
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/cose
On the adoption of anomaly detection for
packed executable filtering
Xabier Ugarte-Pedrero*, Igor Santos, Iván Garcı́a-Ferreira, Sergio Huerta,
Borja Sanz, Pablo G. Bringas

S3Lab, DeustoTech e Computing, Deusto Institute of Technology, University of Deusto, Avenida de las Universidades

24, 48007, Bilbao, Spain
a r t i c l e i n f o

Article history:

Received 23 January 2014

Received in revised form

12 March 2014

Accepted 28 March 2014

Keywords:

Malware

Packer

Anomaly detection

Machine-learning

Computer security
* Corresponding author. Tel.: þ34 944139000.
E-mail addresses: xabier.ugarte@deusto.

ferreira@deusto.es (I. Garcı́a-Ferreira), shuert
G. Bringas).
http://dx.doi.org/10.1016/j.cose.2014.03.012
0167-4048/ª 2014 Elsevier Ltd. All rights rese
a b s t r a c t

Malware packing is a common technique employed to hide malicious code and to avoid

static analysis. In order to fully inspect the contents of the executable, unpacking tech-

niques must be applied. Unfortunately, generic unpacking is computationally expensive.

For this reason, it is important to filter binaries in order to correctly handle them. In pre-

vious work, we proposed the adoption of anomaly detection for the classification of packed

and not packed binaries using features based on the Portable Executable structure. In this

paper, we extend this work and thoroughly evaluate the method with a different dataset

and two different feature sets, rendering new conclusions. While anomaly detection is

reaffirmed as a sound method for the discrimination of packed and not packed binaries,

Portable Executable structure based features present limitations to distinguish custom

packed files from not packed files.

ª 2014 Elsevier Ltd. All rights reserved.
Introduction

Malware is the termused to designate software thatwas coded

with malicious intentions, such as damaging computers or

networks or even obtaining economic benefit in an illegitimate

way. Security products such as Anti-Virus solutions and

operating systems have evolved in order to detect and prevent

the infection and execution of this kind of software. Conse-

quently, malware writers have developed new techniques to

evade detection. A very common technique is software pack-

ing,whichconsists of compressingor encrypting themalicious

code, impeding the disassembly of the protected code. This

content is then decrypted at runtime, prior to its execution.
es, xabiugarte@gmail.com
a@deusto.es (S. Huerta),

rved.
Some reports claim that up to the 80%of themalware analysed

ispacked (McAfee, 2009). Packedmalwarecanbeanalysedwith

traditional automated dynamic execution techniques that

explore the real functionality of thebinary.Nevertheless, these

techniques usually do not cover every possible execution path.

In fact, manymalware samples present complex functionality

that cannot be easily triggered in an automated execution. In

these cases, the code must be statically analysed in order to

discover all its functionality, making necessary to unpack the

sample.When the packer used to protect the sample is known,

specific unpacking routines can be applied to extract the orig-

inal code. On the contrary, for unknownpackers it is necessary

to generically unpack the code (according to Morgenstern and

Pilz, 2010, 35% of malware is packed by a custom packer). A
(X. Ugarte-Pedrero), isantos@deusto.es (I. Santos), ivan.garcia.
borja.sanz@deusto.es (B. Sanz), pablo.garcia.bringas@deusto.es (P.

mailto:xabier.ugarte@deusto.es
mailto:xabiugarte@gmail.com
mailto:isantos@deusto.es
mailto:ivan.garcia.ferreira@deusto.es
mailto:ivan.garcia.ferreira@deusto.es
mailto:shuerta@deusto.es
mailto:borja.sanz@deusto.es
mailto:pablo.garcia.bringas@deusto.es
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2014.03.012&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4 127
correct classification of samples can help the analyst to

correctly handle binaries.

Previous approaches have applied supervised machine-

learning techniques for the classification of packed and not

packed binaries using different heuristics (Perdisci et al.,

2008b). Nevertheless, supervised approaches learn from both

classes: packed and not packed files. Alternatively, anomaly

detection methods can be applied in cases in which it is not

reliable to model one of the classes. In this context, we

consider that it is more realistic to collect a representative

dataset of not packed samples, considering that packed bi-

naries can present a higher variability. On the one hand, new

packers are developed continuously. Malware creators can

also employ modified versions of existing packers, or even

custommade protection engines. On the other hand, common

compilers normally follow standard conventions to form the

resulting binaries. Following this intuition, we propose the

application of a distance-based anomaly detection approach

to classify packed and not packed binaries. More concretely,

we evaluate two different feature sets, based on the Portable

Executable structure and operational code frequency, and we

apply a data reduction approach and evaluate different dis-

tance measures and distance selection rules.

In order to conduct this study, we define the following

research questions:

� Which is the feature set that best discriminates packed

from not packed files?

� What is the impact of the data reduction approach over the

results obtained?

� What is the impact on the results of the different distance

measures evaluated?

� What is the impact on the results of the different distance

selection rules?

� Does our anomaly detection approach present sound re-

sults for the classification of packed and not packed files?

Finally, we discuss how these findings can be useful for the

deployment of a binary filtering system in different contexts.

In previous work (Ugarte-Pedrero et al., 2011, 2012) we pro-

posed a similarmethod for the classificationof packedbinaries.

Nevertheless, this paper extends this work in severalmanners.

� We measure the appropriateness of different groups of

features based on the Portable Executable structure for the

classification of packed and not packed binaries. To this

end, we test the performance for several common super-

vised machine-learning algorithms.

� We present a new threshold selection approach and a new

normalization process for the anomaly detection method

proposed in previous work, in order to avoid considering

any data regarding packed samples for the classification.

� We extend the experiments by considering two different

approaches for the data reduction approach (discarding or

including outliers).

� We evaluate our approach over two different feature sets.

In previous work, we tested a Portable Executable structure

based feature set. In these experiments, we have consid-

ered a new feature set based on operational code

frequency.
� We evaluate the method over a new dataset that (i) has

been sanitized and (ii) includes custom packed binaries.

The remainder of this paper is structured as follows. Sec-

tion Dataset selection describes the process followed to select

the dataset. Section Feature selection details the feature sets

employed for classification. Section Distance-based anomaly

detection describes the anomaly detection method pro-

posed. Section Evaluation presents the results obtained for the

different experiments conducted. Section Conclusions and

discussion describes and discusses the conclusions obtained

from the experiments, and outlines avenues for future work.

Finally, Section Related work compares this work with most

related publications.
Dataset selection

In order to evaluate the adoption of anomaly detection for the

classification of packed binaries, we configured a set of 4000

binaries.

The possible biases and limitations of the dataset were

thoroughly studied and discussed. Nevertheless, the intrinsic

nature of packers, the efforts of malware creators to evade

detection, and the limitations of already existing tools make

difficult to discriminate packed and not packed files. Actually,

Royal et al. (2006) formulated the task of determining the ex-

istence of an unpack-execute process as an undecidable

problem.

The possible risks to the validity of the experiment were

reduced to the extent possible by defining a methodology for

binary selection and labelling.

In this way, the dataset must fulfil several requirements.

First, it must contain both goodware and malware for both

packed and not packed classes, in order to ensure that the

model discriminates packed files from not packed ones

avoiding possible biases. In addition, the variability must be

ensured to guarantee the inclusion of samples from different

origins (e.g., system files, common tools .), generated by

different compilers. Secondly, different types of packers must

be considered. On the one hand, off-the-shelf packers use very

different techniques to protect samples. While some of them

are simple compressors, others employ encryption and anti-

analysis techniques or even instruction-set virtualization.

On the other hand, current malware also employs custom

packers (i.e., custom made protection), using a legitimate file

as a carrier, making detection more difficult.

In order to ensure that all kinds of packers are represented

in the dataset, different kinds of commercial packers and

custom packers must be included. Finally, all the samples

included in the dataset should be correctly labelled. This is

usually the most difficult task when creating a dataset, and

sometimes it is necessary to assume the existence of noise in

it. In order tominimise possible errors in the labelling process,

it is important to consider the actual limitations of the tools

employed for the analysis.

Several tools, such as PEiD, identify known packer signa-

tures by searching for common fingerprints in the headers

and the unpacking stub of the packer. Nevertheless, malware

writers sometimes modify their samples to evade signature-

http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4128
based detection. These tools also provide heuristic detection

capabilities, looking for certain suspicious properties. Simi-

larly, these heuristics can also be evaded applying different

techniques. Some generic unpackers try to detect an unpack-

execute process in order to determine the correct moment to

dump the memory process which contains already unpacked

code (e.g., identification of the execution of previously written

memory addresses at different granularity levels Kang et al.,

2007; Stewart, 2006). This characteristic can be considered a

dynamic detection mechanism. Nevertheless, many generic

unpackers can be easily evaded employing a wide variety of

anti-debugging, anti-vm, anti-emulation or anti-dumping

mechanisms. Moreover, the unpacked sample resulting from

the unpacking step cannot be used in our experiments,

considering that these tools sometimes reconstruct or modify

the header of the file.

Considering these aspects, we first obtained binary files

from different sources in order to conform the dataset.

� Malware samples.We first obtained a set of 13,173malware

samples from VxHeavens. 6216 of these samples were re-

portedbyPEiDaspackedwithwell-knownpackers,while the

other6957sampleswerenotdetectedbyPEiD. Inaddition,we

obtained 1548 samples from the Zeus malware family pro-

vided by the Spanish security company S21Sec. These sam-

ples were divided into 8 different groups according to their

versions, and were gathered between 2009 and 2011.

� Goodware samples. Secondly, we obtained unique legiti-

mate executable files from a Microsoft Windows XP

installationwith several tools installed such as text editors,

internet browsers or ofimatic tools. In addition, in order to

select these samples, we analysed themwith PEiD to finally

select a set of 1645 samples not reported by PEiD as packed.

In order to ensure that all the samples were unique, their

MD5 hash was computed and compared.

Secondly, we selected a set of packers to manually protect

a group of samples. More concretely, we selected 10 common

packers representing different kinds of packing techniques:

Armadillo, Asprotect, FSG,MEW, Packman, RLPack, UPX, Themida,

TELock, SLV.

Finally, we selected the samples for each of the groups that

conform the dataset.

� Manually packedmalware samples.We randomly selected

a set of 500malware samples that were reported by PEiD as

not packed and manually packed them with 10 different

packers.

� Custom packed malware samples. In order to include in

the dataset custom packed malware samples, we consid-

ered the Zeus family. According to Wyke (2011), Zeus uses

custom packers for the protection of the binaries as a first

layer of protection. Additionally, these binaries are some-

times protected by a second layer of protection with a

known packer. Given this background, we first selected

1000 Zeus samples for which no known packer was

detected by PEiD. Given the low probability of these mod-

ern samples being not packed, we considered them as

packed by custom packers or modified versions of known

packers.
� Manually packed goodware samples. Additionally, we

manually packed500 not packedgoodware sampleswith the

sameoff-the-shelf packersused toprotectmalware samples.

� Not packed malware samples. First, we randomly selected

1000 unique malware samples that were reported by PEiD

as not packed. In order to reduce the risk of including

packed samples (not detected by PEiD) in the not packed

set, we performed an additional step in order to discard

possibly packed files. First, we filtered suspicious files by

applying heuristic rules: file entropy >7 (following the

confidence intervals proposed by Lyda and Hamrock, 2007),

number of import address table entries < 5, number of

imported dlls <¼ 2, and ratio of standard sections <¼ 0.5.

Secondly, we manually analysed the filtered samples with

PEiD and StudPE making use of the heuristic analysis ca-

pabilities of PEiD, and the overview of the file structure

provided by StudPE, in order to label them as packed or not,

discarding the most suspicious samples.

In this way, 183 of the 1000 samples were considered sus-

picious and 74 were labelled as packed after manual analysis.

The majority of these samples were modified versions of

known packers such as UPX, NSpack or Mew, among others.

The 74 packed files were discarded, and another set of 150

unique samples was randomly selected. The same process

was followed, identifying 38 suspicious samples, from which

26 were actually packed. Finally, 74 samples were randomly

selected from this last set in order to substitute the initially

discarded samples.

� Not packed goodware samples. Finally, the remaining 1145

goodware samples were inspected to form not packed

goodwaredataset. Following the sameprocessapplied tonot

packed malware samples, we proceeded to select the sam-

ples suspicious of being packed. In this case, 104 samples

weresuspiciousofbeingpacked.Wemanually inspected the

sampleswithPEiDandStudPE,butfinallydidnotdiscardany

of thesamples.Moreover, someof thesampleswere installer

applications, which could eventually be considered as

packed. Nevertheless, we maintained them in the dataset

considering that these samples do not belong to the kind of

runtime packers that we seek to discriminate, and thus

provide a more realistic sample distribution.
Feature selection

In order to test the adoption of anomaly detection for the

classification of packed and not packed binaries, we consider a

set of features based on the structure of the executable. Some

of these features are based on heuristics and have been

employed in previous work. In addition, we also consider a

feature set based on the statistical frequency of bytes in the

executable file.

Executable structure based features

The features included in this study can be divided into two

categories: heuristics and structural features. On the one

http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4 129
hand,we consider the heuristics proposed in previouswork by

Perdisci et al. (2008a,b) and propose a set of complementary

heuristics that can be efficiently extracted from the file

structure. On the other hand, we propose the adoption of PE

header features. In order to test the capacity of the different

feature sets to discriminate packed and not packed binaries,

we evaluated the performance of different machine-learning

classifiers and apply the Friedman test in order to determine

if there is a statistically significant difference in the results

when different feature sets are employed.

Heuristics
First, we adopt a baseline set of heuristics employed in pre-

vious work. In this way we include entropy-related features

(file entropy, header entropy, average entropy of code sec-

tions, and average entropy of data sections), number of stan-

dard and not standard sections (i.e., sections that follow the

conventions defined by Microsoft), number of executable

sections, number of readable, writeable and executable sec-

tions, and number of external functions imported.

Secondly, we consider several complementary heuristic

values. These heuristics are divided in 3 groups: general

heuristics, heuristics related to the section of entry point, and

heuristics related to entropy.

General complementary heuristics.
� Maximum raw data per virtual size ratio. Maximum ratio

among all the sections.

� Minimum raw data per virtual size ratio. Minimum ratio

among all the sections.

� Ratio of sections with virtual size greater than raw data.

� Number of imported DLLs.

� Ratio of readable and executable sections.

� Ratio of readable and writeable sections.

In addition, in order to make the initial set of heuristics

proposed by Perdisci et al. (2008a, b) conformant with the rest

of heuristics, we normalise the values considering the number

of sections present in the executable file. Regarding the heu-

ristic corresponding to the ratio of sections with execute

permissions, we consider it a structural feature. In order to

avoid the repetition of redundant features, we include this

feature in the structural feature group.

� Ratio of standard sections.

� Ratio of not standard sections.

� Ratio of readable, writeable and executable sections.
Complementary heuristics related to the section of entry point

� Entry point outside any section. Indicates that the entry point

of the PE file does not point to any section in particular. In

these cases, all the features related to the section of entry

point are considered missing values.

� Section of entry point is standard. Indicates whether the sec-

tion of entry point is a standard section.

� Section of entry point is an Import Address Table section. In-

dicates whether the section of entry point is an Import

Address Table section.
� Raw data per virtual size ratio of the section of entry point. Ratio

between raw data and virtual size for the section of entry

point.

� Entropy of the section of entry point.

Heuristics related to file entropy

� Minimum section entropy.

� Maximum section entropy.

� Average section entropy.

� Ratio of sections with entropy in a certain range. More

concretely, the entropy ranges considered where 0 to 0.5,

0.5 to 1, 1 to 1.5, 1.5 to 2, 2 to 2.5, 2.5 to 3, 3 to 3.5, 3.5 to 4, 4 to

4.5, 4.5 to 5, 5 to 5.5, 5.5 to 6, 6 to 6.5, 6.5 to 7, 7 to 7.5 and 7.5

to 8.

PE Header features

� DOS Header. All Portable Executable files (PE) start by the

DOS header, which is maintained for compatibility rea-

sons. This header ensures that the binary can be executed

in a DOS system. The header contains 17 defined fields of 2

bytes, together with 28 bytes of reserved space. As some

packers insert data into the reserved space, we have

included 14 possible fields of 2 bytes, making a total of 31

fields.

� COFF File Header.The COFF File Header is located at the file

offset indicated by the field l_fanew and is preceded by a

signature of 4 bytes corresponding to the ASCII characters

‘P’ ‘E’ ‘\0’ ‘\0’. This header is composed of 7 fields with a size

between 2 and 4 bytes. The last field of the header (named

Characteristics) has a size of 2 bytes and defines 15 valid

flags and 1 reserved flag.

� Optional Header. If the PE file is an image file, it will contain

an optional header, not required in object files. The size of

this header is delimited by the corresponding field in the

COFF File header. In addition, the Number of RVA and sizes

field in this header indicates the number of data directory

entries contained in the header. The number and size of

fields of this header depends on whether it corresponds to

a 32 bit or 64 bit image file. For 32 bit files, 30 fields are

present in this header. Similarly to the Optional Header,

the Characteristics field defines 16 possible flags, where 5 are

reserved and 11 represent valid values.

� Data Directories. The data directory entries are located

after the optional header. These entries are pointers to

tables in the payload of the file (usually a section of the PE),

that are used by the operating system to load the PE and

execute it. The number of directory entries is indicated by

the fieldNumber of RVA and sizes in the optional header, and

should not exceed 16. In most cases, this field contains the

value 16, but in some cases certain packers like SLV present

unusual values, presumably to confuse analysis tools

when parsing the header.

� Sections. Every PE file can have a variable number of sec-

tions. PE sections are used to organize code and data, re-

sources, import and export information, and any other

data necessary for the execution of the application. Section

headers are located after the Optional Header, at the offset

indicated by the field Size of Optional Header in the COFF File

http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

Table 1 e Friedman test over accuracy, True Positive Rate
(TPR), False Positive Rate and area under the curve (AUC).
The ranks for each algorithm and feature set are omitted.
The average ranks and the FF score are shown.

B S BS BA BSA FF

Acc. 4.5263 3.0526 1.6315 3.7894 2 25.1474

TPR 4.7368 2.8947 2 3.7368 1.6315 32.6074

FPR 4 3.4736 1.4736 4 2.0526 21.5736

AUC 4.3421 3.3684 1.7894 3.6842 1.8157 20.0779

Table 2 e Holm step-down procedure for the
BonferronieDunn test over the accuracy of the different
classifiers for each feature set.

i Feature set z¼(R0 � Ri)/SE p a/(k � i)

1 BS 5.6428 0.0000000167 0.0125

2 BSA 4.9246 0.0000008449 0.0167

3 S 2.8727 0.0040692965 0.0250

4 BA 1.4363 0.1508971723 0.05

(B) baseline heuristics, (S) structural features, (A) additional

heuristics.

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4130
Header. Each section is formed by 10 fields. The Character-

istics field has a size of 4 bytes and defines 11 reserved flags,

16 valid flags, and a 4 bit field that indicates the alignment

of the data.

In order to test the capacity of the described header fields

to discriminate packed and not packed files, we selected a set

of features representing both reserved and valid fields.

Accordingly, we defined a separate feature for each flag

declared in the Characteristics field of each header. A PE file can

contain any number of sections. For this reason, we cannot

include all the header fields for all the sections. Alternatively,

we included in our feature set a group of 36 values that sum-

marise all the sections in the binary. In this way, we included

28 features for the 28 different flags that a section can have.

Each feature represents the ratio of sections that have the

corresponding flag set. Additionally, we included the total and

average values of the raw data size, the virtual data size, number

of relocations, and number of line numbers. The rest of the section

header fields are pointers or values that cannot be easily

summarised for all sections and were thus discarded.

Finally, we discarded the magic values that are common

for every executable file, and the TimeStamp field in order to

avoid possible biases, specially whenmanually generated files

are included in the dataset. As a result, the set of features

extracted was comprised of 9 heuristics used in previous

work, 33 additional heuristic values, and 199 structural fea-

tures (i.e., header fields).

In order to evaluate the capacity of the features proposed

for the classification of packed binaries, we tested the per-

formance of different machine learning algorithms for

different groups of features. To this aim, we measured the

performance of bayesian networks using different learning

algorithms (Naı̈ve Bayes, K2, Hill Climber and TAN), support

vector machines with different kernels (polynomial, normal-

ised polynomial, PUK and RBF), K nearest neighbours with

different k configurations (1, 3 and 5), the C4.5 algorithm,

random forest with different number of random trees (10, 30

and 50), rules based classifiers (JRip, and PART), Multilayered

Perceptron with one hidden layer of 243 nodes, and Bagging

with the 100% of the training set with the C4.5 algorithm.

Totally, we tested 19 different configurations.

In order to test the performance of these classifiers, we

employed the well-known tool Weka (Garner (1995)), applying

K-fold cross validation with a 10X10CV configuration.

Considering that Weka only provides the paired-t test for

pairwise comparisons, we applied the statistic proposed by

Iman and Davenport (1980) based on the non-parametric

Friedman test for the comparison of multiple classifiers over

several datasets (further discussion on these approaches was

addressed by Dem�sar (2006)).

The statistic proposed is applied over the average results

for the 10 runs and 10 folds for each configuration. Although

there are variations of these kind of tests that consider mul-

tiple observations per cell, they require the independence of

the observations, a property that cannot be assumed when k-

fold cross validation is applied.

Finally, we performed a post-hoc analysis based on the

Holm’s step down procedure in order to contrast the rank of

each feature set against its baseline, in order to test the
statistical significance of the improvement in each of the

performance measures obtained.

The results obtained (see Tables 1e5) indicate that there is

a statistically significant difference on the results when

structural features are employed in conjunction with baseline

heuristics for the detection of packed binaries.

Additionally, we propose the inclusion of an additional set

of heuristics. Results show that, although these heuristics

improve the results of several classifiers when considered

together with the baseline heuristics, there is not a statisti-

cally significant difference for any of the performance mea-

sures tested.

When these additional heuristics are added to the baseline

heuristics and the structural features, we can draw similar

conclusions. Despite in the case of TPR the results obtained by

the complete feature set outperform the rest of combinations,

in the case of accuracy, FPR and AUC, the best results are

obtained when these heuristics are not included.

Furthermore, as there is not a clear difference between the

feature set comprising the baseline heuristics and structural

features, and the feature set that includes also the additional

features, we have also applied the Holmprocedure to compare

these feature sets, considering as baseline, in each case, the

one with the lowest rank. In this way, for the accuracy, false

positive rate, and AUC, the results indicate an improvement of

baseline heuristics with structural features over the complete

feature set with p values of 0.4726, 0.2591 and 0.9591 respec-

tively. This improvement is not statistically significant in any

of the three cases at a suitable a level. In the case of true

positive rate, the complete feature set outperforms the base-

line heuristicswith structural featureswith a p value of 0.4726.

Again, this difference is not statistically significant.

As a conclusion, we can affirm that there is a significant

improvement in classification performance when structural

features are added to the initial set of heuristics proposed in

previous work. On the contrary, there is not a statistically

http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

Table 3 e Holm step-down procedure for the
BonferronieDunn test over the True Positive Rate of the
different classifiers for each feature set.

i Feature set z¼(R0 � Ri)/SE p a/(k � i)

1 BSA 5.6428 0.0000000167 0.0125

2 BS 4.9246 0.0000008449 0.0167

3 S 3.1805 0.0014700445 0.0250

4 BA 1.5389 0.1238122238 0.05

(B) baseline heuristics, (S) structural features, (A) additional

heuristics.

Table 5 e Holm step-down procedure for the
BonferronieDunn test over the AUC of the different
classifiers for each feature set.

i Feature set z¼(R0 � Ri)/SE p a/(k � i)

1 BS 5.3350 0.0000000955 0.0125

2 BSA 5.2837 0.0000001265 0.0167

3 S 2.2571 0.0239985552 0.0250

4 BA 1.6415 0.1006801107 0.05

(B) baseline heuristics, (S) structural features, (A) additional

heuristics.

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4 131
significant difference in the results when the additional heu-

ristics are included. When the additional heuristics are added

to the original heuristics, the results obtained outperform the

baseline, but not at a statistically significant level. Considering

these results, we do not discard the set of additional heuristics

due to the lack of strong evidence against this feature set.

Operational code frequency based analysis

Several approaches have addressed malware detection

applying machine-learning methods, and n-gram frequency

based feature sets (Santos et al., 2009; Schultz et al., 2001;

Kolter and Maloof, 2004).

Perdisci et al. (2008b) employed this technique not only for

the task of discriminatingmalware from goodware, but also to

discriminate between packed and not packed binaries. In fact,

when compression or encryption algorithms are applied, it is

common to observe high entropy values and flat byte histo-

grams (Sun, 2012). Not packed files, in contrast, present a

different byte frequency. One of the reasons for these differ-

ences is the prevalence of certain operational codes. Following

this idea, Perdisci et al. (2008b) proposed an approach based on

the presence of certain n-grams for the classification of

packed and not packed binaries. In order to select the most

relevant n-grams or byte combinations, they employed In-

formation Gain (IG) over a set of packed and not packed in-

stances. In this way, they selected the byte sequences that

best discriminate both classes.

Unfortunately, IG cannot be calculated if only one of the

classes is taken into consideration. Our anomaly detection

method avoids taking any assumption about the packed

executable class in order to construct a packer-agnostic clas-

sification system.

For this reason, we adapt the approaches proposed in

previous work for anomaly detection. To this aim, we elabo-

rated a list of all possible operational codes according to the
Table 4 e Holm step-down procedure for the
BonferronieDunn test over the False Positive Rate of the
different classifiers for each feature set.

i Feature set z¼(R0 � Ri)/SE p a/(k � i)

1 BS 5.9506 0.0000000027 0.0125

2 BSA 4.8220 0.0000014206 0.0167

3 S 2.0519 0.0401738703 0.0250

4 BA 1.0259 0.3049017882 0.05

(B) baseline heuristics, (S) structural features, (A) additional

heuristics.
Intel specification for the x86 architecture Intel (2013), and

measure the frequency for each possible byte sequence.

The operational codes defined by Intel have a variable

length. In fact, the instruction size for this architecture varies

from 1 byte to 15 bytes.

For this study, some fields were excluded given that they

do not adapt correctly to a simple n-gram model, or because

they introduce too much complexity deriving an exponential

number of possible different byte sequences. For this reason,

floating point instructions were not included due to the

limited use of this kind of instructions and the complexity

they present. Some instructions use bits 3e5 of the ModR/M

byte to encode the instructions. Some byte sequences repre-

sent several instructions that are discriminated considering

the above-mentioned bits. As the representation of these se-

mantic differences through an n-gram model is not straight-

forward, we omitted the ModR/M byte, assuming that some

byte sequences represent, in fact, a group of similar in-

structions. Accordingly, we defined a set of 823 byte sequences

formed by the 2 first fields in the instruction format shown in

Fig. 1, with length from 1 to 5 bytes. This list of operational

codes was gathered from Tables A-2 to A-5 of the Appendix A

of the Volume 2C of the Intel 64 and IA-32 Architectures

Software Developer’s Manual Intel (2013). This approach, in

contrast to a basic n-grammodel, only considers the subset of

n-grams for n ¼ 1, n ¼ 2, n ¼ 3, n ¼ 4 and n ¼ 5 that represent an

Intel instruction. Consequently, the set of possible values is

reduced from 1,103,823,438,080 to 823.

Given this background, we define our feature set as a set of

tuples such that, for a given binary b,

SFb¼{(s1,b,f1,b),(s2,b,f2,b),(s3,b,f3,b),. (sn,b,fn,b)}, where si,b repre-

sents every possible sequence, and fi,b is the frequency of that

sequence in the file. More concretely, fi,b is the total number of

occurrences of the sequence divided by the total number of

sequences found for that binary.
Distance-based anomaly detection

In this section, we describe the distance-based anomaly

detection method proposed for the classification of packed

binaries.

One of the motivations for the adoption of anomaly

detection is to avoid the overfitting problems that supervised

machine-learning algorithms may present. In this sense,

Breiman (1996) pointed out the instability presented by several

machine-learning algorithms except K Nearest Neighbours.

Distance based approaches present several advantages:

http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

Fig. 1 e Intel 64 and IA 32 instruction format, adapted from the Intel 64 and IA 32 Architectures Software Developer’s

Manual.

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4132
� No assumptions about the distribution of the data.Nearest

neighbours based approaches do not assume any partic-

ular distribution of the data, on the contrary to statistical

approaches such as Gaussian models. Instead, they just

consider the distance from test instances to the available

data.

� Computational complexity of the distance measures. The

nearest neighboursmethod allows the adoption of efficient

distance measures. In this way, the computational

complexity of the approach is O(N2), depending on the

number N of samples that conform the instances repre-

senting normality.

� Data-reduction capabilities. In order to reduce the

computational complexity, we can reduce the number N of

instances for comparison applying clustering techniques.

� Straightforward adoption of anomaly score. The anomaly

score adopted is directly related to the distances measured

from the test instance to the rest of instances. The process

of adjusting thresholds for different use-cases is

straightforward.

Given this background, we propose a distance-based

anomaly detection method, combined with clustering tech-

niques for the reduction of data in order to provide an efficient

detection of packed samples. In addition, we propose 3

different neighbour selection rules and test them under

different conditions.

Representation of normality

In order to represent normality, we use a set of not packed

executables. As opposed to other supervised learning ap-

proaches, instance-based classification does not need amodel

training phase. In this way, any sample that deviates suffi-

ciently from a representation of normality (not packed exe-

cutables) is classified as packed. This method, on the contrary

to K Nearest Neighbours, does not measure the distance from

the testing instance to packed samples. Despite the fact that

the evaluation process of this method requires the use of a

previously labelled dataset, its deploymentwould only require

not-packed samples, reducing the efforts needed to find and

label a set of representative packed binaries.

In this way, we define our normality model as a set of i

points NP ¼ fnp0;np1;.;npig defined in an n-dimensional

feature space such that npi¼{fi,0,fi,1,.,fi,n}.
Afterwards, we normalise the instances in our normality

model by calculating the well-known standard score or z-

score (see Equation (1)), for each instance and feature.

zi;n ¼ xi;n � mn

sn
(1)

In this way, we obtain a representation of normality

N ¼ fNP0;M;Dg where NP0 is the set of normalised points

NP0 ¼ fnp0
0;np

0
1;.;np0

ig, each point is defined as a set of nor-

malised feature values such that np0
i ¼ fzi;0; zi;1;.; zi;ng, M is a

set formed by the means for each feature M¼ fm0;m1;.;mng
and D is a set formed by the standard deviations for each

feature D ¼ fs0;s1;.;sng.

Distance between files

The classification of an executable consists of 3 different

phases: (i) feature extraction, (ii) normalisationwith respect to

m and s of the reference model, and (iii) calculation of the

distance from the resulting point to the model.

As a result, the distance measured provides an anomaly-

score with respect to the model, allowing to stablish a

threshold to discriminate files as packed. In this study, we

have considered 2 different distance measures: Manhattan

distance and Euclidean distance.

Since we have to compute this measure with respect to a

variable number of points representing not packed execut-

ables, a combinationmetric is required inorder toobtainafinal

distance value which considers every measure performed.

Our approach consists of applying 3 different distance se-

lection rules: (i) Mean distance rule, (i.e., average distance to

all the points in the model), (ii) Maximum distance rule, (i.e.,

distance to the least similar point), and (iii) Minimumdistance

rule, (i.e., distance to the most similar point).

In this way, when an executable is analysed, the final dis-

tance value calculated depends on the distance measure and

the combination rule selected.

Dataset reduction

The proposed approach requires us to compute as many dis-

tance values as executables in the not packed set. For this

reason, we improve the efficiency of our systemby designing a

data reduction phase, consisting in the application of the

Quality Threshold (QT) clustering algorithm proposed Heyer

http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

1 Anubis: a service for analysing malware. http://anubis.
iseclab.org/.

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4 133
et al. (1999). This clustering algorithm is applied to the original

dataset to obtain a reduced version thatmaintains the original

features of the dataset. In this way, the number of compari-

sons performed, and thus, the comparison time required for

the analysis of each sample are much lower.

The second objective is to measure the precision of our

system when the training set is incrementally reduced, in

order to evaluate the trade-off between efficiency and accu-

racy. In addition, this data reduction approach enables us to

test the performance of the system when a unique represen-

tation of a ‘normal’ executable is used, and to determine if it

can correctly classify packed and not packed executables.

This method requires to configure a similarity threshold

value to determine the maximum radial distance of any

cluster. On the contrary to other approaches such as K-means,

the number of clusters generated for a dataset depends on this

threshold and it must not be specified. For each cluster, we

calculate its centroid and add it to the reduced version of the

dataset. Finally, the instances not belonging to any cluster can

either be included in the final dataset or eliminated. In our

experiments, we evaluate both approaches. The main disad-

vantage of this method is the high number of distance cal-

culations needed. Nevertheless, in our case, this

computational overhead is admissible because we only have

to reduce the dataset once.

Selection of a threshold

Aswe havementioned, the distance from a given binary to the

representation of normality can be considered an anomaly

score. Nevertheless, the result of this classification process

should be a binary attribute in most situations: packed or not-

packed (e.g., we may want to decide which samples should be

processed with a generic unpacker).

Normally, supervised classification methods adjust the

parameters of the model considering all the instances present

in the training set, trying tomaximise a score function such as

classification accuracy. Afterwards, the model is evaluated by

classifying the test-set. In our case, the training-set is

comprised of only not-packed binaries. Accordingly, several

approaches can be considered for the selection of a threshold:

� Maximum tolerable false positive rate. This approach tries

to approximate the false positive rate of the testing set,

using the training set. In order to select this threshold, we

randomly extract from the training set a 10% of binaries

(i.e., validation set). In this way, we measure the distance

from these instances to the rest of the training set, and

select the thresholds that produce a fixed number of false

positives. These thresholds, in an ideally distributed

dataset, will approximate the false positive rate for the

testing set. Finally, we can test the associated false nega-

tive rate and accuracy in order to evaluate their reliability

for the detection of packed binaries.

� Number of desired positives. Another possible approach is

the selection of the most anomalous instances for inspec-

tion, considering that they might present a higher proba-

bility of being packed. In this way, depending on the

processing capabilities of a hypothetical automatic

unpacking system, it would be possible to apply a
threshold according to the number of positives it produces.

Nevertheless, in order to deploy such approach it is

necessary to make some assumptions about the distribu-

tion of binaries to analyse. For instance, an Anti-Virus

company might want to process a malware database. In

such scenario, the majority of samples analysed would be

packed, and thus, it would not make sense to accept a low

number of binaries as packed. Alternatively, an on-line

binary analysis system (e.g., Anubis1) can receive binaries

from many different sources, and the distribution of

packed/not packed binaries might vary.

While the first approach can be easily evaluated, the sec-

ond approach entirely depends on the deployment scenario.

For this reason, we adopt the maximum tolerable false positive

rate as an evaluation criteria for our anomaly detection

method.
Evaluation

In order to evaluate the performance of our anomaly detection

system, we applied a variation of k-fold cross validation, with

k ¼ 10. First, we divided the data set (comprised of 2000 not-

packed samples) into 10 groups of 200 binaries. For each

fold, 1800 samples were selected as training instances, while

200 were selected for testing. In our approach, packed binaries

are not considered for the training phase and thus, for each

fold, all the available samples are used for testing.

Afterwards, for each training-set selected, a 10% of the

instances (180) were reserved as validation set in order to

adjust the possible thresholds. In this way, each fold was

configured in the following way:

� 1620 not packed samples as training set.

� 180 not packed samples as validation set.

� 2000 packed samples for testing.

� 200 not-packed samples for testing.

We can observe that the testing set is highly unbalanced. For

this reason, we evaluate the performance of the approach

considering the falsepositive rate (FPR), falsenegative rate (FNR),

and the area under the curve (AUC), avoiding the accuracy. In

this way, the FPRmeasures the not-packed samples incorrectly

classified as packed, the FNR measures the packed samples

considered not-packed, and the AUC measures the overall per-

formance of the approach regardless of the threshold selected.

Regarding the data reduction process applied to each

configuration, in all cases, the minimum number of instances

for each cluster was set to 2. The distance thresholds for each

configuration are dependant on the distance measure and

feature set employed. In order to correctly represent different

reduction rates for each configuration, the thresholds were

adjusted considering the number of instances resulting from

the reduction process.

Considering that it isnot reliable to representall theresults in

terms of the TPR and the FPR obtained for all the different

http://anubis.iseclab.org/
http://anubis.iseclab.org/
http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

Fig. 3 e AUC obtained for PE based features, Manhattan distance and the 3 selection rules, when different data reduction

thresholds are applied.

Fig. 2 e AUC obtained for PE header features, Euclidean distance and the 3 selection rules, when different data reduction

thresholds are applied.

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4134
reduction rates, we plot the AUC together with the number of

instances obtained as a result of the reduction process (see Figs.

2e5).Additionally,weshowanddescribe theresultsobtainedfor

the most interesting reduction rates for each configuration (see
Fig. 4 e AUC obtained for operational code frequency, Euclidean

reduction thresholds are applied.
Tables 8e11 and 14e17). In each case, the reduction threshold

was selected based on the trade-off between the AUC and the

reduction rate, selecting the combination which presented the

highest possible reduction rate while still maintaining a sound
distance and the 3 selection rules, when different data

http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

Fig. 5 e AUC obtained for operational code frequency, Manhattan distance and the 3 selection rules, when different data

reduction thresholds are applied.

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4 135
AUC. The selection of the appropriate configuration should fall

on the expert’s sound judgement, as it depends on the specific

deployment scenario and its requirements.

Evaluation of the method for portable executable structure
based feature set

Results when no dataset reduction is applied
First, we list the results obtained for Euclidean distance (see

Table 6) and Manhattan distance (see Table 7), applying the

different selection rules, when no reduction process was

applied. In both cases, we measure separately the FNR for the

subset of manually packed binaries and the subset of custom

packed binaries (Zeus samples). Similarly, we show the AUC
Table 6 e Results obtained for PE based features and Euclidean

Sel. Rule Max FPR Tr. FPR FPR

Mean 0.0100 0.0056 0.0040

0.0200 0.0167 0.0120

0.0500 0.0500 0.0290

0.1000 0.1000 0.0640

0.1500 0.1500 0.1160

0.2000 0.2000 0.1535

0.2500 0.2500 0.2135

0.3000 0.3000 0.2770

Max 0.0100 0.0056 0.0040

0.0200 0.0167 0.0125

0.0500 0.0500 0.0400

0.1000 0.1000 0.0720

0.1500 0.1500 0.1115

0.2000 0.2000 0.1590

0.2500 0.2500 0.2380

0.3000 0.3000 0.3040

Min 0.0100 0.0056 0.0045

0.0200 0.0167 0.0110

0.0500 0.0500 0.0505

0.1000 0.1000 0.0945

0.1500 0.1500 0.1400

0.2000 0.2000 0.2185

0.2500 0.2500 0.2660

0.3000 0.3000 0.3280
when custom packers were not considered and the overall

AUC, when all packed binaries were included in the study. As

we can observe, there is, in both cases, a clear difference be-

tween the detection rate for off-the-shelf and custom packers.

In the case of Euclidean distance we can observe that the

best results are achieved for Mean and Min distance selection

rules, specially for files protected by off-the-shelf packers. In

this case, a good trade-off between FPR and FNR is obtained for

FPRs around 0.05. Nevertheless, custom packed files can only

be correctly discriminated when the minimum distance is

considered, assuming a significantly high false positive rate

(0.14).

In the case of Manhattan distance we can observe similar

results. In this case, the AUC and the trade-off between FPR
distance.

FNR(P) FNR(CP) AUC(P) AUC

0.8013 0.9371 0.9723 0.8511

0.5650 0.9238

0.3850 0.9133

0.0586 0.8751

0.0010 0.7921

0.0010 0.6829

0.0010 0.5920

0.0010 0.4437

0.7997 0.9371 0.9040 0.7991

0.6579 0.9233

0.4081 0.9013

0.1840 0.8671

0.1165 0.8261

0.0932 0.7415

0.0780 0.5822

0.0657 0.5373

0.8030 0.9371 0.9824 0.9526

0.5764 0.9193

0.0289 0.7584

0.0010 0.1432

0.0010 0.0528

0.0010 0.0302

0.0010 0.0266

0.0010 0.0237

http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

Table 7 e Results obtained for PE based features and Manhattan distance.

Sel. Rule Max FPR Tr. FPR FPR FNR(P) FNR(CP) AUC(P) AUC

Mean 0.0100 0.0056 0.0040 0.8182 0.9373 0.9782 0.8147

0.0200 0.0167 0.0110 0.4837 0.9357

0.0500 0.0500 0.0305 0.2810 0.9220

0.1000 0.1000 0.0655 0.0398 0.8911

0.1500 0.1500 0.0940 0.0031 0.8623

0.2000 0.2000 0.1445 0.0010 0.8335

0.2500 0.2500 0.2170 0.0010 0.7930

0.3000 0.3000 0.2770 0.0010 0.7522

Max 0.0100 0.0056 0.0040 0.7881 0.9371 0.9335 0.7674

0.0200 0.0167 0.0100 0.6710 0.9367

0.0500 0.0500 0.0395 0.3728 0.9186

0.1000 0.1000 0.0655 0.2795 0.9035

0.1500 0.1500 0.1035 0.2024 0.8785

0.2000 0.2000 0.1540 0.1310 0.8580

0.2500 0.2500 0.2130 0.0910 0.8385

0.3000 0.3000 0.2830 0.0674 0.7930

Min 0.0100 0.0056 0.0045 0.8008 0.9373 0.9846 0.9596

0.0200 0.0167 0.0100 0.5351 0.9225

0.0500 0.0500 0.0550 0.0158 0.4081

0.1000 0.1000 0.0935 0.0010 0.1019

0.1500 0.1500 0.1400 0.0010 0.0397

0.2000 0.2000 0.2085 0.0010 0.0276

0.2500 0.2500 0.2690 0.0010 0.0238

0.3000 0.3000 0.3530 0.0010 0.0164

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4136
and FNR presents slightly sounder results. As in the previous

case, Mean and Minimum distance selection rules achieve

sound results for off-the-shelf packers, while custom packers

can only be correctly discriminated when the minimum dis-

tance is considered, again, at a high cost (0.14 FPR).

Despite the results obtained for the minimum distance,

these observations indicate that the custom packed binaries

employed for testing are not as anomalous as off-the-shelf

packers when PE based features are considered for

classification.

Results obtained for the reduced dataset
Figs. 2 and 3 plot the number of instances obtained from the

reduction process together with the AUC obtained for each

configuration.

More concretely, Fig. 2a shows the evolution of the results

when outliers are not discarded. We can observe that, while

the results for Max and Mean distance selection rules remain

stable, the results for Min distance degrade when the number

of samples that represent normality decreases. In this way,
Table 8 e Results obtained for PE based features,
minimum distance selection rule and Euclidean distance,
with the training set reduced with 4.00 threshold and
outliers not discarded.

Max FPR Tr. FPR FPR FNR(P) FNR(CP) AUC

0.0100 0.0056 0.0045 0.8030 0.9371 0.9517

0.0200 0.0167 0.0110 0.5764 0.9193

0.0500 0.0500 0.0510 0.0289 0.7504

0.1000 0.1000 0.0945 0.0010 0.1444

0.1500 0.1500 0.1285 0.0010 0.0680

0.2000 0.2000 0.2100 0.0010 0.0332

0.2500 0.2500 0.2645 0.0010 0.0258

0.3000 0.3000 0.3210 0.0010 0.0219
the AUCs obtained present values over 0.95 even when the

number of instances used for comparison is reduced to 847

(threshold 4.00), and values over 0.94 when the number of

instances is over 261 (threshold 8.00). Table 8 shows the result

for the threshold 4.00, the configuration which presents the

highest reduction rate while maintaining an AUC over 0.95.

Fig. 2b plots the evolution of the AUC when outlier points

were discarded during the clustering process, showing a

different trend. In this case, we can observe that the number

of instances for comparison grows when a higher threshold is

applied (i.e., a higher number of clusters are formed). Never-

theless, when the threshold surpasses a certain value (in this

case, 4.00), the number of instances decreases, given that the

clusters formed include a higher number of instances. While

the results for the Mean distance selection rule are stable, the

Max and Min distance selection rules are affected by the

number of samples in the model. The highest AUC is obtained

when the minimum distance is considered and the 6.00

threshold produced 77 instances, a number below the highest

number of instances used for comparison (106). Table 9 shows
Table 9 e Results obtained for PE based features,
minimum distance selection rule and Euclidean distance,
with the training set reduced with 6.00 threshold and
outliers discarded.

Max FPR Tr. FPR FPR FNR(P) FNR(CP) AUC

0.0100 0.0056 0.0040 0.8012 0.9371 0.9298

0.0200 0.0167 0.0110 0.5663 0.9240

0.0500 0.0500 0.0340 0.3684 0.9073

0.1000 0.1000 0.0670 0.0115 0.8435

0.1500 0.1500 0.1090 0.0010 0.5117

0.2000 0.2000 0.1765 0.0010 0.0514

0.2500 0.2500 0.2355 0.0010 0.0320

0.3000 0.3000 0.3225 0.0010 0.0211

http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

Table 10 e Results obtained for PE based features,
minimum distance selection rule and Manhattan
distance, with the training set reduced with 8.00
threshold and outliers not discarded.

Max FPR Tr. FPR FPR FNR(P) FNR(CP) AUC

0.0100 0.0056 0.0040 0.8010 0.9373 0.9591

0.0200 0.0167 0.0100 0.5351 0.9225

0.0500 0.0500 0.0550 0.0158 0.4038

0.1000 0.1000 0.0940 0.0010 0.1017

0.1500 0.1500 0.1390 0.0010 0.0404

0.2000 0.2000 0.2110 0.0010 0.0277

0.2500 0.2500 0.2810 0.0010 0.0234

0.3000 0.3000 0.3375 0.0010 0.0199

Table 12 e Results obtained for operational code
frequencies and Euclidean distance.

Sel. Rule Max FPR Tr. FPR FPR FNR(P) FNR(CP) AUC

Mean 0.0100 0.0056 0.0220 0.7890 0.8010 0.9136

0.0200 0.0167 0.0300 0.6945 0.7311

0.0500 0.0500 0.0580 0.5245 0.6014

0.1000 0.1000 0.1010 0.2010 0.4296

0.1500 0.1500 0.1400 0.0557 0.2685

0.2000 0.2000 0.1635 0.0402 0.2117

0.2500 0.2500 0.2210 0.0263 0.1105

0.3000 0.3000 0.2935 0.0152 0.0148

Max 0.0100 0.0056 0.0220 0.8008 0.8045 0.5318

0.0200 0.0167 0.0295 0.7196 0.7435

0.0500 0.0500 0.0555 0.6128 0.6352

0.1000 0.1000 0.0980 0.5290 0.5589

0.1500 0.1500 0.1555 0.4956 0.5354

0.2000 0.2000 0.2215 0.4835 0.5226

0.2500 0.2500 0.2650 0.4789 0.5150

0.3000 0.3000 0.3115 0.4716 0.5071

Min 0.0100 0.0056 0.0215 0.8099 0.8085 0.9206

0.0200 0.0167 0.0295 0.6943 0.7273

0.0500 0.0500 0.0525 0.5318 0.6075

0.1000 0.1000 0.0945 0.1716 0.4007

0.1500 0.1500 0.1315 0.0671 0.2627

0.2000 0.2000 0.1890 0.0228 0.1028

0.2500 0.2500 0.2675 0.0142 0.0118

0.3000 0.3000 0.3505 0.0110 0.0071

Table 13 e Results obtained for operational code
frequencies and Manhattan distance.

Sel. Rule Max FPR Tr. FPR FPR FNR(P) FNR(CP) AUC

Mean 0.0100 0.0056 0.0145 0.8542 0.8801 0.9522

0.0200 0.0167 0.0285 0.6299 0.7975

0.0500 0.0500 0.0530 0.1237 0.3735

0.1000 0.1000 0.0885 0.0487 0.0518

0.1500 0.1500 0.1535 0.0237 0.0110

0.2000 0.2000 0.1975 0.0200 0.0108

0.2500 0.2500 0.2190 0.0162 0.0097

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4 137
the results for the 6.00 threshold. We can appreciate that the

results present a slight improvement for higher thresholds,

obtaining higher AUCs for an equivalent number of samples

employed to build the model. This tendency might be pro-

duced by the noise reduction capabilities of the data reduction

approach employed. As the outlier samples not included in

any cluster are discarded, the possible negative effects of

these samples are smoothed. For higher thresholds, some of

the instances considered outliers for lower thresholds are

included in the clusters. First, the effects of possible noise are

smoothed. Second, the number of instances discarded is

reduced, ensuring that a higher number of samples are rep-

resented in the final model.

Fig. 3 shows the evolution for Manhattan distance when

different reduction thresholds were applied. When outlier

points were not discarded, the 3 configurations show stable

results, even for the minimum distance. Table 10 shows the

results for the minimum distance when a 8.00 threshold was

applied for reduction. In this case, although the number of

instances is 1054, the AUC obtained is over 0.959. Neverthe-

less, for environments in which efficiency is an important

aspect to consider, the expert might select a higher threshold,

given that the results are not notably affected even when the

number of instances is decreased to 273 (0.955).

In Fig. 3 we can observe that, when the outliers are dis-

carded, the results for the mean distance are considerably

stable. For the maximum distance the results degrade for a

higher number of instances, and for the minimum distance

the results are better for higher thresholds. In this case we can

see a tendency similar to the effect observed for Euclidean

distance. When higher thresholds are applied, the results
Table 11 e Results obtained for PE based features,
minimum distance selection rule and Manhattan
distance, with the training set reduced with 28.00
threshold and outliers discarded.

Max FPR Tr. FPR FPR FNR(P) FNR(CP) AUC

0.0100 0.0056 0.0040 0.8033 0.9373 0.9468

0.0200 0.0167 0.0130 0.4268 0.9297

0.0500 0.0500 0.0395 0.0355 0.8590

0.1000 0.1000 0.0685 0.0010 0.7334

0.1500 0.1500 0.1205 0.0010 0.1126

0.2000 0.2000 0.1845 0.0010 0.0309

0.2500 0.2500 0.2525 0.0010 0.0229

0.3000 0.3000 0.3105 0.0010 0.0189
slightly improve. Again, this tendency might be caused by the

noise reduction capabilities of the algorithm. Table 11 shows

the results for the minimum distance and a 28.00 threshold.

This configuration produces the highest AUC with 57 in-

stances during comparison, a number which considerably

below the maximum number of instances tested (97).
0.3000 0.3000 0.2810 0.0105 0.0073

Max 0.0100 0.0056 0.0065 0.9547 0.9279 0.2788

0.0200 0.0167 0.0180 0.9171 0.8672

0.0500 0.0500 0.0405 0.8749 0.7916

0.1000 0.1000 0.1185 0.8415 0.7519

0.1500 0.1500 0.1665 0.8310 0.7348

0.2000 0.2000 0.2115 0.8219 0.7201

0.2500 0.2500 0.2665 0.8104 0.7104

0.3000 0.3000 0.3275 0.8047 0.7037

Min 0.0100 0.0056 0.0120 0.8677 0.8305 0.9574

0.0200 0.0167 0.0250 0.6231 0.6759

0.0500 0.0500 0.0480 0.2076 0.3710

0.1000 0.1000 0.1165 0.0247 0.0099

0.1500 0.1500 0.1790 0.0151 0.0063

0.2000 0.2000 0.2410 0.0117 0.0056

0.2500 0.2500 0.2950 0.0090 0.0048

0.3000 0.3000 0.3530 0.0075 0.0006

http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

Table 15 e Results obtained for operational code
frequencies and Euclidean distance, outliers discarded,
with the training set reduced with a 4.00 threshold for
Mean distance selection rule, a 1.00 threshold for Max
distance selection rule, and a 12.00 threshold for Min
distance selection rule.

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4138
Evaluation of the method for operational code frequencies

Results when no dataset reduction is applied
Table 12 shows the results for Euclidean distance when no

reduction was applied. In this case, while the Mean and Min

distance selection rules show sound results regarding AUC,

the maximum distance cannot be considered for classifica-

tion. Regarding the trade-off between FPR and FNR, we can

notice that both configurations must assume a considerably

high FPR to achieve a sound FNR (over 0.15).

Regarding Manhattan distance (see Table 13), the results

obtained are sounder than the Euclidean distance based

configurations. In this case, when mean and minimum dis-

tances are applied, the AUC obtained reaches 0.9522 and

0.9574 respectively. For the maximum distance, on the con-

trary, the results are not acceptable (0.2788 AUC), and thus we

must discard the configuration. Regarding the trade-off be-

tween FPR and FNR for both mean and the minimum dis-

tances, the tolerance of a 0.10 FPR is sufficient to achieve a

sound FNR for both off-the-shelf and custom made packers.

On the one hand, in both cases we can observe that the

configurations based on the maximum distance are notably

affected by this feature set, probably because of its instability

in the presence of outliers. On the other hand, the results do

not present a notable difference regarding the FNR achieved

for off-the-shelf and custom packed binaries, like in the case

of the PE based feature set.

Results obtained for the reduced dataset
In this section, we describe the results obtained when various

reduction configurations were tested. The number of in-

stances resultant from the reduction process are plotted in

Figs. 4 and 5, together with the obtained AUC values for each

configuration.

When outlier points are not discarded, we can observe that

the maximum distance presents results below the acceptable

limits. Besides, both mean and minimum distances produce

results that deteriorate when the number of instances
Table 14 e Results obtained for operational code
frequencies and Euclidean distance, outliers not
discarded, with the training set reduced with a 4.00
threshold for Mean distance selection rule, and a 12.00
threshold for Min distance selection rule.

Sel. Rule Max FPR Tr. FPR FPR FNR(P) FNR(CP) AUC

Mean 0.0100 0.0056 0.0220 0.7890 0.8010 0.9132

0.0200 0.0167 0.0300 0.6945 0.7311

0.0500 0.0500 0.0580 0.5246 0.6014

0.1000 0.1000 0.1010 0.2027 0.4298

0.1500 0.1500 0.1395 0.0563 0.2702

0.2000 0.2000 0.1635 0.0401 0.2129

0.2500 0.2500 0.2215 0.0264 0.1139

0.3000 0.3000 0.2935 0.0152 0.0151

Min 0.0100 0.0056 0.0215 0.8099 0.8085 0.9205

0.0200 0.0167 0.0295 0.6948 0.7274

0.0500 0.0500 0.0525 0.5318 0.6074

0.1000 0.1000 0.0955 0.1714 0.4011

0.1500 0.1500 0.1330 0.0667 0.2628

0.2000 0.2000 0.1895 0.0241 0.1078

0.2500 0.2500 0.2735 0.0139 0.0122

0.3000 0.3000 0.3450 0.0110 0.0076
decreases. Again, Table 14 shows the results for the selected

thresholds that maintain sound AUCs for a minimumnumber

of instances used for comparison. In the case of mean dis-

tance, sound AUC values over 0.913 are achieved for reduction

thresholds below 8.00. For theminimum distance, a reduction

threshold of 12.00 can be applied without observing a degra-

dation in the results, obtaining an AUC over 0.92. In both

cases, we can observe that the results tend to deteriorate

when the threshold applied is increased, showing a tendency

similar to the PE structure based feature set.

In the case when outliers were discarded (see Fig. 4b), the

results for mean distance present a soft degradation as the

reduction threshold is increased. The minimum distance

presents an improvement until the maximum number of in-

stances for comparison is achieved (12.00 threshold). For

higher thresholds, it presents a considerable degradation. The

maximum distance, despite of the unacceptable results when

outliers are not discarded (see Fig. 4a), presents sound results

for the lowest thresholds, and a degradation when a higher

number of clusters is generated (showing a considerable

sensitiveness to the instances used for comparison).

Accordingly, Table 15 shows the detailed results for the

selected configurations. For mean distance, a 4.00 threshold

presents a sound AUC (0.9184). For this selection rule, higher

thresholds present a slight degradation in the results. In the

case of Max distance, only the lowest thresholds (e.g., 1.00)

that discard most of the samples produce sound results.

Nevertheless, as we noticed in Table 13, this selection rule is

very sensitive to outliers. Finally, in the case of minimum
Sel. Rule Max FPR Tr. FPR FPR FNR(P) FNR(CP) AUC

Mean 0.0100 0.0056 0.0220 0.7882 0.8008 0.9184

0.0200 0.0167 0.0305 0.6914 0.7293

0.0500 0.0500 0.0570 0.5209 0.6017

0.1000 0.1000 0.1040 0.1385 0.3944

0.1500 0.1500 0.1400 0.0487 0.2398

0.2000 0.2000 0.1625 0.0374 0.1988

0.2500 0.2500 0.2190 0.0243 0.0508

0.3000 0.3000 0.2845 0.0156 0.0123

Max 0.0100 0.0056 0.0220 0.7877 0.8006 0.9208

0.0200 0.0167 0.0300 0.6909 0.7290

0.0500 0.0500 0.0570 0.5183 0.6028

0.1000 0.1000 0.1000 0.1332 0.3924

0.1500 0.1500 0.1420 0.0447 0.2171

0.2000 0.2000 0.1605 0.0369 0.1867

0.2500 0.2500 0.2270 0.0230 0.0219

0.3000 0.3000 0.2965 0.0140 0.0108

Min 0.0100 0.0056 0.0220 0.7872 0.8003 0.9176

0.0200 0.0167 0.0315 0.6862 0.7257

0.0500 0.0500 0.0585 0.5285 0.6039

0.1000 0.1000 0.1040 0.1582 0.4038

0.1500 0.1500 0.1375 0.0523 0.2560

0.2000 0.2000 0.1710 0.0353 0.1919

0.2500 0.2500 0.2550 0.0181 0.0164

0.3000 0.3000 0.3180 0.0134 0.0099

http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

Table 17 e Results obtained for operational code
frequencies and Manhattan distance, outliers discarded,
with the training set reduced with a 16.00 threshold for
Mean distance selection rule, a 8.00 threshold for Max
distance selection rule, and a 96.00 threshold for Min
distance selection rule.

Sel. rule Max FPR Tr. FPR FPR FNR(P) FNR(CP) AUC

Mean 0.0100 0.0056 0.0135 0.8563 0.8874 0.9550

0.0200 0.0167 0.0325 0.4802 0.7422

0.0500 0.0500 0.0570 0.0985 0.3021

0.1000 0.1000 0.0945 0.0405 0.0124

0.1500 0.1500 0.1530 0.0228 0.0109

0.2000 0.2000 0.1990 0.0173 0.0091

0.2500 0.2500 0.2300 0.0128 0.0075

0.3000 0.3000 0.2770 0.0097 0.0060

Max 0.0100 0.0056 0.0135 0.8579 0.8917 0.9534

0.0200 0.0167 0.0305 0.5343 0.7787

0.0500 0.0500 0.0560 0.1090 0.3323

0.1000 0.1000 0.0895 0.0498 0.0350

0.1500 0.1500 0.1540 0.0236 0.0110

0.2000 0.2000 0.1940 0.0221 0.0097

0.2500 0.2500 0.2395 0.0145 0.0072

0.3000 0.3000 0.2765 0.0113 0.0070

Min 0.0100 0.0056 0.0140 0.8550 0.8802 0.9570

0.0200 0.0167 0.0325 0.4936 0.7374

0.0500 0.0500 0.0575 0.0856 0.2373

0.1000 0.1000 0.1180 0.0267 0.0110

0.1500 0.1500 0.1630 0.0155 0.0084

0.2000 0.2000 0.2160 0.0115 0.0076

0.2500 0.2500 0.2575 0.0070 0.0060

0.3000 0.3000 0.3035 0.0042 0.0060

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4 139
distance we can appreciate that the results depend on the

number of instances resulting of the clustering process. In this

case, the configuration that produces the highest number of

samples obtained the best AUC (12.00 threshold).

Fig. 5a shows the results obtained for different reduction

thresholds with Manhattan distance, when outlier points

were not discarded in the clustering process. Like in the pre-

vious case, the Max distance does not present sound results,

while mean and minimum distance present considerably

stable results, degrading for higher thresholds. Considering

the tendency of the results, we select the highest possible

threshold (maximum reduction ratio) that does not degrade

considerably the AUC: 96.00 (1140 instances) for mean dis-

tance and 160.00 (540 instances) for minimum distance. The

results for the best threshold configurations are detailed in

Table 16.

Finally, when outliers were discarded (see Fig. 5b), the re-

sults show a slight performance improvement for the mini-

mum distance as the number of generated clusters increases

with higher thresholds, and then deteriorates when the

highest thresholds are applied, reaching the best results for a

96.00 threshold, when the maximum number of instances is

reached. In the case of the mean distance, the results show a

stable deterioration when the applied threshold is increased,

obtaining sound results for a 16.00 threshold. For higher

thresholds, we can observe a deterioration of the AUC. The

results for Maximum distance, like in the case of Euclidean

distance, are sensitive to the variability of the instances

generated after the clustering process, but show interesting

values for the lowest reduction thresholds (8.00). The detailed

results for these configurations are listed in Table 17.
Evaluation of the efficiency of both feature sets

In this section, we evaluate the efficiency of the method pro-

posed considering the dataset reduction method and the 2

feature sets employed for the evaluation.
Table 16 e Results obtained for operational code
frequencies and Manhattan distance, outliers not
discarded, with the training set reduced with a 96.00
threshold for Mean distance selection rule, and a 160.00
threshold for Min distance selection rule.

Sel. Rule Max FPR Tr. FPR FPR FNR(P) FNR(CP) AUC

Mean 0.0100 0.0056 0.0145 0.8535 0.8770 0.9509

0.0200 0.0167 0.0270 0.6708 0.8084

0.0500 0.0500 0.0535 0.1313 0.3934

0.1000 0.1000 0.0870 0.0517 0.0858

0.1500 0.1500 0.1495 0.0251 0.0110

0.2000 0.2000 0.1950 0.0210 0.0108

0.2500 0.2500 0.2200 0.0186 0.0106

0.3000 0.3000 0.2860 0.0113 0.0075

Min 0.0100 0.0056 0.0115 0.8803 0.8427 0.9574

0.0200 0.0167 0.0245 0.6533 0.6866

0.0500 0.0500 0.0450 0.2282 0.3997

0.1000 0.1000 0.1025 0.0314 0.0131

0.1500 0.1500 0.1775 0.0158 0.0076

0.2000 0.2000 0.2455 0.0100 0.0063

0.2500 0.2500 0.3125 0.0077 0.0044

0.3000 0.3000 0.3575 0.0058 0.0020
First, the feature extraction was performed in an isolated

virtual machine using VMWare. The host machine was an

Intel Core i5 650 clocked at 3.20 GHz and 16 GB of RAM

memory, while the guest machine was configured with 2

processors, 4 GB of RAM memory and Windows XP SP3 as

operating system.

Fig. 6 summarises the feature extraction process. We can

observe that, on the one hand, the feature extraction time is

directly proportional to the file size in both feature sets. In

the case of the PE based feature set, this effect is caused by

the values that depend on the full content of the file, like

entropy. On the other hand, we can observe in Fig. 6c that

the extraction of operational code frequencies is more

time-consuming than the extraction of PE based features. In

this way, the average comparison time is 0.0576 ms/KB for

PE based features and 2.0188 ms/KB for operational code

frequency extraction. Although the extraction time in

both cases depends on the implementation of our

feature extraction algorithm, we can safely conclude that

the extraction of operational code frequencies requires

more computational resources than the PE based feature

set.

The normalisation process of each fold consumes on

average 148.4375 ms with a standard deviation of 62.1736 for

the PE based features, and 735.9375 ms with a standard devi-

ation of 121.1315 for operational code frequencies.

Fig. 7 shows the time required by the dataset reduction

algorithm for each configuration. First, we can notice that

Euclidean distance, in both cases, presents higher reduc-

tion times. This difference is caused by the complexity of

http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

Fig. 6 e Feature extraction times for the different feature-sets. The X axis represents the file size, while the Y axis represents

the time required to extract the features, expressed in milliseconds.

Fig. 7 e Reduction times for the different configurations. The X axis represents the different experiment configurations, and

the Y axis represents the reduction time, expressed in milliseconds. Each of the 10 folds evaluated in the experiment is

represented in a different colour (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.).

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4140

http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

Fig. 8 e Distance calculation times averaged for each

possible configuration. The X axis represents the different

thresholds applied. The threshold applied for the reduction

varies for each configuration. Nevertheless, the thresholds

are plotted, in each case, in ascending order. The Y axis

shows the average time (in milliseconds) to measure the

distance from a testing instance to the model.

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4 141
each distance measure. PE based feature set requires,

again, a lower processing time. This is caused by the

number of possible features present in each feature set.

While the PE based features is composed of 241 features,

the feature set composed of operational codes is repre-

sented by 823.

Finally, Fig. 8 shows the average time required to measure

the distance from a testing instance to the not-packed model.

This time is directly proportional to the number of instances

used for comparison in each case. In Fig. 8a we can observe the

results when outliers were not discarded. First, the PE based

features require lower processing times than operational code

frequencies. Second,Manhattandistance ismore efficient than

Euclidean distance. Fig. 8b shows the average distance calcu-

lation time when outliers are discarded. In this case, as the

numberof instances that represent themodel is lower, the time

required for comparison decreaseswith respect to the previous

approach. In these cases, thenumber of instances representing

the model reaches its maximum value for the central thresh-

olds. Once the threshold surpasses a certain value, the clusters

generated contain a higher number of instances and the num-

ber of clusters decreases. This effect has a direct effect on

comparison time, that can be observed in Fig. 8b.
Conclusions and discussion

The results presented in Section Evaluation show the perfor-

mance of the anomaly detection approach for 2 different
feature sets. In this section we answer to several research

questions established for this study.
Which is the feature set that best discriminates packed from
not packed files?

The first observation is that the only distance selection rule

that produces sound results for both off-the-shelf packers and

custom packers with PE based features is the minimum dis-

tance, while in the case of operational code frequencies, both

mean and minimum distance are valid approaches.

Secondly, we can observe that PE based features present a

higher FNR for custom packers than for off-the-shelf packers.

This effect is not noticeable for operational code frequencies.

The third observation is that, while both feature sets pre-

sent unsound results for the Max distance selection rule,

operational code frequencies based approach is extremely

sensitive to outliers in the model.

From these observations, we can conclude that the PE

based feature set presents limitations to capture the differ-

ence between not packed binaries and custom packed files.

Nevertheless, when the minimum distance is selected, our

approach can provide sound detection rates if it assumes

higher FPRs. This effect is caused by the different nature of the

packing approach used to protect the samples.

Finally, if we observe the efficiency of both feature sets, we

can observe that operational code frequencies are not as effi-

cient as PE based features. Nevertheless, the results indicate

that the operational code frequency based approach should

not be discarded. Another interesting option would be to

combine both approaches in order to provide a final decision.
What is the impact of the data-reduction approach over the
results obtained?

First, we can notice that in the case of PE based features, the

results present a degradationwhen the number of instances is

decreased and outliers are not discarded. When outliers are

discarded, we can observe that the results show a slight

improvement for the highest thresholds, if compared to the

lowest ones at equivalent reduction rates. In this case, the

number of instances decreases due to the presence of a lower

number of clusters comprising a higher number of instances.

The improvement observed might be caused by the noise

reduction capabilities of the data reduction algorithm.

In the case of operational code frequencies the results tend

to degrade as the reduction threshold increases, regardless of

the number of instances used for comparison for both data

reduction approaches.

Another observation is that, for PE based features and

Euclidean distance, sounder results are achieved when out-

liers are not discarded. In the case of operational code fre-

quencies, there is not a noticeable difference among both

approaches.

Regarding the efficiency, the only difference among both

approaches is the number of instances used for comparison.

To answer the research question established, although all

configurations are not affected equally by the data reduction

process,wecanconclude that, in all cases, it is possible to finda

http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4142
trade-off between efficiency and effectiveness, trying to mini-

mise the processing time while maintaining sound results.

What is the impact on the results of the different distance
measures evaluated?

In this case, we can observe that for PE based features, the

Manhattan distance does not produce sounder results than

Euclidean distance. More concretely, while for Mean and Max

distance selection rules the results are improved, when the

minimumdistance is selected (the only distancemeasurewith

acceptable performance), the results are nearly equal. How-

ever, for operational code frequencies, the results observed for

Manhattan distance actually differ, presenting sounder results

for both AUC, and better trade-offs between FPR and FNR.

What is the impact on the results of the different distance
selection rules?

Regarding the distance selection rules, we can observe that,

with the exception of certain configurations (operational code

frequencies with dataset reduction and low reduction

thresholds), theMax distance selection rule does not present a

sound performance, probably for its sensitiveness to outliers.

In the case of PE based features, the only distance measure

with a good performance is the Min selection rule.

This difference might be caused by the impact of the re-

sults for the classification of custom packers. The distance

between a not packed instance and a custom packed instance

is low, a fact that affects the final value when the average

distance is calculated.

Does our anomaly detection approach present sound results
for the classification of packed and not packed files?

With the exception of certain configurations, the anomaly

detection method proposed is capable of classifying packed

and not packed binaries efficiently.

While the results obtained are not as sound as those ob-

tained for supervised approaches, our model only considers

the properties of not packed binaries, making it independent

of the packer used.

The trade-offs between FPR and FNR selected for each

configuration tend to produce high false positives rates (near

0.10 FPR). Nevertheless, these thresholds have been selected

to maximise the packer detection rate at an assumable false

positive rate. The simplicity of the distance-based approach

allows to adjust the threshold according to the requirements

of the deployment scenario.

Given the results obtained, the proposed approach stands

as a valid method to discriminate packed samples from not

packed binaries. Traditional signature scanningmethods tend

to produce poor detection rates. In fact, malware writers often

try to modify the packed binaries in order to resemble un-

protected files or other different packers, in an effort to avoid

detection or to confuse the analyst. Although many security

products employ heuristic detection mechanisms to comple-

ment signature based scanning, classic heuristics can be

easily evaded (). On the contrary, the approach presented in

this paper models not packed samples. Typically, these kind
of software is compiled and linked by common software

development tools that follow well-known standards and

conventions. In this way, any deviation to this model is

considered suspicious.

This detection approach can be applied to different con-

texts. First, given the amount of malware samples that are

collected every day, it is not reliable to analyse them one by

one. Sample triage not only improves the efficiency of auto-

matic analysis systems (e.g., in scenarios in which resource

consumingtasksmustbeapplied to recover theoriginal codeof

the binary), but also can improve overall detection rates by

allowing the application of the correct treatment to each

sample. In this sense, automatic unpackers are generally time-

consuming and require the execution of the sample. A sound

filtering of sampleswould help the analyst to selectively apply

such processes to new and previously unknown samples.

Additionally, this approach allows to adjust the detection

threshold depending on the requirements of the deployment

scenario. Lower thresholds will tend to produce higher false

positives, while obtaining good detection rates. On the con-

trary, higher thresholds will tend to produce lower false pos-

itive rates, as well as a lower detection rate. The number of

samples labelled as packed will directly depend on the

threshold selected. In some cases, the capacity to process the

samples under time-consuming unpacking engines is limited.

In other cases, a higher detection rate is preferable, even at a

high computational cost derived from processing samples

that are actually not packed.

Another aspect to consider in order to select an adequate

threshold is the distribution of the samples to be analysed.

The proportion of packed instances may be different for a set

of binaries already labelled as malicious, than for a set of bi-

naries submitted for analysis in an on-line submission sys-

tem, in which any user could submit both packed, not packed,

benign, or malicious samples.

In addition to this, modern anti-virus products include

sandbox solutions in order to execute suspicious binaries in

an isolated environment. These solutions allow to execute the

sample in the host machine, but limit their functionality in

order to avoid infection. During the execution, the behaviour

of the sample is analysed in order to determine if it contains

any malicious payload. The proposed approach could be used

to improve the classification of the sample prior to its execu-

tion in such environment, labelling as suspicious any sample

that may contain protected code or data.

Finally, the approach proposed could be affected by the

possible noise in the not-packed model employed for classi-

fication. For these experiments, we have applied a sanitisation

process to the dataset to reduce the noise to the extent

possible. Nevertheless, for a real-world deployment of such

system, it would be interesting to study new approaches to

filter packed samples using other manual methods.

Future work can be oriented in different ways. On the one

hand, other anomaly detection approaches can be tested such

as probabilistic models or one-class support vector machines.

On the other hand, we could study different feature se-

lection and weighing techniques that consider only one of the

classes. Unfortunately, the majority of such approachesmake

use of information from both classes in order to measure the

relevance of each attribute.

http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4 143
Related work

Several approaches have addressed the extraction of static

features from binary files for the classification of packed and

not packed binaries.

Some approaches rely on heuristics to detect packed

samples: Lyda and Hamrock (2007) proposed the use of en-

tropy to discriminate packed and not packed files. Perdisci

et al. (2008a) proposed a method based on the extraction of

several heuristic values from PE files in order to discriminate

packed binaries from unprotected binaries using supervised

machine-learning based classification models.

Shafiq et al. (2009a,b), similarly, applied the same heuristics

for packed binary detection. Afterwards, instead of unpacking

the samples, they applied machine-learning based techniques

considering different feature sets for packed and not-packed bi-

naries. More concretely, they evaluated the capacity of PE based

features to discriminate goodware and malware. Nevertheless,

theydidnotapply thisfeatureset for thedetectionofpackedfiles.

Other approaches focus on the contents of the file. In this

way, Perdisci et al. (2008b) combined their previously proposed

method based on heuristics with n-gram analysis in order to

filter executables and selectively apply a generic unpacker to

those samples previously classified as packed, prior to the

application of malware detection techniques to the samples.

Sharif et al. (2008) proposed the use of n-gram based clas-

sification to distinguish packed from unpacked memory re-

gions as a method to determine the correct moment to dump

the memory content as part of a generic unpacking method.

Similarly,most generic unpackingmethods rely ondifferent

heuristics for the detection of the correct moment to dump the

unpackedmemorycontent (i.e.,when theoriginal entrypoint is

reached). Theseheuristicscanbeconsideredasdynamicpacker

detection methods. Nevertheless, the application of these

methods tofilter executables isnonsense, considering that they

require the actual unpacking of the sample.

Other approaches have focused on entropy analysis, and

explored indepth the statistical properties of packedbinaries in

order to distinguish the packers used for protection (Sun, 2012),

or thekindofpacking techniquesused toprotecta givensample

(Jacob et al., 2013) (i.e., compression, encryption).

Finally, Caballero et al. (2009) proposed a mixed dynamic

and static approach consisting on hybrid disassembly and

data-flow analysis to extract self-contained transformation

functions, identifying code and data dependencies, and

extracting the function interface (input and output parame-

ters). In particular, Caballero et al. applied cryptographic

function extraction to identify the unpacking routine of the

ZBotmalware, and employed it to statically unpack a different

sample of the same family.
Acknowledgement

We would like to acknowledge S21Sec for the malware sam-

ples described in this paper.

This research was partially supported by the Basque Gov-

ernment under a pre-doctoral grant given to Xabier Ugarte-
Pedrero (PRE_2013_2_65) and by the OTRI/Deiker at the Uni-

versity of Deusto under a predoctoral grant given to Iván

Garcı́a-Ferreira.
r e f e r e n c e s

Breiman L. Bagging predictors. Mach Learn 1996;24:123e40.
Caballero J, Johnson N, McCamant S, Song D. Binary code

extraction and interface identification for security
applications. In: Proceedings of the 17th Annual Network and
Distributed System Security Symposium, ISOC; 2009.
pp. 391e408.

Dem�sar J. Statistical comparisons of classifiers over multiple data
sets. J Mach Learn Res 2006;7:1e30.

Garner SR. Weka: The Waikato environment for knowledge
analysis. In: Proceedings of the New Zealand Computer
Science Research Students Conference; 1995. pp. 57e64.

Heyer LJ, Kruglyak S, Yooseph S. Exploring expression data:
identification and analysis of coexpressed genes. Genome Res
1999;9:1106e15.

Iman RL, Davenport JM. Approximations of the critical region of
the friedman statistic. Commun Statistics-Theory Methods
1980;9:571e95.

Intel. Intel 64 and ia-32 architectures software developer’s
manual; 2013.

Jacob G, Comparetti PM, Neugschwandtner M, Kruegel C, Vigna G.
A static, packer-agnostic filter to detect similar malware
samples. In: Detection of intrusions and Malware, and
vulnerability assessment. Springer; 2013. pp. 102e22.

Kang M, Poosankam P, Yin H. Renovo: a hidden code extractor for
packed executables. In: Proceedings of the 2007 ACM
workshop on Recurring malcode; 2007. pp. 46e53.

Kolter JZ, Maloof MA. Learning to detect malicious executables in
the wild. In: Proceedings of the 10th ACM SIGKDD
international conference on knowledge discovery and data
mining (KDD); 2004. pp. 470e8.

Lyda R, Hamrock J. Using entropy analysis to find encrypted and
packed malware. IEEE Secur Priv 2007;5:40e5.

McAfee. The good, the bad and the unknown. Available at, http://
www.mcafee.com/us/resources/white-papers/wp-good-bad-
the-unknown.pdf; 2009.

Morgenstern M, Pilz H. Useful and useless statistics about viruses
and anti-virus programs. In: Proceedings of the CARO
Workshop; 2010.

Perdisci R, Lanzi A, LeeW. Classification of packed executables for
accurate computer virus detection. Pattern Recognit Lett
2008a;29:1941e6.

Perdisci R, Lanzi A, Lee W. Mcboost: boosting scalability in
malware collection and analysis using statistical classification
of executables. In: Computer Security Applications
Conference, 2008. ACSAC 2008. Annual, IEEE; 2008b.
pp. 301e10.

Royal P, Halpin M, Dagon D, Edmonds R, Lee W. Polyunpack:
automating the hidden-code extraction of unpack-executing
malware. In: Proceedings of the 22nd Annual Computer
Security Applications Conference (ACSAC); 2006. pp. 289e300.

Santos I, Penya Y, Devesa J, Bringas PG. N-Grams-based file
signatures for malware detectionIn Proceedings of the 11th
International Conference on Enterprise Information Systems
(ICEIS), Volume AIDSS; 2009. pp. 317e20.

Schultz MG, Eskin E, Zadok F, Stolfo SJ. Data mining methods for
detection of new malicious executables. In: Proceedings of the
22th IEEE Symposium on Security and Privacy; 2001.
pp. 38e49.

Shafiq M, Tabish S, Farooq M. Pe-probe: leveraging packer
detection and structural information to detect malicious

http://refhub.elsevier.com/S0167-4048(14)00052-2/sref1
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref1
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref2
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref2
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref2
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref2
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref2
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref2
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref3
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref3
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref3
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref3
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref4
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref4
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref4
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref4
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref5
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref5
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref5
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref5
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref6
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref6
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref6
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref6
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref7
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref7
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref8
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref8
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref8
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref8
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref8
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref9
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref9
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref9
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref9
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref10
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref10
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref10
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref10
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref10
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref11
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref11
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref11
http://www.mcafee.com/us/resources/white-papers/wp-good-bad-the-unknown.pdf
http://www.mcafee.com/us/resources/white-papers/wp-good-bad-the-unknown.pdf
http://www.mcafee.com/us/resources/white-papers/wp-good-bad-the-unknown.pdf
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref13
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref13
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref13
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref14
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref14
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref14
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref14
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref15
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref15
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref15
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref15
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref15
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref15
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref16
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref16
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref16
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref16
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref16
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref17
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref17
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref17
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref17
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref17
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref18
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref18
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref18
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref18
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref18
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref19
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref19
http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 1 2 6e1 4 4144
portable executables. In: Proceedings of the Virus Bulletin
Conference (VB); 2009. pp. 29e33.

Shafiq M, Tabish S, Mirza F, Farooq M. Pe-miner: mining
structural information to detect malicious executables in
realtime. In: Recent advances in intrusion detection. Springer;
2009b. pp. 121e41.

Sharif M, Yegneswaran V, Saidi H, Porras P, Lee W. Eureka: a
framework for enabling static malware analysis. In:
Proceedings of the European Symposium on Research in
Computer Security (ESORICS); 2008. pp. 481e500.

Stewart J. Ollybone: semi-automatic unpacking on ia-32. In:
Proceedings of the 14th DEF CON Hacking Conference; 2006.

Sun L. REFORM: a framework for malware packer analysis using
information theory and statistical methods. Ph.D. thesis; 2012.

Ugarte-Pedrero X, Santos I, Bringas PG. Structural feature based
anomaly detection for packed executable identification. In:
Computational intelligence in security for information
systems. Springer; 2011. pp. 230e7.

Ugarte-Pedrero X, Santos I, Bringas PG. Boosting scalability in
anomaly-based packed executable filtering. In: Information
security and cryptology. Berlin Heidelberg: Springer; 2012.
pp. 24e43.

Wyke J. What is zeus?; 2011.

Xabier Ugarte-Pedrero finished his studies in Computer engi-
neering in 2010 at Deusto University. During 2010e2011, he
coursed a MSc in Information Security, at the University of
Deusto. He joined DeustoTech in september 2010. His research
interests are: malware unpacking and analysis, natural language
processing, software engineering andmicro-bot development and
digital electronics. He is currently a PhD student working in a
dissertation about malware unpacking.

Igor Santos finished his PhD in 2011 with a dissertation about
malware detection. He is a researcher in Deustotech, where he
conducts research focused mainly in the areas of information
security, malware detection, content filtering, natural language
processing, information retrieval methods, opinion mining, and
applied machine learning. He is also lecturer in the Faculty of
Engineering of the University of Deusto, where he has taught in
undergraduate and postgraduate courses.

Iván Garcı́a-Ferreira finished his studies in Computer Science in
2008 in Nottingham Trent University. In 2009 he obtained a
CompTIA Securityþ certification and joined an antivirus com-
pany. In 2010e2011 he coursed a MSc in Information Security at
the University of Deusto. As a result of the research for his master
thesis about security in windows applications, he found and
published several vulnerabilities in software. Nowadays, he is
working on his PhD in software verification and vulnerability
analysis in DeustoTech Computing, at the University of Deusto.

Sergio Huerta completed his Ph.D. in mathematics in February
2013 with a dissertation on rational homotopy. He joined Desu-
toTech in March 2013. His research interests include artificial in-
telligence, machine learning, digital security, malware detection,
malware diffusion and complex networks. He also teaches at the
Faculty of Engineering of the University of Deusto.

Borja Sanz completed his PhD in Computer Science in 2012. His
research area focuses on malware detection in mobile devices,
mainly on the Android platform, machine learning algorithms
and Natural Language Processing techniques. He also works on
the identification and modelling of new security threats.

Pablo G. Bringas, PhD in Computer Science and Artificial Intelli-
gence, MSc in Telecommunications, MSc in Technical Informatics
and Software Engineer. He is currently Head Researcher at Deus-
toTecheDeusto Technology Foundation, in the S3Lab (Laboratory
for Smartness, Semantics and Security), and Assistant Professor
at the University of Deusto. He is a member of the Executive
Committee of the Spanish National Consultation Council on Cyber
Security.

http://refhub.elsevier.com/S0167-4048(14)00052-2/sref19
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref19
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref19
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref20
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref20
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref20
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref20
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref20
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref21
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref21
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref21
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref21
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref21
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref22
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref22
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref23
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref23
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref24
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref24
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref24
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref24
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref24
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref25
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref25
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref25
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref25
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref25
http://refhub.elsevier.com/S0167-4048(14)00052-2/sref26
http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1016/j.cose.2014.03.012

	On the adoption of anomaly detection for packed executable filtering
	Introduction
	Dataset selection
	Feature selection
	Executable structure based features
	Heuristics
	General complementary heuristics
	Complementary heuristics related to the section of entry point
	Heuristics related to file entropy

	PE Header features

	Operational code frequency based analysis

	Distance-based anomaly detection
	Representation of normality
	Distance between files
	Dataset reduction
	Selection of a threshold

	Evaluation
	Evaluation of the method for portable executable structure based feature set
	Results when no dataset reduction is applied
	Results obtained for the reduced dataset

	Evaluation of the method for operational code frequencies
	Results when no dataset reduction is applied
	Results obtained for the reduced dataset

	Evaluation of the efficiency of both feature sets

	Conclusions and discussion
	Which is the feature set that best discriminates packed from not packed files?
	What is the impact of the data-reduction approach over the results obtained?
	What is the impact on the results of the different distance measures evaluated?
	What is the impact on the results of the different distance selection rules?
	Does our anomaly detection approach present sound results for the classification of packed and not packed files?

	Related work
	Acknowledgement
	References

