of data. Our
terrains data is formed by the material composition (a list
of materials with an associated concentration which deter-
mines the color and texture of the volume) and the material
flow (internal material flow of the terrain represented as a
three-dimensional vector).

4 Terrain generation

The terrain generation process can be divided into three main
steps. First, the algorithm reads the input data and indexes
the materials by their characteristics. Next, layers and veins
are created. Layers can be indefinitely extended to generate
the terrain in real time. Finally, the procedure converts the
generated terrain into our volume representation method.

4.1 Input data

The designer must select the terrain characteristics, which
can be done at design time in order to allow the generation
process to be in real time. This data is divided in two main
sets of parameters: material data and general parameters.

4.1.1 Material data

It describes terrain materials. This data is supplied in a con-
figuration file with three sections.

First, basic material data is provided, which contains sev-
eral data-fields for each material:

– Name: Material name.
– Id: Numerical unique identifier.
– Color: RGB color value.
– Special parameters: Parameters which establish some

special characteristics of the material:
– Void: Void materials determine empty voxels in the

terrain.
– Base: Base materials for the terrain, only located at

the bottom layer.
– Alone: It identifies non-mixing materials.
– Vein: It identifies a material as a resource, structuring

it into veins instead of layers.
– Cave: This parameter identifies the materials to con-

struct the caves. Different cave materials define dif-
ferent type of caves.



Procedural Approach to Volumetric Terrain Generation 5

– Textures: Path to the material texture file.

Second, material data provides layer related character-
istics, containing several data-fields for each material. All
values are expressed in a 0-1 scale:

– Area: Only used with vein or cave materials. It specifies
the vein or the cave area.

– Depth: The minimum, maximum and optimum depth of
the elements formed with this material.

– Thickness: The minimum, maximum and optimum thick-
ness of the layers, veins or caves formed with this mate-
rial.

– Roughness: The minimum, maximum and optimum rough-
ness of the elements formed with this material. For cave
or vein materials it represents the constants for the frac-
tal algorithm explained in section 4.2.2, affecting the
shape roughness. Otherwise, it represents the superficial
roughness.

– Similarity: It specifies the similarity of the shape be-
tween two consecutive layers.

– Blend value: It specifies the suitability of the material
to be mixed with others.

Third, this file contains the relationships between mate-
rials. These data is provided as two data-fields per pair of
materials. The values are expressed in a 0-1 scale if the two
materials are compatible, and with a -1 value if they are not.
So, if one of these values is 0.0, it means that those materials
are not prone to be mixed, but they still can be blended by
other reasons. These data-fields represent the affinity in the
same layer (the affinity rate of the two materials in the same
layer) and the affinity in the next layer (the affinity rate of
the two materials in consecutive layers).

4.1.2 General Parameters

These global parameters, in some cases, transform relative
values of the materials into absolute.

– Terrain depth: The distance between the surface and
the bottom layer.

– Layer thickness: It converts thickness of each layer into
an absolute value.

– Cave and vein area: It affects the size of the area of
each vein and cave. It establishes the maximum length
of the side of the square which bounds to the vein or
cave.

– Cave and vein density: Densities of veins and caves in
the terrain.

– Roughness: It converts the roughness parameter of each
material into an absolute value.

– Layer similarity: It affects to the similarity parameter
of each material.

– Scale: Scale of the terrain.

– Cave and vein thickness: It converts the thickness of
each cave and vein into an absolute value.

4.2 Terrain generation

The first step of the generation procedure is the creation of
layers, veins and caves. This step starts with the construction
of the bottom layer, formed by materials with the base pa-
rameter. Next, it continues stacking more layers, veins and
caves. The chance of generating a vein, a layer or a cave is
determined by the vein density and the cave density param-
eters in the input data.

This process ends when the terrain depth reaches the
value established in the input data.

4.2.1 Layer generation

First, the algorithm chooses the materials for the new layer.
This process is performed by accessing the materials by their
special parameters.

If this is the bottom layer, it will be composed of a mix of
materials with the base parameter. Otherwise, the materials
are chosen from a list based on the affinity of the materials
of the last layer. To this extent, we get all possible materials,
removing from the list any incompatibilities with the com-
position of the last layer. Then, we get the global affinity of
each possible material:

Ai =
N

∑
j=1

(ai j · c j) (1)

where Ai is the global affinity of i possible material, N is
the number of materials in the last generated layer, ai j is the
affinity between the i possible material and the j material of
the last layer, and c j is the concentration of j material in the
last layer.

Next, we get the probability of each material to be in the
new layer:

Pi = Ai/(
N

∑
j=1

A j) (2)

where Pi is the probability of the i possible material to ap-
pear, Ai is the global affinity of i possible material calculated
in the last equation, N is the number of possible materials,
and A j is the global affinity of j possible material.

Then, the process obtains the main material of the new
layer using a random value and the previously calculated
probabilities. At this point, the layer has a probability of
containing additional materials (being 0.5 for the second
material, halving it consecutively for next materials). The



6 Aitor Santamarı́a-Ibirika et al.

algorithm includes the already selected materials to the ma-
terials of the last layer to calculate the new affinities.

Afterwards, we calculate the concentration of each ma-
terial, which is the relative quantity of material located in the
layer. The addition of all concentrations in each layer must
be 1. If the layer is composed by two or more materials, the
main material has a concentration randomly chosen within
a 0.5 to 0.9 range. Remaining materials have a random con-
centration.

Secondly, we obtain the properties of the layer, calcu-
lated from the materials and their concentrations. In this step
the relative thickness, similarity, blend value, and roughness
are calculated:

V =
N

∑
i=1

(vi · ci) (3)

where V is the property value, N is the number of materials
in the layer, vi is the property value of each material, and ci
is the concentration of each material.

Third, the algorithm generates the layer physically. This
process uses Perlin noise [15] with the scale parameter pro-
vided by the designer as its frequency. Noise value is mul-
tiplied by the roughness of the layer and modified with the
height of the last layer:

h = h−1 · s+n · (1− s) (4)

where h is the modified height, h−1 is the height of the last
layer at the same point, s is the previously calculated simi-
larity, and n is the Perlin noise value. This equation modifies
the new layer, depending on the similarity, to look like the
last layer.

This height value is relative to the height of the layer. To
obtain the final height of the layer we add its thickness and
the average height of the previous layer.

Finally, the method generates the underground material
flow. The process generates the flow tangent to the surface
of the layer rotating on Y axis as established by an horizontal
2D Perlin noise.

4.2.2 Vein generation

First, the algorithm establishes a starting bounding square
and a location for the vein. The length of this square side
is randomly generated between two values given as a global
parameter in the input data: VeinArea/2 and VeinArea. The
location is completely random, only limited by the size of
the terrain plot.

Second, the method obtains the materials of the vein.
This process is similar to the material selector of the layers
having two main differences: the method only gets the ma-
terials of the last layer located under the region of the vein,

and it selects the main material among materials with vein
parameter.

Third, the algorithm calculates the vein properties (rel-
ative area, roughness and relative thickness) following the
same process as the generation of the layer characteristics.
The vein final bounding square is calculated multiplying the
relative area by the base bounding square previously calcu-
lated.

Fourth, the method generates the shape of the vein by
locating and scaling the relative shape into the final bound-
ing square. The algorithm generates this relative shape us-
ing a fractal generator based on the midpoint displacement
method, which has been extensively used for terrain genera-
tion [11].

Our fractal algorithm generates the relative shape lo-
cating a square in a two-dimensional space and displacing
its vertices (P1, P2, P3 and P4) along the square diagonals
(Figure 3(a)). Then, it takes a random point (P′) from a seg-
ment, displacing it along the line formed by the new point
(P′) and the square center (Figure 3(b)). This process is per-
formed recursively in all the segments, including the ones
created by the new points.

The point displacement value is randomly obtained, with
a maximum calculated as:

di = (di−1/SmoothConstant)/2 (5)

where i is the recursive depth in the algorithm, di is the maxi-
mum displacement at i recursive depth, di−1 is the maximum
displacement at i−1 recursive depth (d0 is a constant), and
SmoothConstant is a constant value that indicates the rough-
ness loss in each iteration. The values for both constants are
taken from the roughness parameter of the materials. The re-
cursive depth of fractal algorithm is limited to 5 due to time
performance. The minimum point displacement is −di.

(a) (b)

Fig. 3 Fractal algorithm for vein generation.

Fifth, we generate the heights of the vein, based on the
minimum distance from each point to the fractal border. Both
height and distance to the border are normalized, obtaining



Procedural Approach to Volumetric Terrain Generation 7

values in the range (0, 1). The method calculates the heights
with a equation based on the circumference:

hxy = |
√

1− (dxy−1)2| (6)

where, hxy is the height at [x,y] point and dxy is the distance
from the [x,y] point to the border. This equation is a sim-
plification of one unit length radius circumference with the
center at [1, 0] (maximum height in the center).

Then, our method multiplies these heights by the rela-
tive thickness and the global thickness of the vein. Then, it
adds the height of the last layer to the result, getting the final
height.

Finally, we generate the flow using the same process as
the layer generation.

4.2.3 Cave generation

The cave generation process follows the same steps as vein
generation process with some particularities.

First, as in the vein generation process, the algorithm
establishes the base bounding square and the location. This
process employs CaveArea instead of VeinArea to determine
the size of the base bounding square.

Next, the method obtains the material of the cave and its
properties. This process is performed in the same way as the
vein material selection with two exceptions. The algorithm
selects only one material, chosen within the set of materials
with the cave special parameter defined. Then, the properties
of the material are extracted, modifying the bounding square
of the cave as in the vein generation process.

Finally, the method generates the final cave shape and
heights with the same algorithms as the vein generation pro-
cess.

4.2.4 Online approach

The previous sections show how the proposed method gen-
erates a terrain from scratch. The online generation has the
peculiarity that it must be able to extend an already existing
terrain. With our method, this process is very similar to the
generation from scratch, except for the fact that the compo-
sition and properties of the layers are beforehand calculated.

First, the algorithm determines the number of veins and
caves in the new terrain plot. This value is obtained ran-
domly between 0.5 and 1.5 times the number of veins and
caves in the original plot. While this process is perfomed
against the number of veins and caves of the first plot of the
terrain (which is generated using the density of veins and
caves given in the input data), the density of those elements
is preserved along the whole terrain.

Once the number of veins and caves is obtained, the
method determines their position between the layers. This

is a completely random process. The result of this step is a
stack of layers, veins and caves.

Next, the method generates the elements of the stack be-
ginning from the bottom. It extends the layers in the hori-
zontal plane (along the X and Z coordinates) obtaining new
heights using the Perlin noise algorithm. This step is the
same as the layer generation from scratch process (see sec-
tion 4.2.1), but the composition and properties of the layer
are already calculated. The generation of veins and caves is
performed following the same steps as before (see section
4.2.2).

4.3 Converting the terrain to a volume

This process converts the terrain composed by stacked lay-
ers, veins and caves to our representation, defining the mixed
areas between layers. The algorithm multiplies the thickness
by the blend value of each layer. The result is the height
where the transition with the last layer ends. This process
is responsible for removing sharp frontiers between layers,
giving them a realistic appearance mixing their materials
and flow.

5 Results

5.1 Speed & Size

We measure the time of the terrain generation using eight
configurations. Table 2 shows the materials of these con-
figurations (all of which have 1 void and 1 base additional
materials). The value in brackets near the vein and cave ma-
terials is the density of veins and caves given in the input
data for that configuration. All materials have the maximum
affinity between them.

Table 2 Measured configurations.

0 1 2 3

A
3 regular

0 cave
0 vein

3 regular
0 cave

1 vein(0.5)

3 regular
1 cave(0.5)

0 vein

3 regular
1 cave(0.25)
1 vein(0.25)

B
6 regular

0 cave
0 vein

6 regular
0 cave

2 vein(0.5)

6 regular
1 cave(0.5)

0 vein

6 regular
1 cave(0.25)
2 vein(0.25)

The method has been tested on an Intel(R) Core(TM) i7
950 CPU, running at 3.07GHz.

We generate 100 terrains of 5x5x5 chunks of 10x10x10
voxels with each configuration. Table 3 shows the average
time and the standard deviation of the offline generation and
the extension of those terrains with the online algorithm.
Moreover, the table shows the average number of layers and



8 Aitor Santamarı́a-Ibirika et al.

elements (caves or veins) generated in the terrains. Addi-
tionally, we use a terrain generated by simple Perlin noise
(PN in the table) as a baseline. This Perlin Noise process
generates the internal flow and the material of each voxel.

Table 3 Time results.

Offline
average

time
(ms)

Offline
standard
deviation

Online
average

time
(ms)

Online
standar

deviation

Avg.
layers

Avg.
elements

A0 319.14 41.94 310.59 32.20 4.65 0.00
A1 347.01 61.66 329.70 55.76 4.72 1.74
A2 334.85 53.49 312.20 44.75 4.81 1.55
A3 348.46 75.01 342.84 60.35 4.68 1.73
B0 324.36 46.85 309.24 32.29 4.75 0.00
B1 354.25 70.23 315.28 47.86 4.88 1.71
B2 354.30 62.27 316.40 46.28 4.79 1.90
B3 346.67 55.55 314.86 47.18 4.73 1.78
PN 61.25 14.46 61.25 14.46

Figures 4 and 5 provides a visual comparison of the dif-
ferent tested configurations for online and offline set-ups. In
both setups, generations of caves increases the computing
overhead of our method whereas the most time-consuming
configurable feature of our method is the generation veins.
Even though, the method was able to generate terrains with
both features online. It is also noticeable that the required
time for generating terrains with a complex material config-
uration is not significantly higher than the time required with
simple material configuration.

Fig. 4 Comparison of the different configurations of our method for
the offline setup.

The average number of limits of the generated terrains
is 84,376.42, while in a traditional volumetric terrain based
on voxels and with the same dimensions as our generated
terrains the number of voxels are 125,000.

Fig. 5 A terrain generated with our method.

5.2 Realism

The proposed method is based on common knowledge, gen-
erating results similar to sedimentary terrains. Nonetheless,
it is not based on real geological data and it does not simu-
late the real world. In this section we compare some results
of our method against real terrains 1.

Figure 6 shows slices of real terrain representations (sub-
figures 6(a), 6(b) and 6(c)) and results of our method (subfig-
ures 6(d), 6(e), 6(f) and 6(g)). It is obvious that our method
does not generate simulations of real terrains, but it is possi-
ble to observe several similarities, such as stacked layers (all
the subfigures) or propagated folds over the layers (subfig-
ures 6(b) and 6(f)). In spite of this similarity, there are some
real constructions that our method can not manage, such as
the shown in subfigure 6(c). Figures 1 and 7 show more ter-
rains generated with our method.

6 Conclusions

In this paper, we propose a method to generate volumetric
terrains with mixed materials and natural and realistic ap-
pearance, giving the designer high control over the result. To
store this terrain, we use an specific volume representation
method that reduces the memory requirements. In addition,
we propose a set of metrics and requisites to evaluate these
type of generators.

Analyzing the results, our method seems to accomplish
all the requisites established in Table 1 for several reasons:

– Innovation: The method uses a probabilistic method, so
the elements are completely unexpected.

1 Reproduced with the permission of the British Geological Survey
c©NERC. All rights Reserved



Procedural Approach to Volumetric Terrain Generation 9

(a) (b) (c)

(d) (e) (f) (g)

Fig. 6 Comparison against real world terrains.

– Structure: Generated layers, veins and caves are con-
structed in a coupled stack. Moreover, the probabilistic
method uses material affinities to combine the structures.
Additionally, the new elements have a similar shape to
the last layer, depending on the similarity value of the
materials forming it.

– Interest: The results are theoretically infinite, so they
are prone to be explored. Moreover, the distributed re-
sources over the terrain motivate this exploration.

– Speed: The method can run in real time.
– Usability: All the input is related to the terrain, avoiding

technical concepts.
– Control: All aspects of the results can be specified by the

designer, and the method is not interactive.
– Ampliability: Modifying the input data is possible to

generate any type of layered terrain.
– Scalability: The scale of the result is determined with

only one parameter.
– Realism: The generated terrains are not simulations of

real world, but they are based on it.

To prove this accomplishment, more qualitative valida-
tions are needed, such as a questionnaire among users to
measure the interest and the realism, or among designers to
measure the usability and the control.

Finally, we conclude with an overview of the method
particularities.

On one hand, the method presents some weaknesses.
First, we observe that veins penalizes the execution time.
However, the method is still able to run in real time. Second,
our method only generates isolated caves, so terrains are not

able to contain complex systems of caves, which is a usual
feature of volumetric virtual worlds. Therefore, this aspect
should be enhance in the future. Finally, terrains top surface
is a simple Perlin noise. This problem could be tackled from
any of the published methods for erosion simulation, being
Benes and Frosbach [1] approach specially well suited as it
applies this process to volumetric data.

As future lines of work, we propose an increase of the
terrain characteristics, such as complex cave systems or a
more detailed surface. Additionally, we are working on more
validations for the proposed method implementing it in a
real video-game.

On the other hand, our method has several strengths.
First, our method enables the designer to construct any type
of terrain, being useful to several genre and settings of games.
Second, the method combines the materials into layers, mix-
ing them and interpolating the voxels, giving a natural ap-
pearance to the result. Last but not least, the memory re-
quirements are reduced. These characteristics make easier
the transmission of the terrain data in shared virtual worlds.

Acknowledgements We would like to thank Ivan Garcı́a-Ferreira for
his support over the research process.

References

1. Benes, B., Forsbach, R.: Layered data representation
for visual simulation of terrain erosion. In: Com-
puter Graphics, Spring Conference on, 2001., pp. 80–
86. IEEE (2001)



10 Aitor Santamarı́a-Ibirika et al.

(a) (b) (c) (d)

Fig. 7 Results obtained with our method.

2. de Carpentier, G.J.P., Bidarra, R.: Interactive gpu-based
procedural heightfield brushes. In: Proceedings of the
4th International Conference on Foundations of Digital
Games, FDG ’09, pp. 55–62. ACM (2009)

3. Doran, J., Parberry, I.: Controlled procedural terrain
generation using software agents. Computational In-
telligence and AI in Games, IEEE Transactions on 2(2),
111–119 (2010)

4. Fournier, A., Fussell, D., Carpenter, L.: Computer ren-
dering of stochastic models. Communications of the
ACM 25(6), 371–384 (1982)

5. Frade, M., Vega, F., Cotta, C.: Evolution of artificial ter-
rains for video games based on accessibility. In: Ap-
plications of Evolutionary Computation, Lecture Notes
in Computer Science, vol. 6024, pp. 90–99. Springer
Berlin Heidelberg (2010)

6. Gain, J., Marais, P., Straßer, W.: Terrain sketching. In:
Proceedings of the 2009 symposium on Interactive 3D
graphics and games, I3D ’09, pp. 31–38. ACM (2009)

7. Hnaidi, H., Guérin, E., Akkouche, S., Peytavie, A.,
Galin, E.: Feature based terrain generation using diffu-
sion equation. In: Computer Graphics Forum, vol. 29,
pp. 2179–2186. Wiley Online Library (2010)

8. Kamal, K.R., Uddin, Y.S.: Parametrically controlled ter-
rain generation. In: Proceedings of the 5th international
conference on Computer graphics and interactive tech-
niques in Australia and Southeast Asia, GRAPHITE
’07, pp. 17–23. ACM (2007)

9. Miller, G.S.: The definition and rendering of terrain
maps. In: Proceedings of the 13th annual conference
on Computer graphics and interactive techniques, SIG-
GRAPH ’86, vol. 20, pp. 39–48. ACM (1986)

10. Musgrave, F.K.: Methods for realistic landscape imag-
ing. Ph.D. thesis, Yale University (1993)

11. Musgrave, F.K., Kolb, C.E., Mace, R.S.: The synthesis
and rendering of eroded fractal terrains. In: Proceed-
ings of the 16th annual conference on Computer graph-
ics and interactive techniques, SIGGRAPH ’89, vol. 23,

pp. 41–50. ACM (1989)
12. Natali, M., Lidal, E.M., Parulek, J., Viola, I., Patel, D.:

Modeling terrains and subsurface geology. In: Euro-
graphics 2013, pp. 155–173. The Eurographics Associ-
ation (2013)

13. Olsen, J.: Realtime procedural terrain generation. Tech.
rep., University of Southern Denmark (2004)

14. Ong, T.J., Saunders, R., Keyser, J., Leggett, J.J.: Terrain
generation using genetic algorithms. In: Proceedings of
the 2005 conference on Genetic and evolutionary com-
putation, pp. 1463–1470. ACM (2005)

15. Perlin, K.: An image synthesizer. SIGGRAPH Comput.
Graph. 19(3), 287–296 (1985)

16. Saunders, R.L.: Realistic terrain synthesis using genetic
algorithms. Ph.D. thesis, Texas A&M University (2006)

17. Shaker, N., Yannakakis, G.N., Togelius, J.: Towards au-
tomatic personalized content generation for platform
games. In: Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertain-
ment, pp. 63–68. AAAI Press (2010)

18. Togelius, J., De Nardi, R., Lucas, S.: Towards auto-
matic personalised content creation for racing games.
In: Computational Intelligence and Games, 2007. CIG
2007. IEEE Symposium on, pp. 252–259. IEEE (2007)

19. Togelius, J., Preuss, M., Yannakakis, G.N.: Towards
multiobjective procedural map generation. In: Proceed-
ings of the 2010 Workshop on Procedural Content Gen-
eration in Games, PCGames ’10, pp. 3–8. ACM (2010)

20. Voss, R.F.: Random fractal forgeries. In: Fundamen-
tal algorithms for computer graphics, pp. 805–835.
Springer (1985)

21. Zhou, H., Sun, J., Turk, G., Rehg, J.: Terrain synthesis
from digital elevation models. Visualization and Com-
puter Graphics, IEEE Transactions on 13(4), 834–848
(2007)


