
Using Compression Models
for Filtering Troll Comments

Jorge de-la-Peña-Sordo, Igor Santos, and Pablo G. Bringas
S3Lab, DeustoTech - Computing, University of Deusto, Bilbao, Spain

Email: {jorge.delapenya, isantos, pablo.garcia.bringas}@deusto.es

Abstract—Internet is evolving. How the content is generated
has changed and currently, users and readers of a site can create
content. They can express themselves showing their feelings or
opinions commenting diverse stories or other users’ comments in
social news websites. This fact has led to negative side effects: the
appearance of troll users and their contents seeking deliberately
controversy. In this paper we propose a new method to filter
trolling comments using compression models. Normally, Vector
Space Model representation use is quite common but these
filters can be attacked. To this end, we validate our approach
with data from ‘Menéame’, a popular Spanish social news site,
training several compression models, showing that our method
can maintain high accuracy rates whilst making such filters
difficult to defeat.

I. INTRODUCTION

The Internet has evolved and now, not only the moderators and
administrators of a website generate the content available in it,
but also its readers or users, generating valuable information
about them. In this particular scenario, social news websites
such as Digg1 or its Spanish variation ‘Menéame’2 are very
popular social sites that allow users to send news stories, so
other users may read, rate and comment them. The publishing
criteria is usually vote-driven, where other users of those
systems rate each story them by voting and the most voted
stories appear in the frontpage [1].

We focus on ‘Menéame’. This social news website has
already a method for automatic moderation of comments and
stories to automatically filter them. However, it is based on
the votes of other users and, therefore, it can be manipulated.
To avoid this problem, we have selected a more linguistic
and statistical representation of the comments. There are
approaches to filter spam in reviews [2], [3], that can be applied
to this particular domain.

In our previous work [4], we proposed an approach able
to automatically categorise comments in these social news
sites using supervised machine-learning algorithms. These
approaches model sites using the Vector Space Model (VSM)
[5], an algebraic approach for Information Filtering (IF),
Information Retrieval (IR), indexing and ranking. This model
represents natural language documents in a mathematical man-
ner through vectors in a multidimensional space.

Nevertheless, this method has its shortcomings. For ins-
tance, in spam filtering, which is a type of text filtering, Good
Word Attack, a method that modifies the term statistics by

1http://digg.com/
2http://www.meneame.net/

appending a set of words that are characteristic of legitimate e-
mails, or tokenisation, that works against the feature selection
of the message by splitting or modifying key message features
rendering the term-representation no longer feasible [6], have
been applied by spammers.

In light of this background, we present the first troll
comments filter for social news websites that is based on
compression methods for text filtering. These kind of models
are very robust to noise, fast to construct and incrementally
updateable and they should make such filters difficult to defeat.

In summary, our main contributions are:
• A new method to represent comments in social news

websites.
• An adaptation of the compression model approach to

comment filtering.
• An empirical validation which shows that our method can

maintain high accuracy rates whilst making such filters
difficult to defeat.

The remainder of this paper is structured as follows. Sec-
tion II describes in detail our proposed method. Section III
describes the compression algorithms we applied to this partic-
ular task. Section IV describes the experimental procedure and
discussed the obtained results. Finally, Section V concludes
and discusses the main limitations of this work.

II. METHOD DESCRIPTION

‘Menéame’ is a Spanish social news website, in which news
and stories are promoted. It was developed in later 2005 by
Ricardo Galli and Benjamı́n Villoslada and it is currently
licensed as free software. At the beginning, it was focused
on scientific and technological topics, but nowadays it is open
to any topic such as politics, society or sports. Also, as the
number of the users of ‘Menéame’ grew, so did the quality
and quantity of the contributions.

Any user (even if it is not registered in the system) can vote
the news stories in the front page or in the pending section,
which are news that have not been contrasted yet. Registered
users can send news to the system. A news story is held in
the pending queue. There, the story will be voted by different
readers or users. Registered users can also make a negative
vote and comment the news story.

‘Menéame’ ranks their users depending on their ‘karma’.
The ‘karma’ is a value between 0 and 20. When a new
user is registered a value of 6 point of ‘karma’ is given.
‘Karma’ is computed based on the performed activity in

the previous 2 days. To this end, the algorithm combines 4
different components: positives votes received of the sent news,
positive votes made, negative votes made and votes received
of a user’s comments. When a news story is in the pending
queue, the ‘karma’ of the users that vote the story are added
to its value and if they surpass a threshold they are published
in front page. Otherwise, the stories that accumulate negative
votes, will be sent to the discarded section. Usually, these con-
tributions are either irrelevant, old, bothering, sensationalist,
spam, replicated, micro-blogging, mistaken or plagiarism.

(a) Example of a comment in Spanish.

(b) Translated comment.

Fig. 1. Example of a comment.

Figure 1 shows a comment in ‘Menéame’. The first thing
that appears is the number of the comment, which in this case
is seven. Next, another number appears that references another
comment. In this case the user is giving an opinion about a
previous comment.

We categorise the comments in three different classifica-
tions. In order to make the explanation clearer, we show actual
examples from of the different categories for each of the
different classifications. These examples have been taken from
the story shown in Figure 2.

Title: The Government has been asked to prevent an ‘atheist
procession’ the Maundy Thursday which will be at the same time
that the traditional one in Lavapiés

Description: ‘HazteOir’ group, the political party ‘Alternativa
Española’, churches like ‘Santo Miguel Arcángel’ and other
catholic collectives asked the Government in Madrid to not allow
the ‘atheist procession’ on Maundy Thursday.

Tags: Church, imposition, atheism, prohibition, government

Fig. 2. An example of a news story.

Each one of the three different classifications have several
possible classes. They are the following ones:
• Type of Information: The type of information indicates

what the user is doing in its comment. It can be:
– Contribution: The user contributes by adding new

information. Figure 3 shows an example of a contri-
bution comment in the previous story.

– Irrelevant: These comments do not contribute to the
main article neither to another previous comment.
Figure 4 shows an irrelevant comment.

– Opinion: These comments express the user’s partic-
ular opinion about the topic discussed in the story.
Figure 5 shows an opinion.

#201 #191 By the way, I forgot telling you that in that town I told
you before, the one where a church installed a megaphone to say
the prayers before the Sunday service and made every inhabitant
to get up early even if they don’t want to, the major was of the
political party PSOE and he didn’t do anything to solve it. There
is a clear contradiction between the public agenda of his political
party and his actions, but some people do like their chair, don’t
they?

votes: 0, karma: 8, 18 hours and 23 minutes ago by strel

Fig. 3. An example of a contribution.
#225 Good luck, friends!

votes: 0, karma: 6, 12 hours and 46 minutes ago by pavlenka

Fig. 4. An example of an irrelevant comment.
#205 #70 I agree with you, and moreover, I think they should do
it even harder, because so much it has cost us to be free of a belief
or, at least, reduce it to, now, let them play with our morality and,
also, for sociocultural reasons, to be expanded in the future (there
is a rapid growth of the population professing such belief)

votes: 1, karma: -1, 18 hours 1 minute ago by RaistlinMajere

Fig. 5. An example of an opinion.

• Focus of the comment: The comment can be focused
either on the main story or on another comment. Figure 6
shows an example of a comment that focuses on the main
story whilst Figure 7 shows an example of a comment
focused on another comment.

#202 The same that always happens: one gets molested because
he/she wants, no because he/she should. If they concentrate more,
they would realise that there are different stuffs than themselves
and their truth but that damn egocentric point view, thinking that
everyone is against me...

votes: 0, karma: 6, 18 hours 13 minutes ago by Natxo-Pistatxo

Fig. 6. An example of a comment focusing in the main story.

#204 #201 Then, you cannot be affiliated to PSOE and be a
religious guy?... Indeed, taking into consideration that the PSOE
is a center-right party, I do not really get where is the surprising
fact. Would you understand it if it was from the PP?

votes: 0, karma: 6, 18 hours 8 minutes ago by xaphoo

Fig. 7. An example of a comment focusing in another comment.

• Controversy Level: We categorise the controversy level
in three degrees: normal, controversial and highly contro-
versial and, also, an additional one that is used for funny
or ironic comments.

– Normal: A normal comment is the one that raises
no controversy or irony. Figure 8 shows a normal
comment.

#205 #70 I agree with you, and moreover, I think they should do
it even harder, because so much it has cost us to be free of a belief
or, at least, reduce it (and I say very nuanced), for, now let them to
play with our morality and also for sociocultural reasons it will be
expanded in the future (there is a rapid growth of the population
professing such belief)

votes: 0, karma: 6 for 18 hours 13 minutes ago by Natxo-Pistatxo

Fig. 8. An example of a normal comment.

– Controversial: A comment that, on purpose, seeks
controversy with an harmful tone. Figure 9 shows an
example of a controversial comment.

#218 A lot of people being proud of their atheism, and the 90% of
them made gifts to their children in Xmas..., and rate this comment
negative if you dare, I don’t mind.

votes: 0, karma: 6, 14 hours 46 minutos ago by canaam

Fig. 9. An example of a controversial comment.

– Very Controversial: It seeks to create controversy in
an exaggerated way, being hurtful or disrespectful.
In other words, a troll user. Figure 10 shows a very
controversial comment.

#206 #10 You say that there have not been protests against the use
of the burka in Spain? And not only by atheists, of course. When
we have the same number of asshole fundamentalist both Christians
and Muslims in Spain, we will be the first ones to proclaim our
stupidity to the four winds. We are not afraid either of you or them.

votes: 0, karma: 6, 17 hours 57 minutes ago by Despero

Fig. 10. An example of a very controversial comment.

– Joke: These comments try to make a joke and be
funny. Figure 11 shows an example.

If my colleagues and me walk through the streets handing out oil,
grease, wax or other products likely to cause slips, we will have
problems. The least they will call us will be vandals or we will be
fined, or both.

votes: 0, karma: 6, 13 hours 54 minutes ago by pacorron

Fig. 11. An example of a joke comment.

III. COMPRESSION MODELS

A. Lempel-Ziv 78 (LZ78)

The LZ78 algorithm is among the most popular lossless
compression algorithms [7]. It is used as the basis of the
Unix compress utility and other popular archiving utilities for
PCs. It also has performance guarantees within several analysis
models.

Given a sequence qn1 ∈
∑n, LZ78 incrementally parses qn1

into non-overlapping adjacent ’phrases’, which are collected
into a phrase ’dictionary’. The algorithm starts with a dictio-
nary containing the empty phrase ε. At each step the algorithm
parses a new phrase, which is the shortest phrase that is not yet
in the dictionary. Clearly, the newly parsed phrase s′ extends
an existing dictionary phrase by one symbol; that is, s′ = sσ,
where s is already in the dictionary (s can be the empty
phrase). For compression, the algorithm encodes the index of
s′ (among all parsed phrases) followed by a fixed code for σ.
Also observe that LZ78 compresses sequences without explicit
probabilistic estimates.

Here is an example of this LZ78 parsing: if q111 =
abracadabra, then the parsed phrases are a|b|r|ac|ad|ab|ra.
Observe that the empty sequence ε is always in the dictionary
and is omitted in our discussions.

B. Prediction by Partial Match (PPM)

The Prediction by Partial Match (PPM) algorithm [8] is con-
sidered to be one of the best lossless compression algorithms.
The algorithm requires an upper bound D on the maximal
Markov order of the Variable order Markov Models (VMM)

it constructs. PPM handles the zero frequency problem using
two mechanisms called escape and exclusion.

There are several PPM variants distinguished by the imple-
mentation of the escape mechanism. In all variants the escape
mechanism works as follows. For each context s of length
k ≤ D, we allocate a probability mass Pk(escape|s) or all
symbols that did not appear after the context S (in the training
sequence). The remaining mass 1-Pk(escape|s) is distributed
among all other symbols that have non-zero counts for this
context. The particular mass allocation for ’escape’ and the
particular mass distribution Pk(σ|s), over these other symbols
σ, determine the PPM variant.

C. Probabilistic Suffix Trees (PST)
The Probabilistic Suffix Tree (PST) prediction algorithm

[9] attempts to construct the single ’best’ D-bounded VMM
according to the training sequence. It is assumed that an upper
bound D on the Markov order of the ’true source’ is known
to the learner.

A PST over
∑

is a non empty rooted tree, where the degree
of each node varies between zero (for leaves) and |

∑
|. Each

edge in the tree is associated with a unique symbol in
∑

.
These edge labels define a unique sequence s for each path
from a node v to the root. The sequence s labels the node v.
Any such PST tree induces a ’suffix set’ S consisting of the
labels of all the nodes. The goal of the PST learning algorithm
is to identify a good suffix set S for a PST tree and to assign a
probability distribution P (σ|s) over

∑
, for each s ∈ S. Note

that a PST tree may not be a tree source. The reason is that
the set S is not necessarily proper.

D. An Improved Lempel-Ziv Algorithm (LZ-MS)
There are plenty of variations on the classic LZ78 com-

pression algorithm [10]. The algorithm has two parameters
M and S and, therefore, its acronym here is LZ-MS. A
major advantage of the LZ78 algorithm is its speed. This
speed is made possible by compromising on the systematic
counts of all sub-sequences. While for a very long training
sequence this compromise will not affect the prediction quality
significantly, for short training sequences the LZ78 algorithm
yields sparse and noisy statistics. Another disadvantage of
the LZ78 algorithm is its loss of context when calculating
P (σ|s). These are two major deficiencies of LZ78. The LZ-
MS algorithm attempts to overcome both these disadvantages
by introducing two corresponding heuristics. This algorithm
improves the LZ78 predictions by extracting more phrases
during learning and by ensuring a minimal context for the
next phrase, whenever possible.

The first modification is termed input shifting. It is con-
trolled by the S parameter and used to extract more phrases
from the training sequence. The second modification is termed
back-shift parsing and is controlled by the M parameter. Back-
shift parsing attempts to guarantee a minimal context of M
symbols when calculating probabilities. Both input shifting and
back-shift parsing tend to enhance the statistics we extract from
the training sequence. In addition, back-shift parsing tends to
enhance the utilization of the extracted statistics.

E. Dynamic Markov Chain (DMC)

The compression algorithm dynamic Markov compression
(DMC) [11] models information with a finite state machine.
Associations are built between every possible symbol in the
source alphabet and the probability distribution over those
symbols. This probability distribution is used to predict the
next binary digit. The DMC method starts in a already defined
state, changing the state when new bits are read from the
entry. The frequency of the transitions to either a 0 or a 1
are summed when a new symbol arrives. The structure can be
also be updated using a state cloning method.

F. Binary Context Tree Weighting Method (BICTW)

It is a naive application of the standard binary CTW
algorithm over a binary representation of the sequence. The
binary representation is naturally obtained when the size of the
alphabet is a power of 2. Suppose that k = log2|σ| is an integer.
In this case, we generate a binary sequence by concatenating
binary words of size k, one for each alphabet symbol. If
log2|σ| is not an integer we take k = [log2|σ|]. We denote the
resulting algorithm by BICTW. A more sophisticated binary
decomposition of ctw was considered by [12].

G. Decomposed Context Tree Weighting Method (DECTW)

The DECTW [13] uses a tree-based hierarchical decom-
position of the multi-valued prediction problem into binary
problems. Each of the binary problems is solved via a slight
variation of the binary CTW algorithm.

Let
∑

be an alphabet with size k = |
∑
|. Consider a full

binary tree T∑ with k leaves. Each leaf is uniquely associated
with a symbol in

∑
. Each internal node v of T∑ defines the

binary problem of predicting whether the next symbol is a leaf
on v’s left subtree or a leaf on v’s right subtree.

IV. EMPIRICAL VALIDATION

This section describes the validation of our compression-based
approach against a comment dataset gathered from ‘Menéame’.
We gathered a collection of comments from the 5th of April,
2011 to 12th of April, 20113. This dataset of comments com-
prises one week of stories filled by 9,044 comment instances.
We evaluated the precision of our proposed method. To this
end, by means of the dataset, we conducted the following
methodology:

A. Methodology

• Cross validation: This method is generally applied in
machine-learning evaluation [14]. In our experiments, we
performed a K-fold cross validation with k = 10. In this
way, our dataset is 10 times split into 10 different sets of
learning (90 % of the total dataset) and testing (10 % of
the total data).

• Learning the model: We accomplished the learning
step using different learning algorithms depending on

3The labelled dataset can be downloaded at http://paginaspersonales.deusto.
es/isantos/resources/Data Meneame dot net from April 5th to April 12th.
rar

the specific model, for each fold. As discussed above,
we employed the implementations of the compression
classification provided by the CompressionTextClassifier
package4 for machine-learning tool WEKA [15]. In our
experiment approaches, we used the following models
with their default configurations:

– Binary Context Tree Weighting Method (BICTW).
– Decomposed Context Tree Weighting Method

(DECTW).
– Dynamic Markov Chain (DMC).
– Lempel-Ziv 78 (LZ78).
– Improved Lempel-Ziv Algorithm (LZ-MS).
– Prediction by Partial Match (PPM).
– Probabilistic Suffix Trees (PST).

• Testing the models: To test the approach, we measured
the accuracy (Acc) of the models (i.e., percent of correctly
classified comments or the total number of hits of the
classifiers divided by the number of instances in the whole
dataset).

B. Results

To evaluate the contribution of the Compression Models
to categorise trolling comments, we compared the filtering
capabilities of our method with the ones obtained with a classic
VSM model in our previous work [4]. In order to represent
the previous comment dataset, we developed two different
procedures to construct the VSM of the comment body: (i)
VSM with words and terms, and (ii) n-grams with different
values of n (n = 1, n = 2, n = 3). Furthermore, we removed
every word devoid of meaning in the text, called stop words,
(e.g., ‘a’,‘the’,‘is’) [16]. To this end, we employed an external
stop-word list of Spanish words5. These words do not provide
any semantic information and add noise to the model [17].

To represent the information contained in the comment body
we have used an Information Retrieval (IR) model. It can be
defined as a 4-tuple [C, F,Q, R(qi, cj)] [18] where C, is a
set of representations of comments; F , is a framework for
modelling comments, queries and their relationships; Q, is a
set of representations of user queries; and, finally, R(qi, cj) is
a ranking function that associates a real number with a query
qi (qi ∈ Q) and a comment representation cj (cj ∈ C).

As C is the set of comments c, {c : {t1, t2, ...tn}}, each
comprising n terms t1, t2, . . . , tn, we define the weight wi,j as
the number of times the term ti appears in the comment cj , if
ti is not present in c, wi,j = 0. Therefore, a comment cj can be
represented as the vector of weights ~cj = (w1,j , w2,j , ...wn,j).

On the basis of this formalisation, IR systems commonly
use the Vector Space Model (VSM) [18], which represents
comments algebraically as vectors in a multidimensional space.
This space consists only of positive axis intercepts. Com-
ments are represented by a term-by-comment matrix, where

4The package CompressionTextClassifier can be download at http:
//paginaspersonales.deusto.es/isantos/resources/CompressionTextClassifier-0.
4.3.zip

5The list of stop words can be downloaded at: http://paginaspersonales.
deusto.es/isantos/resources/stopwords.txt

the (i, j)th element illustrates the association between the
(i, j)th term and the jth comment. This association reflects the
occurrence of the ith term in comment j. Terms can represent
diverse textual units (e.g., words or n-grams) and can also be
individually weighted, allowing the terms to become more or
less important within a comment or the collection C as a whole.

We used the Term Frequency – Inverse Document Frequency
(TF–IDF) [17] weighting schema, where the weight of the ith

term in the jth comment, denoted by weight(i, j), is defined
by: weight(i, j) = tfi,j · idfi where term frequency tfi,j is
defined as: tfi,j = ni,j/

∑
k nk,j where ni,j is the number of

times the term ti,j appears in a comment c, and
∑

k nk,j is
the total number of terms in the comment c. The inverse term
frequency idfi is defined as: idfi = |C|/|C : ti ∈ c| where |C|
is the total number of comments and |C : ti ∈ c| is the number
of comments containing the term ti.

As the terming schema we have employed two different
alternatives. First, we used the word as term. Second, we used
a n-gram approach. N-gram is the overlapping subsequence of
n words from a given comment.

Next, we compared our method with some of the most used
supervised machine-learning algorithms. Specifically, we use
the following models:
• Bayesian networks (BN): We used different structural

learning algorithms: K2 [19] and Tree Augmented Naı̈ve
(TAN) [20]. Moreover, we also performed experiments
with a Naı̈ve Bayes Classifier [14].

• Support Vector Machines (SVM): We performed exper-
iments with a polynomial kernel [21], a normalised
polynomial Kernel [22], a Pearson VII function-based
universal kernel (PUK) [23] and a radial basis function
(RBF) based kernel [24].

• K-nearest neighbour (KNN): We launched experiments
with k = 1, 2, 3, 4, 5.

• Decision Trees (DT): We executed experiments with J48
(the Weka [15] implementation of the C4.5 algorithm
[25]) and Random Forest [26], an ensemble of randomly
constructed decision trees. In particular, we employed
N = 10, 50, 100, 200.

TABLE I
RESULTS IN TERMS OF ACCURACY (%) OF THE COMMENT

CATEGORISATION FOR COMPRESSION MODELS.

Dataset Type Info. Focus Comm. Controversy Level
BICTW 30.60 49.93 36.18
DECTW 52.79 69.85 32.22
DMC 75.43 68.51 64.53
LZ78 73.24 64.52 65.82
LZ-MS 73.84 64.57 66.73
PPM 74.96 75.03 53.01
PST 70.38 90.10 28.06

Table I shows the obtained results when the compression
models are applied to our dataset. Table II shows the results
with n-grams as tokens and supervised learning and Table III
shows the results with words as tokens and supervised learning.

Regarding the results obtained in the classification Type of
Information, the best classifier was SVM with a polynomial
kernel when n-grams as tokens are applied: 76.56%, achieving

TABLE II
RESULTS IN TERMS OF ACCURACY (%) OF THE COMMENT

CATEGORISATION FOR N-GRAM VSM.

Dataset Type Info. Focus Comm. Controversy Level
KNN K = 1 54.88 82.43 60.80
KNN K = 2 59.24 78.64 67.70
KNN K = 3 50.96 80.44 67.49
KNN K = 4 54.11 78.51 68.65
KNN K = 5 48.49 79.80 69.09
Bayes K2 63.56 91.73 69.92
Bayes TAN 67.26 92.88 70.58
Naı̈ve Bayes 28.67 81.87 30.44
SVM: PolyKernel 76.56 93.81 71.13
SVM: Norm. PolyKernel 72.96 91.40 71.20
SVM: PUK 76.55 92.13 71.03
SVM: RBFK 70.74 58.76 70.31
J48 72.25 91.20 70.45
Random Forest N = 10 74.60 93.22 67.01
Random Forest N = 50 75.18 93.86 67.39
Random Forest N = 100 75.26 93.89 67.43
Random Forest N = 200 75.30 93.96 67.43

TABLE III
RESULTS IN TERMS OF ACCURACY (%) OF THE COMMENT

CATEGORISATION FOR WORD VSM.

Dataset Type Info. Focus Comm. Controversy Level
KNN K = 1 64.27 82.43 64.54
KNN K = 2 69.62 78.64 69.33
KNN K = 3 65.32 80.44 69.12
KNN K = 4 68.36 78.51 70.11
KNN K = 5 64.90 79.80 70.36
Bayes K2 66.38 91.73 71.21
Bayes TAN 69.58 92.88 71.24
Naı̈ve Bayes 26.08 81.87 28.61
SVM: PolyKernel 72.44 93.81 71.30
SVM: Norm. PolyKernel 72.62 91.40 71.21
SVM: PUK 74.25 92.13 71.40
SVM: RBFK 70.68 58.76 69.96
J48 70.61 91.20 70.86
Random Forest N = 10 73.29 93.20 67.08
Random Forest N = 50 73.45 93.89 66.99
Random Forest N = 100 73.45 93.93 67.04
Random Forest N = 200 73.53 93.96 67.07

the best compression algorithm the value 75.43%. In terms
of Focus of the Comment, both VSM approaches achieved
the best result: 93.96% by the Random Forest (with k =
200) algorithm, whilst the compression classifier PST obtained
90.10%. In the case of the last categorisation, Controversy
Level, the better performance was obtained by the algorithm
SVM with a Pearson VII kernel, when words as tokens are
applied: 71.40%; however, in the compression classification,
the LZ-MS algorithm achieved 66.73%. In summary, the
compression models achieved results close to the supervised
machine learning algorithms.

V. CONCLUSIONS AND FUTURE WORK

In this work, our main contribution is the first troll
comments filter for social news websites that is based on
compression methods for text filtering, due to exists a spe-
cial problem for automated text categorization, of which the
defining characteristic is that filters face an active adversary,
which constantly attempts to evade filtering. In this case, the
compression models not enhance the results obtained by VSM
approaches, but these kind of models are very robust to noise,
fast to construct and incrementally updateable and they should
make such filters difficult to defeat. There are several topics

of discussion in which we will focus in future versions of this
system.

There is an issue derived from Natural Language Processing
(NLP) when dealing with semantics: Word Sense Disambigua-
tion (WSD). A troll user may evade our method by explicitly
exchanging the key words of the comment with other polyseme
terms and thus avoid detection. Thereby, WSD is considered
necessary to perform most natural language processing tasks
[27]. Hence, we propose the study of different WSD techniques
(a survey of different WSD techniques can be found in [28])
able to provide a semantics-aware moderation tool. However,
such a semantic approach for moderation should have to deal
with the semantics of different languages [29] and, therefore,
be language dependant.

Our technique has several limitations due to the represen-
tation of comments. For instance, in the context of spam
filtering, most of the filtering techniques are based on the
frequencies with which terms appear within messages and
spammers have started modifying their techniques to evade
such filters. These techniques can be applied by a troll user
of a social news website. For example, Good Word Attack
is a method that modifies the term statistics by appending
a set of words that are characteristic of legitimate, thereby
bypassing filters. Nevertheless, we can adopt some of the
methods that have been proposed in order to improve spam
filtering, such as Multiple Instance Learning (MIL) [30]. MIL
divides an instance or a vector in the traditional supervised
learning methods into several sub-instances and classifies the
original vector based on the sub-instances [31]. Zhou et al.
[32] proposed the adoption of multiple instance learning for
spam filtering by dividing an e-mail into a bag of multiple
segments and classifying it as spam if at least one instance in
the corresponding bag was spam. We can adapt this approach
to the our comment moderation tool. Another attack, known
as tokenisation, works against the feature selection of the
comment by splitting or modifying key message features,
which renders the term representation as no longer feasible
[6]. All of these attacks, which spammers have been adopting,
should be taken into account in the construction of future
filtering or moderation systems.

REFERENCES

[1] K. Lerman. User participation in social media: Digg study. In
Web Intelligence and Intelligent Agent Technology Workshops, 2007
IEEE/WIC/ACM International Conferences on (pp. 255-258). IEEE.

[2] N. Jindal and B. Liu. Review spam detection. In Proceedings of the 16th
international conference on World Wide Web (pp. 1189-1190). ACM,
2007.

[3] N. Jindal and B. Liu. Opinion spam and analysis. In Proceedings of the
2008 International Conference on Web Search and Data Mining (pp. 219-
230). ACM.

[4] I. Santos, J. De-La-Peña-Sordo, I. Pastor-López, P. Galan-Garcı́a and P. G.
Bringas. Automatic categorisation of comments in social news websites.
Expert Systems with Applications, 39(18), 13417-13425, 2012.

[5] G. Salton, A. Wong and C. S. Yang. A vector space model for automatic
indexing. Communications of the ACM, 18(11), 613-620, 1975.

[6] G. L. Wittel and S. F. Wu. On Attacking Statistical Spam Filters. In CEAS,
2004.

[7] J. Ziv and A. Lempel. Compression of individual sequences via variable-
rate coding. Information Theory, IEEE Transactions on, 24(5), 530-536,
1978.

[8] J. G. Cleary and I. Witten. Data compression using adaptive coding and
partial string matching. Communications, IEEE Transactions on, 32(4),
396-402, 1984.

[9] D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learning
probabilistic automata with variable memory length. Machine learning,
25(2-3), 117-149, 1996.

[10] T. C. Bell, J. G. Cleary, and I. H. Witten. Text compression. Prentice-
Hall, Inc., 1990.

[11] G. V. Cormack and R. N. S. Horspool. Data compression using dynamic
Markov modelling. The Computer Journal, 30(6), 541-550, 1997.

[12] T. J. Tjalkens, P. A. Volf and F. M. Willems. A context-tree weighting
method for text generating sources. In Data Compression Conference.
DCC’97. Proceedings (p. 472). IEEE, 1997.

[13] P. A. J. Volf. Weighting techniques in data compression: Theory and
algorithms. Technische Universiteit Eindhoven, 2002.

[14] C. M. Bishop. Neural networks for pattern recognition. Oxford university
press, 1995.

[15] S. R. Garner. Weka: The waikato environment for knowledge analysis.
In Proceedings of the New Zealand computer science research students
conference (pp. 57-64), 1995.

[16] W. J. Wilbur and K. Sirotkin. The automatic identification of stop words.
Journal of information science, 18(1), 45-55, 1992.

[17] G. Salton and M. J. McGill. Introduction to modern information retrieval,
1983.

[18] R. Baeza-Yates, and B. Ribeiro-Neto. Modern information retrieval (Vol.
463). New York: ACM press, 1999.

[19] G. F. Cooper, and E. Herskovits. A Bayesian method for constructing
Bayesian belief networks from databases. In Proceedings of the Seventh
conference on Uncertainty in Artificial Intelligence (pp. 86-94). Morgan
Kaufmann Publishers Inc., 1991.

[20] N. Friedman, D. Geiger and M. Goldszmidt. Bayesian network classi-
fiers. Machine learning, 29(2-3), 131-163, 1997.

[21] S. I. Amariand S. Wu. Improving support vector machine classifiers by
modifying kernel functions. Neural Networks, 12(6), 783-789, 1999.

[22] S. Maji, A. C. Berg and J. Malik. Classification using intersection kernel
support vector machines is efficient. In Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on (pp. 1-8). IEEE.

[23] B. stn, W. J. Melssen and L. M. C. Buydens. Visualisation and interpreta-
tion of support vector regression models. Analytica chimica acta, 595(1),
299-309, 2007.

[24] B. H. Cho, H. Yu, J. Lee, Y. J. Chee, I. Y. Kim and S. I. Kim.
Nonlinear support vector machine visualization for risk factor analysis
using nomograms and localized radial basis function kernels. Information
Technology in Biomedicine, IEEE Transactions on, 12(2), 247-256, 2008.

[25] J. R. Quinlan. C4. 5: programs for machine learning (Vol. 1). Morgan
kaufmann, 1993.

[26] L. Breiman. Random forests. Machine learning, 45(1), 5-32, 2001.
[27] N. Ide and J. Vronis. Introduction to the special issue on word sense

disambiguation: the state of the art. Computational linguistics, 24(1), 2-
40, 1998.

[28] R. Navigli. Word sense disambiguation: A survey. ACM Computing
Surveys (CSUR), 41(2), 10, 2009.

[29] M. Bates and R. M. Weischedel. Challenges in natural language pro-
cessing. Cambridge University Press, 2006.

[30] T. G. Dietterich, R. H. Lathrop and T. Lozano-Prez. Solving the multiple
instance problem with axis-parallel rectangles. Artificial intelligence,
89(1), 31-71, 1997.

[31] O. Maron and T. Lozano-Prez. A framework for multiple-instance
learning. Advances in neural information processing systems, 570-576,
1998.

[32] Y. Zhou, Z. Jorgensenand M. Inge. Combating good word attacks on
statistical spam filters with multiple instance learning. In Tools with Arti-
ficial Intelligence, 2007. ICTAI 2007. 19th IEEE International Conference
on (Vol. 2, pp. 298-305). IEEE.

