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Abstract. Over the last few years, computers and smartphones have
become essential tools in our ways of communicating with each-other.
Nowadays, the amount of applications in the Google store has grown
exponentially, therefore, malware developers have introduced malicious
applications in that market. The Android system uses the Dalvik virtual
machine. Through reverse engineering, we may be able to get the di�erent
opcodes for each application. For this reason, in this paper an approach
to detect malware on Android is presented, by using the techniques of
reverse engineering and putting an emphasis on operational codes used
for these applications. After obtaining these opcodes, machine learning
techniques are used to classify apps.
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1 Introduction

As we all known, in the last few years, mobile terminals, also known as smart-
phones, have become very popular devices. Nowadays, many smartphones have
more computing capabilities and memory than many computers that are only a
few years old.

Like any personal device, the smartphone uses an operating system, which
is usually pretty friendly for that the users do not have problems when using it.
Throughout history, di�erent operating systems to these devices have emerged.
In an interview with Andy Rubin, former Android boss, he stated that "there
should be nothing that users can access on their desktop that they cannot access
on their cell phone."[1]. Thanks to this sentence, we can demonstrate the progress
that these small computers are having. By its hardware, which consists of a
wide range of sensors such as camera, accelerometer and GPS, we are provided a
wealth of information and data, which put a number of additional requirements
to mobile operating systems.

People use mobile devices for a wide range of purposes as if they were desktop
computers: web browsing, social networking, online banking, and more. The so-
called smartphones also o�er features that are unique to mobile phones like, for
instance, SMS messaging, location data constantly updated, and ubiquitous ac-
cess. As a result of their popularity and functionality, smartphones are a growing
target of malicious activity.



Today, one of the most common ways to perform malicious actions is by us-
ing malicious code or malware. The term malware comes from the Anglo-Saxon
wordsMALicious and softWARE, which comes to mean malicious software. Typ-
ically, such software poses as legitimate applications to run its malicious actions
without the user's knowledge. One of the primary objectives of the malware is
to make enormous pro�t, whether economic or theft of information, for as long
as possible. In order to achieve this goal, these malicious applications try to stay
hidden in the system without the user to see an anomalous behaviour in the
device.

It is well known that malware has grown in recent years and that is has be-
come one of the biggest threats in recent times. According to Kaspersky Labs
antivirus company, about 145,000 new malware samples for mobile devices ap-
peared in 2013, tripling the samples detected in the previous year1. Lately, mal-
ware has increased exponentially, specially in the Android platform.

The section 2 is a small state of the art with related researchs of android
systems that have been carried out by the scienti�c community. In section 3
we present the scope of this experiment, and how we obtained the necessary
information to perform it. Section 4 summarizes the di�erent classi�ers used for
this experiment. Section 5 makes a statement of the results, and the parameters
to consider with such experimental validation. Finally, the section 6 shows the
conclusions obtained by the experiment and some possible lines of future work
to be carried out.

2 Related Work

The Android operating system is designed to run each application on its own
virtual machine, Dalvik. This type of implementation makes the system more
robust and limits the damage caused by bad programming[2].

In addition, the Android systems are supplied with a permission system that
does not allow third party applications to access resources that should not be
accessible. These permissions are assigned to the application at installation time
but the user is the one that has to make that �nal decision. He or she is the person
to choose to install the application or not, depending on the permissions that the
application has. Malicious applications developers can request more permissions
than they really need, for example, to obtain private user information[3]. Along
this line, a research which was conducted by Sanz et al. [4] showed us that just
by taking a look at the permissions that the app required, they could classify
it as malicious or benign. Other authors have also used this feature in their
researches [5, 6]. Nevertheless, Android is a system that is constantly changing
and now takes groups of permissions. With those clusters, these approaches lose
e�ectiveness.

1 http://www.kaspersky.com/about/news/virus/2014/

Mobile-malware-evolution-3-infection-attempts-per-user-in-2013?

ClickID=c4azsxkfiallqkfvsvzavqvkz4ixn4q7fnqn



A classical approach in mobile devices is to analyse the behaviour of di�erent
hardware components, such as the CPU or the battery, searching for anoma-
lies[7, 8]. However, even if it is true that these approaches can help us discover
strange behaviour in the system, they have the problem of the complexity in the
programming, and also, the constant updates that a program could have in a
month. These problems can impact in these elements but not for that reason are
malicious applications.

Meanwhile, Schmidt et al. [9] developed a framework that used system calls
as a feature for the classi�cation of benign and malicious applications in the
Android system. Still, this type of classi�cation has the problem that it is very
expensive to get such information. Furthermore, depending on the number of
calls, the performance of this approach may be very low.

Shabtai et al. [10] did some research using the decompiled �les of an Android
application. In this study, they managed to classify malware using extracted
features, such as the classes used by the application, as well as some machine
learning techniques. For this approach we need a very large number of features
extracted from the applications to get a good ranking.

One of the techniques that is often used in the creation of Android malware is
to use a legitimate application and include a malicious code in it. Along this line,
Zhou et al. [11] did some research on third party app stores. A major limitation
of this approach is the necessity of the legitimate application to see if malicious
code is inserted into it.

3 Experimentation scope

In this context, following the guidelines used for the detection of malicious code
on desktops led by Santos et al [12], the authors propose a study that consists
of: 1) Capture of information on the operational codes used by an application,
2) malicious or benign classi�cation of an application, by using machine learning
techniques.

After obtaining all applications, the main objective of the research is the
ability, through supervised learning techniques, to detect with the fewest false
positives and false negatives, the malicious apps generated to be used within the
Android platform.

In the next subsections, we de�ne the methodology that has been used for
modelling the applications, as well as its characteristics that will be used to
present this proof of concept. This methodology uses all the possibilities of the
application created by the University of Waikato, Weka2, to employ di�erent
ranking algorithms.

2 Weka: Data Mining Software is a collection of machine learning algorithms for au-
tomated data mining tasks: http://www.cs.waikato.ac.nz/ml/weka/



3.1 Samples collection

On the one hand, to obtain benign code samples, we used the Selenium3 applica-
tion for automating web browser. With this automation we use the application
web APIfy4 for downloading Android applications from di�erent categories.

On the other hand, the samples of malicious code have been used throughout
the dataset provided by Android Genome Project [13].

3.2 Information Gathering

This phase has proceeded to create a platform in the programming language C#.
This platform has been implemented as a plugin for obtaining di�erent opcodes
used by an apk to execute their actions. Studying these opcodes, a particular
one called RSUB_INT has been found. It is only published on benign code
applications, specially in 639 applications.

4 Machine learning and supervised classi�cation

In this paper the authors present an experimental model that makes use of mod-
eling techniques described above. The objective is to obtain the opcodes for such
application that may be employed by some classi�ers for classify applications.

In problems of machine learning and supervised classi�cation, a phenomenon
represented by a vector X in Rd which can be classi�ed in K ways according to
label Y , is studied.

To this end, we have Dn = {(Xi, Yi)}ni=1 called training set, where Xi repre-
sents the events corresponding to the phenomenon X while Yi is the label that
puts it in the category that the classi�er takes as correct. For example, in the
present case, we are talking about an application Xi de�ned by a set of opcodes
that represent it, where Yi the category assigned to that application as estimated
by the classi�er.

In this learning case, all classi�ers were done using the method of represen-
tation of �vector space� model for the representation as a vector of di�erent
frequencies of opcodes.

This method represents documents in natural language to a formal way using
vectors in a multi-dimensional linear space. The basic form of this method is
represented by the cosine of the angle between the two vectors generated for the
similarity between the terms.

4.1 Classi�cation algorithms

In this research, we have chosen to compare the performance of di�erent clas-
si�cation algorithms given the occasionally notable di�erences in e�ectiveness
that can be observed in similar experiments conducted in other areas [14]. The

3 http://docs.seleniumhq.org/
4 http://apify.ifc0n�g.com/



algorithms used for the tests in Section 5 are the following: Random Forest,
J48, Bayes Theorem-based algorithms, K-Nearest Neighbor (KNN), Sequential
Minimal Optimization (SMO) and Simple Logistic.

� Random Forest. Random Forest is an aggregation classi�er developed by
Leo Breiman [15] which is formed by a bunch of decision trees considered
in a way in which the introduction of a stochastic component improves de
precision of the classi�er , either in the construction of the trees or either in
the training dataset.

� J48. J48 is an open source implementation for Weka of the C4.5 algorithm
[16]. C4.5 creates decision trees given an amount of training information
making use of the concept information entropy [17]. The training data consist
of a group S = s1, s2, ..., sn of already classi�ed samples s1 = x1, x2, ..., xm in
which x1, x2, ..., xm represent the attributes or characteristics of each sample.
In each node of the decision tree, the algorithm will choose the attribute in
the data that most e�ciently divides the dataset in enriched choruses of a
given class using the entropy di�erence or the already mentioned normalized
information gain as selective criteria.

� Bayes Theorem-based algorithms. The Bayes Theorem, the base for the
Bayesian inference, is a statistical method which determines, based on a
number of observations, the probability of a certain hypotheses being true.
For the classi�cation needs here exposed, this is the most important capa-
bility of Bayesian networks: in our case, the probability of an app being
malicious or bening The theorem is capable of adjusting the probabilities as
soon as new observations are performed. Thus, Bayesian networks conform
a probabilistic model that represents a collection of randomized variables
and their conditional dependencies by means of a directed graph. We have
trained our models with three di�erent search algorithms: K2, Hill Climbing
and TAN.
In this group we have also considered the inclusion of Naïve Bayes. The idea
is that if the number of independent variables managed is too big, it does
not make any sense to make probability tables [18]. Then, the reduced model
with simpli�ed datasets give to the algorithm the appellative of Naïve.

� K-Nearest Neighbor (KNN). The KNN algorithm is one of the most sim-
ple classi�cation algorithms amongst all of those available for the machine
learning techniques. It takes decisions based on the results of the k closest
neighbours to the analysed sample in the experimental n-dimensional space
(∀k ∈ N).
In this case, and taken into account the simplicity of the algorithm, we have
explored even more values (k = 1, 3, 5) so as to determine if this enlargement
would throw any kind of additional advantage.

� Sequential Minimal Optimization (SMO). SMO, invented by John Platt [19],
is an iterative algorithm used for the solution of the optimization problems
that appear when training Support Vector Machines (SVM). Basically, SMO
divides the problem into a series of smaller subproblems which are analyti-
cally solved lately.



At this point, we have selected di�erent kernels with these algorithms: a
polynomial kernel, a normalized polynomial kernel, RBF and Pearson-VII.

� Simple Logistic. This algorithm is used to predict the result of a variable
function of the independent variables, or predictor. The logistic regression
formula is:

Yi =
1

1 + e−(β0+β1X1,i+...+βdXd,i)
(1)

Being Yi the classi�cation to predict by the model, in our case it would
be goodware or malware. The variable X is the vector with the opcodes
generated for a speci�c application, �nding that Xd,i is the value assigned to
an n-gram of opcodes in d enforcement position that is in row i. Parameters
beta ast are determined by the algorithm in the training phase.

So, having a downloaded and validate, using the VirusTotal platform5, dataset
as goodware, and secondly, using the Android Genome Project[13] dataset with
malicious applications, it has been easy to label the purpose of each of the ap-
plications as goodware or malware to generate the training datasets used in the
section 5.

5 Experimental validation

Next step, we recollect the information stored in each of the apps. First of all,
a total of 1,494 applications from Google Play 6 were downloaded. In particular
we got them from the lists of "the most free downloaded", in "the most free
downloaded in Spanish", applications that "have generated more revenue", those
of "lifestyle" and those of "tools".

The choice of these lists for obtaining samples was completely random to
have a heterogeneous applications dataset from Google's store. To verify that
the samples do not contain malicious code, we have used the online platform
VirusTotal. This platform uses 43 antivirus engines to scan the sample that pre-
viously has been sent. This analysis returns the total number of engines that
have been detected as malicious and malware is for that engine. Since the ex-
periment is desired to have all possible clean malware samples, it was decided
that if only one antivirus engine detected it sample as malicious, it would be
separated from the dataset. The ones that were detected as adware7, were also
separated from that dataset.

After the analysis with VirusTotal, we found that we had a 14.59% of appli-
cations considered malware or adware in our dataset. Speci�cally there were 218
apps which, according to the metrics we have said before, could not be within
the dataset itself benign code. Given that for the dataset of malicious code we
used the one provided by the Android Genome Project, which consists of 1,259

5 https://www.virustotal.com/es/
6 https://play.google.com/store
7 Adware is a type of action hidden in applications, which send targeted advertisements
to our device when you run an application



samples, so our dataset benign still had to be reduced in 17 more samples to
be balanced . These samples were selected randomly from the total, leaving the
�nal data set with 2,518 samples applications, half benign and half malignant.

For the information of the samples was done using the Dedexer tool, a dis-
assembler for .dex �les that is on the Android platform. Using this tool, we
obtained the operational codes of the di�erent samples analyzed. These codes
are the minimum operating instructions means the Dalvik virtual machine to
run applications on it. Figure 1 we see a sequence extracted from an Android
application opcodes.

Fig. 1. Example of operational codes with variables used in an Android application.

const-string v0, aCursor
invoke-interface v3, v0, <ref Map.get(ref)

imp. @ _def_Map_get@LL>
move-result-object v0
check-cast v0, <t: String>
const-string v1, aHasmore
invoke-interface v3, v1, <ref Map.get(ref)

imp. @ _def_Map_get@LL>
move-result-object v1
check-cast v1, <t: String>
const-string v3, aTrue_0
invoke-virtual v3, v1, <boolean String.equalsIgnoreCase(ref)

imp. @ _def_String_equalsIgnoreCase@ZL>
move-result v7
invoke-virtual this, v0,

<boolean KiwiPurchaseUpdatesCommandTask.isNullOrEmpty(ref)
imp. @ _def_KiwiPurchaseUpdatesCommandTask_isNullOrEmpty@ZL>

move-result v1
if-eqz v1, loc_C1AD2
sget-object v6, O�set_BEGINNING

With all the samples we have disassembled, we generated opcode �les ranging
from 10 KB to 32 MB for the goodware and from 5 KB to 20 MB in the case of
malware. In these �les we can meet the di�erent operational codes used by both
benign and malicious applications. From here there has been a Ar� �le for use
with the Weka tool. For each of them, an experiment to demostrate its validity
as predictors using di�erent classi�ers detailed in section 4.

Thus, this section will detail the results obtained when evaluating the di�er-
ent opcodes.

This evaluation will be performed according to the following parameters,
usually employed to compare the performance of di�erent algorithms in the �eld
of machine learning:

� True Positive Ratio (TPR),which is calculated by dividing the number of
bening apps correctly classi�ed (TP ) between the total samples taken (TP+
FN).

TPR =
TP

(TP + FN)
(2)



Table 1. Performance of classi�ers when analyzed correctly categorize applications
using opcodes.

Classi�er TPR FPR Precision (%) ROC

IBk 1 0,94408 0,04217 95,761 0,97198
IBk 3 0,93558 0,04202 95,727 0,97924
IBk 5 0,93344 0,04432 95,495 0,98102

Simple Logistic 0,92177 0,05535 94,379 0,97839
NaiveBayes 0,83789 0,20294 80,561 0,88461
BayesNet K2 0,82057 0,19325 81,006 0,87881
BayesNet TAN 0,89365 0,09793 90,181 0,94768
SMO PolyKernel 0,92995 0,04916 95,022 0,94039

SMO Norm. PolyKernel 0,90985 0,04828 95,002 0,93078
J48 0,92581 0,05901 94,071 0,94434

RandomTree 0,91454 0,06147 93,749 0,92654
RandomForest I=10 0,95147 0,05091 94,953 0,98879
RandomForest I=50 0,94853 0,03645 96,322 0,99208
RandomForest I=100 0,94829 0,032 96,758 0,99255

� False Positive Ratio (FPR),which is calculated by dividing the number
of samples corresponding to malicious app whose classi�cation (FP ) were
missed by the total number of samples (FP + TN).

FPR =
FP

(FP + TN)
(3)

� Precisión (P ), which is calculated by dividing the total hits by the total
number of instances in the dataset.

P =
TP + TN

TP + FP + TN + FN
(4)

� Area Under ROC Curve (AUC) [14], that establishes the relationship amongst
the false negatives and the false positives. The ROC Curve it is usually used
to generate statistics that represent the performance or the e�ectiveness in
a wider sense of a classi�er.

As such, the results are displayed in Table 1. The best results have been
obtained for the Random Forest classi�er with the number of trees equal to 100,
with a classi�cation accuracy of 96.758% and value of the area under the ROC
curve of 0.99255.

In contrast, it has been observed that classi�ers that have worked have been
worse Naive Bayes (with an overall accuracy of 80.561 % and a value of AURC
of 0.88461) and BayesNet with K2 algorithm (with a total accuracy of 81.006 %
and a value of AURC of 0.87881).

In Table 2 we can see the results of classi�cation of malicious applications
using application permissions on our dataset, conducted by Sanz et al. [4]. In
this table we can see one of the best classi�ers using application permissions is



Table 2. Performance of classi�ers when analyzed correctly categorize applications
using permissions.

Classi�er TPR FPR Precision (%) ROC

IBk 1 0,94615 0,04924 95,103 0,98597

IBk 3 0,93701 0,05281 94,717 0,98737

IBk 5 0,93312 0,05893 94,127 0,98709

Simple Logistic 0,96235 0,0587 94,288 0,9894

NaiveBayes 0,95392 0,21255 81,854 0,95679

BayesNet K2 0,96981 0,22208 81,463 0,96868

BayesNet TAN 0,97689 0,09284 91,378 0,98233

SMO PolyKernel 0,96616 0,05957 94,221 0,95329

SMO Norm. PolyKernel 0,9745 0,05433 94,751 0,96009

J48 0,95195 0,06457 93,686 0,96116

RandomTree 0,93178 0,06179 93,824 0,95412

RandomForest I=10 0,961 0,04892 95,189 0,99148

RandomForest I=50 0,95806 0,04551 95,511 0,99361

RandomForest I=100 0,94829 0,04654 95,423 0,99382

Random Forest with number of trees equal to 100, wich is taking the area under
the ROC curve of 0.99382 and an accuracy of 95.423%.

We can also see that one of the worst is SMO classi�ers using Normalized
PolyKernel with an area under the ROC curve of 0.95329 and an accuracy of
94.751 %.

Comparing the two methods it can be seen that the two approaches follow
the same trend roughly in values obtained. On the one hand we can see that
the area under the ROC curve values tend to be 95% or higher in most of the
classi�ers. On the other hand if you consider that the best classi�er for both
approaches is the Random Forest Tree number 100.

6 Conclusions and future work

The opcodes are instructions performed by an application. All Apps must use
these codes to perform the activities for which they are scheduled. In this paper
we use the operational codes with machine learning techniques for classi�cation
of malicious apps on the Android operating system, with a comparison with
application permissions. To validate our approach, we collected 1,259 samples
totally benign applications from Google Play and 1,259 Android malware sam-
ples obtained from the �Android Genome Project�. After that, the operational
codes were extracted and models were created to evaluate each con�guration of
classi�ers by the area under the ROC curve.

As the application permissions are very quick to get, operational codes require
more computation time, thus penalizing the performance of the approach. In



contrast, nowadays there are no longer unique permissions as before, but there
are groups of permissions, making this approach not so optimal. Therefore, today
you can use this method as one of the �rst approaches to malware detection on
Android.

As future work, the analysis of 639 samples containing the opcode �RSUB_INT�
is proposed. By doing this we would be able to see why this opcode only appears
in benign samples.

This study may result in the generation of a pattern. This would be used to
detect unknown malware faster and it could also limit the amount of possible
malicious codes in many applications.
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