
The evolution of permission as feature for

Android Malware detection

José Gaviria de la Puerta, Borja Sanz, Igor Santos Grueiro and Pablo García
Bringas

DeustoTech Computing, University of Deusto
jgaviria@deusto.es, borja.sanz@deusto.es, isantos@deusto.es,

pablo.garcia.bringas@deusto.es

Abstract. Over the last few years, the presence of mobile devices in
our lives has increased, o�ering us almost the same functionality as per-
sonal computers. Since the arrival of Android devices, the amount of
applications available for this operating system has increased exponen-
tially. Android has become one of the most popular operating systems
in these devices. In fact, malware writers insert malicious applications
into Android using the Play store and other alternative markets. Lately,
many new approaches have been made. Sanz et al, for instance, presented
PUMA, a method used to detect malicious apps just by taking a look at
the permissions. In this paper, we present the di�erences between that
interesting approach and a newer and bigger dataset. Besides, we also
present an evolution in the permissions along the years.

Keywords: Android, Malware, Permissions, Detection, Machine Learn-
ing.

1 Introduction

Nowadays, smartphones are becoming increasingly popular. These small com-
puters come with us everywhere, allowing us to check our email, browse the
Internet or play games with our friends. However, in order to be able to use all
the possibilities that these devices o�er, we need to install some applications in
our smartphones.

When the �rst smartphones appeared, some users had lots of problems when
installing those apps, as it was really di�cult to �nd a centralized place where
they could obtain them. That is why, if they wanted to do that, the only alter-
native they had was to search for them on the Internet.

When the users �nally found the application they wanted to install, prob-
lems began. In order to protect the device and avoid piracy, several operating
systems, such as Symbian, employed an authentication system based on certi�-
cates that caused several inconveniences for the users (e.g., they could not install
applications even if they had bought them).

Nowadays, there are many new methods to distribute these applications.
Thanks to the deployment of Internet connections in mobile devices, users can



install any application without even connecting the mobile device to the com-
puter. Apple's AppStore1 was the �rst store to implement this new model and
was so successful that other manufacturers, such as Google, RIM and Microsoft,
have followed the same business model developing application stores accessible
from the device. Now, users just need to create an account for an application
store to buy and install new applications.

This new way of selling apps in a market created a new factor for the com-
munity of developers. It was a new world for them, so they started to create
apps for every existing mobile platform. Furthermore, those factors have drawn
developers' attention to these platforms. According to Statista2, the number of
available applications on the App Store is over 1,200,000, whereas the Play Store
of Android, which is the operating system of Google, has over 1,300,000. Figure
1 represents all the apps by operating system in July 2014.

Fig. 1. Mobile apps by operating system in July 2014.

In the same way, malicious software has arrived to both platforms. There are
several applications whose behaviour is, at least, suspicious of trying to harm
the users. There are other applications that are de�nitively malware. That is the
reason why, those platforms have used di�erent approaches to protect against
this type of software.

According to their response to the US Federal Communication Commission's
July 20093, Apple applies a rigorous review process made by at least two re-

1 http://www.apple.com/iphone/features/app-store.html
2 http://www.statista.com
3 http://online.wsj.com/public/resources/documents/wsj-2009-0731-FCCApple.pdf



viewers. In contrast, Android relies on its security permission system and on
the user's sound judgment. Unfortunately, users have usually no security con-
sciousness and they do not read the required permissions before installing an
application. This is one of the most important things that the security teams
want the users to learn.

In spite of the fact that both AppStore and Play Store include clauses in the
terms of services that urge developers not to submit malicious software, both
have hosted malware in their stores. One of the solutions that these enterprises
have developed, is to remove remotely the malicious applications that are in-
stalled in the devices. Sadly, the usage of these models is insu�cient to ensure
the user's security, and that is why the new models have been included.

It is demonstrated that the usage of machine learning techniques for generic
malware detection and classi�cation is widely applied in the scienti�c commu-
nity[?]. Besides, several approaches [?,?] have been proposed to classify appli-
cations specifying the malware class; e.g., trojan, worms, virus; and even the
malware family.

Section 2 explains the permission security system that is used by Android.
In section 3 the both dataset, malware and goodware, are exposed. We can also
see how we obtained the goodware dataset.

The next section is the evolution of the permissions. In this section we can
see a graph with the di�erence between permissions in di�erent times.

Section 4 shows us all the experimentation of the paper. Here, all the algo-
rithms that we use in the approach are included. Moreover, the results and the
discussion are included in it. Section 5 presents the conclusions of the paper.

2 Permission in Android

An additional security system that Android provides the operating system is the
"permission" mechanism. With it, the S.O. enforces the restrictions of each app
in the mobile device.

The normal functioning of these permissions is quite simple: for example, if
one app wants to use the connectivity through Internet, it has to request the
permission associated with the connection to it. These permissions are usually
given at installation time, being the user the person that has to take the decision
of installing the app after reading and understanding the permissions it requests.

Fig. 2. Permissions in a Manifest.xml �le for one application.

Figure 2 is an example of a Manifest.xml with di�erent permissions for
an application. All the permissions must appear in the clause entitled "uses-



permission". If an app wants to access the Internet and does not have the "an-
droid.permission.INTERNET ", it will not be able to do it.

3 Information gathering

In this paper, we have chosen to compare two di�erent datasets to see their
evolution over the last few years in terms of permissions selected by the apps.

3.1 Older dataset

The �rst dataset is the one that was selected by Sanz et al. in their paper called
"PUMA: Permission Usage to Detect Malware in Android" [?]. This dataset is
composed by a total of 357 applications of goodware, and 249 apps of malicious
software. Malware samples were gathered by means of VirusTotal4, which is
an analysis tool for suspicious �les. We have used their service called Virus-
Total Malware Intelligence Services, which is available for researchers to perform
queries to their database.

With the goal of developing the goodware dataset, Sanz et al. gathered a col-
lection of 1811 Android applications of di�erent types. In order to classify them
properly, they chose to follow the same naming as the o�cial Android market.
To this end, they used an uno�cial Android Market API5 to connect with the
Android market and, therefore, obtain the classi�cation of the applications.

They selected the number of applications within each category according to
their proportions in the Play Store, before it was called Android Market. Despite
of Android has got some types of applications, they did not make distinctions to
choose one, or more, of these types. So, in that dataset all types are represented.
Then, they selected randomly the apps from di�erent categories.

3.2 New dataset

The second dataset has been generated using two di�erent techniques. Goodware
samples have been gathered using the Selenium6 application for automating web
browser. With this automation we use the application web APIfy7 to download
Android applications from di�erent categories.

Totally, we have downloaded 7.062 applications from Google Play. These apps
have been gathered from di�erent available categories in that market. That is
exactly what we see in Table 1.

The choice of these lists for obtaining samples was completely random, as
what we wanted was to have a heterogeneous applications dataset from Google's
store. To verify that the samples did not contain malicious code, we used the

4 http://www.virustotal.com
5 http://code.google.com/p/android-market-api/
6 http://docs.seleniumhq.org/
7 http://apify.ifc0n�g.com/



Table 1. Number of App by category

Category Number Category Number

BUSINESS 179 GAME ACTION 156
LIFESTYLE 168 GAME PUZZLE 170
SHOPPING 163 GAME SIMULATION 165
BOOKS AND REFERENCE 173 ENTERTAINMENT 157
MEDICAL 176 GAME TRIVIA 161
GAME STRATEGY 163 GAME ROLE PLAYING 159
GAME ADVENTURE 161 NEWS AND MAGAZINES 170
GAME CASUAL 160 FINANCE 173
MEDIA AND VIDEO 156 GAME WORD 170
GAME CARD 176 APP WALLPAPER 163
LIBRARIES AND DEMO 185 PRODUCTIVITY 178
WEATHER 172 MUSIC AND AUDIO 156
GAME EDUCATIONAL 170 COMMUNICATION 177
GAME BOARD 175 HEALTH AND FITNESS 172
EDUCATION 179 COMICS 61
GAME FAMILY 157 GAME ARCADE 169
GAME SPORTS 168 GAME RACING 168
SOCIAL 163 TRAVEL AND LOCAL 174
GAME CASINO 175 PHOTOGRAPHY 159
TRANSPORTATION 174 TOOLS 177
SPORTS 161 PERSONALIZATION 111
GAME MUSIC 162

Total: 7.062

online platform VirusTotal. This platform uses 43 antivirus engines to scan the
sample that has been sent previously. This analysis returns the total number
of engines that have been detected as malicious and malware is for that engine.
Since the experiment was desired to have all the possible clean malware samples,
we made the decision that if a sample was detected as malicious by at least one
of the antivirus engines, it would be immediately separated from the rest of
the dataset. Furthermore, the ones that were detected as adware8, were also
separated from that dataset right away.

After �nishing that analysis, we chose a total of 5.511 goodware apps. This
result implied that 21.96% of the downloaded apps were considered malware by
at least one antivirus engine.

The malware dataset was gathered from the Drebin malware dataset [?],
which is composed by a total of 5,560 samples of malware and which is divided
into di�erent families.

8 Adware is a type of action hidden in applications, which send targeted advertisements
to our device when you run an application



3.3 Permissions through the years

Previously, it has been mentioned what a manifest �le is. In it, we can see all
the permissions that an application requests to the user. Android, for instance,
has got a total of 150 permissions de�ned in its API.

Despite of this, some companies, like, for example, Samsung, have made their
own group of permissions for using their terminal. In this experiment we do not
study this type of permissions, we only look at the permissions of the Android
Platform.

Figure 3 shows that there is one permission that every app in the market
requests: "Internet". Besides, we can also see that, nowadays, the number of
permissions required by many malware has increased greatly over the last few
years, something that indicates that malware is more sophisticated now.

Fig. 3. Di�erence between permissions request in PUMA dataset and this experiment
dataset.

4 Experimental validation

To compare the two datasets, we have employed supervised machine learning
methods to classify Android applications into malware and benign software.
To this extent, we have used Waikato Environment for Knowledge Analysis
(WEKA)9. In particular, we used the classi�ers speci�ed in Table 2. To eval-
uate the performance of machine-learning classi�ers, k-fold cross validation is

9 http://www.cs.waikato.ac.nz/ml/weka/



usually used [?]. Thereby, for each classi�er we tested, we performed a k-fold
cross validation [?] with k = 10. In this way, our dataset was split 10 times into
10 di�erent sets for learning (90% of the total dataset) and testing (10% of the
total data).

Table 2. Algorithms that are used for classi�cation.

Algorithms

IBK 1
IBK 3
IBK 5

SimpleLogistic
NaiveBayes
BayesNet K2
BayesNet TAN
SMO Poly
SMO NPoly

J48
RandomTree

RandomForest 10
RandomForest 50
RandomForest 100

4.1 Machine learning algorithms

In this research, we chose to compare the performance of di�erent classi�cation
algorithms given the occasionally notable di�erences in e�ectiveness that can be
observed in similar experiments conducted in other areas [?]. The algorithms
used for the tests were the following: Random Forest, J48, Bayes Theorem-
based algorithms, K-Nearest Neighbor (KNN), Sequential Minimal Optimization
(SMO) and Simple Logistic.

� Random Forest. Random Forest is an aggregation classi�er developed by
Leo Breiman [?] which is formed by a bunch of decision trees considered
in a way in which the introduction of a stochastic component improves the
Accuracy of the classi�er, either in the construction of the trees or either in
the training dataset.

� J48. J48 is an open source implementation for Weka of the C4.5 algorithm [?].
C4.5 creates decision trees given an amount of training information making
use of the concept information entropy [?]. The training data consist of
a group S = s1, s2, ..., sn of already classi�ed samples s1 = x1, x2, ..., xm in
which x1, x2, ..., xm represent the attributes or characteristics of each sample.
In each node of the decision tree, the algorithm will choose the attribute in
the data that most e�ciently divides the dataset in enriched choruses of a
given class using the entropy di�erence or the already mentioned normalized

information gain as selective criteria.



� Bayes Theorem-based algorithms. The Bayes Theorem, the base for the
Bayesian inference, is a statistical method which determines, based on a
number of observations, the probability of a certain hypotheses being true.
For the classi�cation needs here exposed, this is the most important capa-
bility of Bayesian networks: in our case, the probability of an app being
malicious or bening The theorem is capable of adjusting the probabilities as
soon as new observations are performed. Thus, Bayesian networks conform
a probabilistic model that represents a collection of randomized variables
and their conditional dependencies by means of a directed graph. We have
trained our models with three di�erent search algorithms: K2, Hill Climbing
and TAN.
In this group we have also considered the inclusion of Naïve Bayes. The idea
is that if the number of independent variables managed is too big, it does
not make any sense to make probability tables [?]. Then, the reduced model
with simpli�ed datasets give to the algorithm the appellative of Naïve.

� K-Nearest Neighbor (KNN). The KNN algorithm is one of the most sim-
ple classi�cation algorithms amongst all of those available for the machine
learning techniques. It takes decisions based on the results of the k closest
neighbours to the analysed sample in the experimental n-dimensional space
(∀k ∈ N). In this case, and taken into account the simplicity of the algo-
rithm, we have explored even more values (k = 1, 3, 5) so as to determine if
this enlargement would throw any kind of additional advantage.

� Sequential Minimal Optimization (SMO). SMO, invented by John Platt [?],
is an iterative algorithm used for the solution of the optimization problems
that appear when training Support Vector Machines (SVM). Basically, SMO
divides the problem into a series of smaller subproblems which are analyti-
cally solved lately.
At this point, we have selected di�erent kernels with these algorithms: a
polynomial kernel, a normalized polynomial kernel.

� Simple Logistic. This algorithm is used to predict the result of a variable
function of the independent variables, or predictor. The logistic regression
formula is:

Yi =
1

1 + e−(β0+β1X1,i+...+βdXd,i)
(1)

Being Yi the classi�cation to be predicted by the model, in our case it would
be goodware or malware. The variable X is the vector with the extracted
permissions for a speci�c application, �nding that Xd,i is the value assigned
to an n-gram of permissions in d enforcement position that is in row i.
Parameters beta ast are determined by the algorithm in the training phase.

4.2 Validation employed parameters

This evaluation was performed according to the following parameters, usually
employed to compare the performance of di�erent algorithms in the �eld of
machine learning:



� True Positive Ratio (TPR),which is calculated by dividing the number of
bening apps correctly classi�ed (TP ) between the total samples taken (TP+
FN). The formula is:

TPR =
TP

(TP + FN)
(2)

� False Positive Ratio (FPR),which is calculated by dividing the number of
samples corresponding to malicious apps whose classi�cation (FP ) were
missed by the total number of samples (FP + TN). The formula is:

FPR =
FP

(FP + TN)
(3)

� Accuracy (P ), which is calculated by dividing the total hits by the total
number of instances in the dataset. The formula is:

P =
TP + TN

TP + FP + TN + FN
(4)

� Area Under ROC Curve (AUC) [?], that establishes the relationship amongst
the false negatives and the false positives. The ROC Curve it is usually used
to generate statistics that represent the performance or the e�ectiveness in
a wider sense of a classi�er.

4.3 Results and discussion

Using the algorithms and the parameters above mentioned to compare the per-
formance, the Table 3 shows us the di�erent results recovered with both datasets.
The �rst question that we solved was if the usage of a bigger dataset improved
the classi�cation or not. Seeing the result in Table 3, all the algorithms improve
their accuracy and all their parameters. Once again, it is also demonstrated that
the best algorithm is Random Forest but using a di�erent number of trees.

Something curious is the values of the FPR parameter in Drebin dataset.
Moreover, the good values of AUC are also important, being of 0.99 in more
than one case.

Using the new dataset, all the methods achieved accuracy rates higher than
85%. The best classi�er, in terms of accuracy, is Random Forest, with 100 trees.

Also in terms of TPR the best result that we have obtained is 0.97 in the
classi�ers Random Forest with 10, 50 and 100 trees, SMO with PolyKernel and
Normalized PolyKernel, Bayes Net with TAN and Simple Logistic. The lowest
FPR goes for Random Forest with 10, 50 and 100 trees and IBK with K=1.

5 Conclusions

Permissions are the most recognisable security features in Android. The user
must accept them in order to install any application. In this paper, we validate



Table 3. Result for the classi�cation algorithms using the PUMA dataset and the
Drebin dataset

PUMA Dataset
Algorithm TPR FPR AUC Accuracy

IBK 1 0.92 0.21 0.90 85.55%
IBK 3 0.90 0.22 0.89 83.96%
IBK 5 0.87 0.24 0.88 81.91%
SimpleLogistic 0.91 0.23 0.89 84.08%
NaiveBayes 0.50 0.15 0.78 67.64%
BayesNet K2 0.45 0.11 0.77 67.07%
BayesNet TAN 0.53 0.16 0.79 68.51%
SMO Poly 0.91 0.26 0.83 82.84%
SMO NPoly 0.91 0.19 0.86 85.77%
J48 0.87 0.25 0.86 81.32%
RandomTree 0.90 0.23 0.85 83.32%
RandomForest 10 0.92 0.21 0.92 85.82%
RandomForest 50 0.91 0.19 0.92 86.41%
RandomForest 100 0.91 0.19 0.92 86.37%

DREBIN Dataset
Algorithm TPR FPR AUC Accuracy

IBK 1 0.96 0.04 0.99 95,66%
IBK 3 0.96 0.05 0.99 94,93%
IBK 5 0.95 0.06 0.99 94,30%
SimpleLogistic 0.97 0.06 0.99 93,91%
NaiveBayes 0.93 0.14 0.96 86,81%
BayesNet K2 0.96 0.16 0.97 85,83%
BayesNet TAN 0.97 0.10 0.98 90,55%
SMO Poly 0.97 0.07 0.95 93,45%
SMO NPoly 0.97 0.05 0.96 94,70%
J48 0.96 0.05 0.98 95,06%
RandomTree 0.95 0.05 0.96 94,89%
RandomForest 10 0.97 0.04 0.99 95,63%
RandomForest 50 0.97 0.04 0.99 96,00%
RandomForest 100 0.97 0.04 0.99 96,05%

the viability of the usage of permissions as a mechanism to detect malware using
machine-learning.

In order to validate the previous scope, we collected a total amount of 5,511
goodware samples. Also, we used the Drebin dataset as malware dataset. Using
di�erent classi�ers, we generated the models and evaluated their con�guration
with the Area Under ROC Curve (AUC). We obtained a 0.99 of AUC using the
Random Forest classi�er.

In light of these results and in spite of the fact that in the future this approach
could change, the viability of Sanz's approach has been demonstrated. Nowadays,
Android uses a group of permissions, so, with this approach we do not know if a



malicious application is using all the permissions that it requests or not. However,
this could be used as a �rst step before a more extensive analysis.

In future lines, as Drebin dataset is composed by families of malware, using
their permissions and machine learning techniques, we could obtain their family.
Besides, as the malware in Android is a problem that is growing exponentially
every day,we believe that the creation of a dynamic tool by the community would
be essential.


