
Surface Defect Categorization of Imperfections in
High Precision Automotive Iron Foundries using

Best Crossing Line Profile
Iker Pastor-López, Igor Santos, and Pablo G. Bringas

S3Lab, DeustoTech Computing
University of Deusto

Avenida de las Universidades 24, 48007, Bilbao, Spain
{iker.pastor, isantos, pablo.garcia.bringas}@deusto.es

Abstract—Iron casting production is a very important industry
that supplies critical products to other key sectors of the economy.
In order to assure the quality of the final product, the castings are
subject to strict safety controls. One of the most common flaws is
the appearance of defects on the surface. In particular, our work
focuses on three of the most typical defects in iron foundries:
inclusions, cold laps and misruns. We propose a new approach
that detects these imperfections on the surface by means of a
segmentation method that flags the potential defective regions
on the casting and, then, applies machine-learning techniques
to classify the regions in correct or in the different types of
faults. In this case, we applied BCLP technique. It provides good
information to distinguish between edge structures and defects
in this kind of images.

I. INTRODUCTION

Foundry process is one of the most relevant indicatives of
the progress of a society. Generally, it consists on melting
a material and pouring it into a mould where it solidifies
into the desired shape. The resulting castings are supplied
to key sectors such as aeronautic, automotive, weaponry or
naval industries. Therefore, any defect, even the tiniest one,
may become fatal when it comes to the foundry process. In
order to discard any defective casting, strict safety controls
are required to guarantee a certain threshold of quality for the
manufactured casting.

In this context, there are many defects that may appear on
the surface of the casting. In this paper, we focus on three
of the most common surface defects: (i) inclusions, which are
little perforations caused by an excess of sand in the mould;
(ii) misruns, that appear when not enough material is poured
into the mould; and finally, (iii) cold laps, which are produced
when part of the melted material is cooled down before the
melting is completed.

Currently, the visual inspection and quality assessment is
performed by human operators [1]. Albeit people can perform
some tasks better than machines, they are slower and get easily
exhausted. Besides, operators are hard to find and to maintain
in the industry since they require capabilities and learning
skills that usually take them long to acquire. There are also
cases of boredom that may affect the process.

In some applications, the inspection is critical and dangerous
and computer vision can replace more efficiently and without
danger [2]. Computer vision has become an important field
that can aid to the visual inspection in quality control pro-
cesses.

In this sense, computer vision systems are replacing manual
inspection in many industries such as timber [3], textile [4]
or metallurgical [5] [6]. Whereas manual inspection strongly
depends on human factor, computer vision is independent, with
the subsequent decrease in the error rate.

Against this background, we propose a new approach ca-
pable of detecting and categorising inclusions, cold laps and
misruns. First, we describe a machine vision system that
retrieves the information of the surface of the tested castings.
Second, a segmentation method, based on modeling the correct
castings, is used in order to detect the possible defects. Finally,
we employ several features extracted from the machine-vision
and segmentation systems to train machine learning algorithms
to categorise the possible defects.

Summarising, our main contributions are: (i) an adaptation
of a machine vision system to the segmentation of foundry
casting regions, (ii) a machine-learning approach to categorise
faulty regions on the foundry castings and (iii) an empirical
validation using actual foundry castings of our proposed
approach.

The remainder of this paper is organized as follows. Section
II describes how image data is gathered and prepared for
next steps. Section III describes the segmentation process that
identifies the potentially faulty regions of the images. Section
IV details the feature set for the categorization of the different
defects. Section V describes the experiments performed and
presents results. Finally, Section VI concludes the paper and
outlines avenues for future work.

II. DATA GATHERING AND NORMALIZATION

To gather the superficial data from the castings, we utilized
laser triangulation camera. Through the high-power laser (3-B
class), our method scans the castings, regardless their dark and
uneven surface.



To automate the process of casting scanning, we have
used a robotic arm. This automation is only performed to
automatically scan the casting. The positioning of the casting
on the scanning table is manually performed because the
geometric differences between the different casting models we
are scanning. Specifically, the robotic arm is a Motoman NH6-
10. For the positioning of the casting, we used silicone molds
for each casting model.

In order to retrieve the information about the scanned cast-
ing, the casting is put on the mold and the scanning is started.
The robotic arm performs a linear movement, gathering a set
of profiles based on the generated triangulation of the laser
and the optical sensor. The surface of a foundry casting S is
a set of profiles P such as S = {P1,P2, ...,Pn−1,Pn}. Each
profile is retrieved for a thickness of 0.2 mm. Each of these
profiles are composed of the heights of each of the scanned
points. If we join them altogether, we can form a height matrix
Am×n that represents the scanned surface S, such as:

Am×n =


a1,1 a1,2 . . . a1,n−1 a1,n

a2,1 a2,2 . . . a2,n−1 a2,n

...
...

...
am−1,1 am−1,2 . . . am−1,n−1 am−1,n

am,1 am,2 . . . am,n−1 am,n


(1)

where each item ax,y represents the height in the space of a
given point (x, y) and the dimensions m and n are determined
by the size of the scanned casting.

Once the height matrix Am×n is formed, we first remove
the point that represent the scanning table surface, denoted
To×p being 0 < o ≤ m y 0 < p ≤ n. To this end, we set a
height threshold, determined by the maximum height of the
point known to be part of the scanning table, such as:

σ = argmax
tx,y∈To×p

tx,y (2)

being x and y the position of the element a in the scanning
table matrix To×p.

Once, the threshold σ is set, we subtract this value to each
point the height matrix, setting a minimum height of 0, such
as:

∀ax,y ∈ Am×n : ((ax,y , ax,y − σ) | ax,y ≥ 0) (3)

As a result, our method removes every data devoid of
information about the scanned casting and, therefore, our
method generates a new matrix Bq×r, where q is the number
of rows whose elements are different to zero within the
initial matrix Am×n and r is the number of columns whose
elements are different to zero within the initial matrix and
thus, 0 < q ≤ m and 0 < r ≤ n.

Hereafter and after our method finish scanning every casting
in our dataset, our method has to normalize the different height
matrices ir order to guarantee that every matrix has the same
dimensions p and q. To this end, we start with a casting dataset

C formed by ` matrices Bqi,ri where qi y ri are the height
and width of the i-th matrix in the dataset C. To normalize the
matrices in C, we start determining the new dimensions they
will have. These are the maximum width and height, , q′ y r′,
such as:

q′ = argmax
qi

Bqi×ri ∈ C (4)

where q′ is the maximum height of all the matrices Bqi×ri
within C. The maximum width is computed the same way:

r′ = argmax
ri

Bqi×ri ∈ C (5)

Next, each of the matrices are re-dimensioned with the new
width q′ and the new height r′, assigning the new values:

∀Bqi×ri ∈ C : B′q′×r′ , align(Bqi×ri , q′, r′) (6)

where align is a function that moves each of the values of
each matrix Bqi×ri to the new normalized matrix, denoted by
B′q′×r′ :

align(Bq×r, q′, r′) = B′q′×r′ =


b′1,1 . . . b′1,r′
b′2,1 . . . b′2,r′

...
...

...
b′q′−1,1 . . . b′q′−1,r′

b′q′,1 . . . b′q′,r′


(7)

where each element in the new matrix b′i,j ∈ B′q′×r′ represent
the elements in the matrix Bq×r, moved to their new position
in the new matrix B′q′×r′ , such as:

∀bi,j ∈ Bq×r : b′i+(q′/2)−(q/2),j+(r′/2)−(r/2) ∈ B
′
q′×r′ , bi,j

(8)
aligning every matrix and normalizing, in this way, their dif-
ferent dimensions, forming a new normalized casting dataset
C′, composed of the normalized matrices.

Once the matrices are normalized, our method generates
different data representations of the gathered information. In
particular, 3 different representations are used:
• Height Map. This matrix is the normalized one, our

system retrieved from the normalization process.
• Grayscale Height Map [7], a well-known representation

converts each height value to a range between 0 and 255,
showing the different scales of gray.

• Normal map. This representation has been generated by
means of the height matrix, but shows the direction of the
normal vector of the surface for each point in the matrix
and each vector for each point have three components
(x, y, z) that we represent as an image — even when
it is not a true image by itself — corresponding red
component to the x value, green component to the y
value, and blue component to the z value.



III. IMAGE SEGMENTATION PROCESS

The process of segmentation employs correct castings as
models to compare the scanned ones with. Besides these
models, we apply different image filters to remove the image
noise and improve the information extraction phase.

Depending on the result of the segmentation process, dif-
ferent final steps are applied. In case that the scanned image
is determined to be correct, a filter to remove every noise
is applied. Otherwise, besides of removing noise, we apply
a filter to magnify the detected defects. Figure 1 shows an
example of the results of the segmentation for a given image.

(a) Normal map in RGB of the
defective casting.

(b) Result image of the segmen-
tation process. The detected de-
fects are marked in red.

Fig. 1. The segmentation process. The fist image shows the representation
of the normal map in RGB of a defective castings with 3 defects: 1 for a
cold-lap, 2 and 3 two inclusions. The second image show the results of the
segmentation process and the detected defects are marked in red.

In particular, the segmentation process is divide in the
following steps:

1) Our method converts the original normal map to gray-
scale — although it is not an image, it is represented as
one, as aforementioned — of the casting and the normal
map of the correct models. This step is performed to
remove the noise regarding the rugosity on the surface.

2) The Gaussian Blur filter [8] is applied.
3) A difference filter is applied between the normal map to

examine and each of the correct models.
4) An intersection filter is applied between the differences

computed in the previous step.
5) The method binarizes the results.
6) An algorithm to extract the potentially faulty areas or

segments is used, which removes the ones which are
excessively small (i.e., regions smaller than 3x3 pixels).

IV. FEATURE SETS FOR CATEGORIZATION OF DEFECTS

In this section, we describe the different feature sets that
have been extracted from the segmented regions. In this way,
we will evaluate which set or sets are the most adequate to
categorize them through supervised machine learning.

In particular, the different sets we chose are the following:
(i) simple features, that correspond with existing information
in some of the representations of the regions; and (ii) BCLP
(Best Crossing Line Profile) based features, that minimize the
irrelevant data from the segmented regions.

A. Simple Features

We denote simple features to those that can be extracted
directly from the different representations result of the seg-
mentation process and do not require an additional processing.
The feature in this category are the following:
• Features extracted from the binarized image: In this

type of image, the potentially faulty regions are marked
in white, whereas the rest are black. We extract the
following geometric features of the potentially faulty
regions:

– Height, width, perimeter, and area of the region.
– Euclidean distance from the gravity center of the

region and the origin of the coordinates.
– Fullness of the region, computed as:

Fullness =
Area

Height ·Width
(9)

• Features extracted from the integral image, converted
from the binarized region: An integral image I from a
base image G is defined as the image where the intensity
of a pixel in a specific position is equal to the sum of the
intensities of every pixel on top and on the right of the
given pixel [7]. We employ the following features:

– Average value of the pixels of the integral image.
– Sum of the values of the pixels of the integral image.

• Features extracted from the height matrix: In this
case, we extract two different regions. In the first one, we
gather every pixel in the height matrix regardless of its
segmentation result. In the second, we retrieve the pixels
marked in white, result of the binarization process. For
both data sources, we extracted the following measures:
sum, average, standard deviation, standard error, mini-
mum value, maximum value, the difference between the
maximum value and minimum value, median, entropy,
bias of the pixel distribution, and the kurtosis value of
the pixel distribution.

• Features extracted from the normal vector matrices:
Similarly to the features extracted from the height matrix,
we use as data source to compute the measures the
unsegmented pixels of the normal vector matrices and po-
tentially faulty pixels of these matrices after the segmen-
tation process is carried out. As in the height matrices, the
features extracted are: sum, average, standard deviation,
standard error, minimum value, maximum value, the
difference between the maximum value and minimum
value, median, entropy, bias of the pixel distribution, and
the kurtosis value of the pixel distribution.

B. BCLP (Best Crossing Line Profile) based Features

Crossing Line Profile was first proposed by Mery [9] for
defect detection in steel castings images obtained through X-
Ray scanning. This algorithm is able to detect faulty castings
without previous knowledge of the process.

Our method is based in the same concept, but the goal is
to extract several features of the castings to train supervised



learning classifiers. To this end, we first resize the segmented
region, obtained from the height map of the grayscale image
and from the normal vector matrices codified in RGB. In this
way, we resize every image to 32x32 pixels, using a nearest
neighbor approach [10].

Next, we define a Cross Line Profile Pθ, as the function
that identifies the line that crosses the region r by its middle
point and forms and angle θ with respect to the X axis. In the
same way as Mery [9] did, our method computes 8 different
profiles Pθ, being θ = (K · π)/8 and for each K ∈ [0, 7].

Once the 8 profiles are computed, our method select the
value of K for which the extreme pixels of the CLP profile
Pθ are more similar between them. This profile is called the
Best Crossing Line Profile or BCLP. Through this profile, we
can discern between an image border and potential defect of
the examined casting. We extract several features from this
profile in order to categorize the defects:
• Features of the BLCP computed from the grayscale

height map: The sum, average, standard deviation, stan-
dard error, minimum value, maximum value, the differ-
ence between the maximum value and minimum value,
median, entropy, bias of the pixel distribution, and the
kurtosis value of the pixel distribution are used

• Features of the BLCP computed from the normal
vector matrices codified in RGB: The sum, aver-
age, standard deviation, standard error, minimum value,
maximum value, the difference between the maximum
value and minimum value, median, entropy, bias of the
pixel distribution, and the kurtosis value of the pixel
distribution are extracted from the profile.

Co-occurrence matrices is a method that can be applied to
measure the textures in an image [11], [12], [13]. In particular,
these matrices are computed as follows:

CM∆x,∆y(i, j) =

k∑
m=1

l∑
n=1

 1, If I(m,n) = i and
I(m+ ∆x, n+ ∆y) = j

0, otherwise
(10)

where I is an images of size k× l and ∆x and ∆y denote the
offset. Our method extracts the well-known Haralick textural
features [14]: normalization, contrast, dissimilarity, homogene-
ity, angular second moment, energy, maximum probability,
entropy, mean, variance, standard deviation, and correlation.

V. EMPIRICAL VALIDATION

To evaluate our surface defect detector, we gathered a dataset
from a foundry, specialized in safety and precisions compo-
nents for the automotive industry (principally, in disk-brake
support with a production over 45,000 tons per year). Three
different types of defect (i.e., inclusion, cold lap and misrun)
were present in the faulty castings. In particular, this dataset is
composed of 639 castings: 236 are correct, 392 have inclusion,
8 have cold laps, and 9 have misruns.

By means of this analysis, we constructed a dataset of 6,150
segments to train supervised learning models and determine
when a segment is defective. In addition, we added a second

category to identify the noise that our segmentation gets
called ‘Correct’, which represents the segments marked by the
segmentation method that are correct even though the method
has marked them as potentially faulty. In particular, 5,686 were
correct and 464 were faulty as shown in Table I.

TABLE I
DISTRIBUTION OF THE SEGMENTATION PROCESS RESULTS.

Type Number of segments
Correct 5,685
Inclusion 392
Cold Lap 17
Misrun 55

To evaluate the precision of the supervised machine-learning
methods to categorize the segments. To this extent, by means
of the dataset, we conducted the following methodology to
evaluate the proposed method:
• Casting representation: In order to compare, we

represented each potentially defective region using the
feature sets described in Section IV. In particular, the
next representations were used:

– Simple features (Simple).
– Best Crossing Line Profile based features (BCLP).
– Combination at feature level of Simple and BCLP

features (Simple+BCLP).
• Cross validation: This method is generally applied in

machine-learning evaluation [15]. In our experiments, we
performed a K-fold cross validation with k = 10. In this
way, our dataset is split 10 times into 10 different sets
of learning and testing. For each fold, we changed the
number of labeled instances from 10% to 90% to measure
the effect of the number of previously labeled instances
on the final performance of collective classification in
detecting surface defects.

• SMOTE: The dataset was not balanced for the dif-
ferent classes. To address unbalanced data, we applied
Synthetic Minority Over-sampling TEchnique (SMOTE)
[16], which is a combination of over-sampling the less
populated classes and under-sampling the more populated
ones. The over-sampling is performed by creating syn-
thetic minority class examples from each training set. In
this way, the classes became more balanced.

• Learning the model: For each fold, we accomplished
the learning step of each algorithm using different param-
eters or learning algorithms depending on the specific
model. The algorithms use the default parameters in
the well-known machine-learning tool WEKA [17]. In
particular, we used the following models:

– Bayesian networks (BN): With regards to Bayesian
networks, we utilize different structural learning al-
gorithms: K2 [18] and Tree Augmented Naı̈ve (TAN)
[19]. Moreover, we also performed experiments with
a Naı̈ve Bayes Classifier [15].

– Support Vector Machines (SVM): We performed ex-
periments with a polynomial kernel [20], a normal-



ized polynomial Kernel [21], a Pearson VII function-
based universal kernel [22] and a radial basis func-
tion (RBF) based kernel [23].

– K-nearest neighbor (KNN): We performed experi-
ments with k = 1, k = 2, k = 3, k = 4, and
k = 5.

– Decision Trees (DT): We performed experiments
with J48(the WEKA [17] implementation of the
C4.5 algorithm [24]) and Random Forest [25], an
ensemble of randomly constructed decision trees. In
particular, we tested random forest with a variable
number of random trees N , N = 10, N = 25,
N = 50, N = 75 and N = 100.

• Testing the model: To test the approach, we measured
accuracy, i.e., the total number of hits of the classifiers
divided by the number of instances in the whole dataset:

Accuracy (Acc.) =
TP + TN

TP + FP + FN + TN
(11)

Besides, we measured the Area Under the ROC Curve
(AUC), which establishes the relation between false neg-
atives and false positives [26]. The ROC curve is obtained
by plotting the TPR against the FPR. All these measures
refer to the test instances.

TABLE II
RESULTS OF THE CATEGORIZATION USING BCLP AND SIMPLE FEATURE

SETS BY THEMSELVES.

Classifier BCLP Simple
Acc.(%) AUC Acc.(%) AUC

BN: K2 80.13 0.8787 91.95 0.9171
BN: TAN 93.33 0.8881 95.39 0.9185
Naı̈ve Bayes 61.31 0.8216 79.94 0.9089
SVM: Poly. ker. 60.38 0.8441 90.13 0.9576
SVM: Norm. Poly. ker. 69.49 0.8650 92.62 0.9612
SVM: Pearson VII 89.33 0.8975 96.47 0.9749
SVM: RBF 60.15 0.8351 87.98 0.9528
KNN K=1 89.67 0.7674 92.62 0.5983
KNN K=2 91.28 0.8296 92.96 0.6342
KNN K=3 88.56 0.8558 93.05 0.6741
KNN K=4 89.43 0.8647 92.92 0.7088
KNN K=5 87.45 0.8715 92.95 0.7381
DT: J48 87.89 0.7735 93.89 0.8477
DT: Rand. For. N=10 91.41 0.9020 96.22 0.9626
DT: Rand. For. N=25 91.43 0.9159 96.46 0.9706
DT: Rand. For. N=50 91.75 0.9209 96.55 0.9743
DT: Rand. For. N=75 91.73 0.9224 96.60 0.9755
DT: Rand. For. N=100 91.78 0.9238 96.64 0.9763

Table II shows the results of the categorization using the
different feature sets in order to compare which casting
representation performs best and which classifier obtains the
best results. In particular, Random Forest classifiers obtained
the overall best results regardless the representation used,
with accuracy and AUCs higher than 0.8 in both cases: (i)
BCLP and (ii) Simple. At the contrary, although their results
in accuracy are high, KNNs are the worst overall classifiers
because they only classify correctly the correct castings and
due to the unbalanced data the accuracy, which the percent of
castings correctly classifier, is high, while the AUC shows a
more realistic performance of the classifier.

TABLE III
RESULTS OF THE CATEGORIZATION USING THE COMBINATION OF SIMPLE

FEATURE SET WITH BCLP.

Classifier Simple+BCLP
Acc.(%) AUC

BN: K2 92.30 0.8950
BN: TAN 94.13 0.8387
Naı̈ve Bayes 78.45 0.8955
SVM: Polynomial kernel 91.47 0.9589
SVM: Normalized Polynomial kernel 92.79 0.9601
SVM: Pearson VII 95.88 0.9674
SVM: RBF 90.20 0.9553
KNN K=1 92.57 0.6038
KNN K=2 92.91 0.6450
KNN K=3 92.97 0.6804
KNN K=4 92.97 0.7089
KNN K=5 93.00 0.7323
DT: J48 93.84 0.8396
DT: Random Forest N=10 96.25 0.9622
DT: Random Forest N=25 96.46 0.9699
DT: Random Forest N=50 96.59 0.9732
DT: Random Forest N=75 96.59 0.9744
DT: Random Forest N=100 96.61 0.9751

Table III shows the results of the categorization using the
combination of Simple feature set with BCLP. Again, Random
Forest algorithms obtained the best results, with values higher
than 96.25 and 0.96, in accuracy and AUC terms, in both
cases: (i) BCLP and (ii) Simple. In the other hand, KNNs are
the worst algorithms obtaining AUC values less than 0.7323.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we proposed the application of Best Crossing
Line Profile concept to our machine vision system. This
technique, shows good results working with X-ray images.
Concretely, it provides good information to distinguish be-
tween edge structures and defects in this kind of images.

The experimental results showed that, the features extracted
from Best Crossing Line profile, provides lower results than
simple features extracted from the initial images, but the
combination of all, increases the accuracy and AUC results
of the proposed classifiers.

Future work is oriented in 2 main ways. First, we are
going to evaluate the performance of our system, using Best
Crossing Line Profile features as a non supervised technique
to distinguish the regular structures of the surface and defects.
Second we will extract more features from the different
representations of the surface information in order to get a
complete information about the defects.

REFERENCES

[1] A. Mital, M. Govindaraju, and B. Subramani, “A comparison between
manual and hybrid methods in parts inspection,” Integrated Manufac-
turing Systems, vol. 9, no. 6, pp. 344–349, 1998.

[2] P. Kopardekar, A. Mital, and S. Anand, “Manual, hybrid and automated
inspection literature and current research,” Integrated Manufacturing
Systems, vol. 4, no. 1, pp. 18–29, 1993.

[3] O. Silvén, M. Niskanen, and H. Kauppinen, “Wood inspectionwith non-
supervisedclustering,” Machine Vision and Applications, vol. 13, no. 5,
pp. 275–285, 2003.

[4] V. Murino, M. Bicego, and I. Rossi, “Statistical classification of raw
textile defects,” in Pattern Recognition, 2004. ICPR 2004. Proceedings
of the 17th International Conference on, vol. 4. IEEE, 2004, pp. 311–
314.



[5] F. Pernkopf, “Detection of surface defects on raw steel blocks using
bayesian network classifiers,” Pattern Analysis & Applications, vol. 7,
no. 3, pp. 333–342, 2004.

[6] Y. Frayman, H. Zheng, and S. Nahavandi, “Machine vision system
for automatic inspection of surface defects in aluminum die casting,”
Journal of advanced computational intelligence, vol. 10, no. 3, pp. 281–
286, 2011.

[7] D. Vom Stein, “Automatic visual 3-D inspection of castings,” Foundry
Trade Journal, vol. 180, no. 3641, pp. 24–27, 2007.

[8] R. Gonzalez and E. Richard, “Woods, digital image processing,” ed:
Prentice Hall Press, ISBN 0-201-18075-8, 2002.

[9] D. Mery, “Crossing line profile: a new approach to detecting defects in
aluminium die casting,” Image Analysis, pp. 245–256, 2003.

[10] E. Fix and J. Hodges Jr, “Discriminatory analysis-nonparametric dis-
crimination: Small sample performance,” DTIC Document, Tech. Rep.,
1952.

[11] J. Iivarinen, J. Rauhamaa, and A. Visa, “Unsupervised segmentation of
surface defects,” in Pattern Recognition, 1996., Proceedings of the 13th
International Conference on, vol. 4. IEEE, 1996, pp. 356–360.

[12] A. Bodnarova, J. Williams, M. Bennamoun, and K. Kubik, “Optimal
textural features for flaw detection in textile materials,” in TENCON’97.
IEEE Region 10 Annual Conference. Speech and Image Technologies
for Computing and Telecommunications., Proceedings of IEEE, vol. 1.
IEEE, 1997, pp. 307–310.

[13] A. Monadjemi, “Towards efficient texture classification and abnormality
detection,” Ph.D. dissertation, University of Bristol, 2004.

[14] R. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for
image classification,” Systems, Man and Cybernetics, IEEE Transactions
on, vol. 3, no. 6, pp. 610–621, 1973.

[15] C. Bishop et al., Pattern recognition and machine learning. springer
New York, 2006, vol. 4, no. 4.

[16] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, “Smote: Synthetic
minority over-sampling technique,” Journal of Artificial Intelligence
Research, vol. 16, pp. 321–357, 2002.

[17] S. Garner, “Weka: The Waikato environment for knowledge analysis,”
in Proceedings of the 1995 New Zealand Computer Science Research
Students Conference, 1995, pp. 57–64.

[18] G. Cooper and E. Herskovits, “A bayesian method for constructing
bayesian belief networks from databases,” in Proceedings of the Seventh
Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann
Publishers Inc., 1991, pp. 86–94.

[19] D. Geiger, M. Goldszmidt, G. Provan, P. Langley, and P. Smyth,
“Bayesian network classifiers,” in Machine Learning, 1997, pp. 131–
163.

[20] S. Amari and S. Wu, “Improving support vector machine classifiers by
modifying kernel functions,” Neural Networks, vol. 12, no. 6, pp. 783–
789, 1999.

[21] S. Maji, A. Berg, and J. Malik, “Classification using intersection kernel
support vector machines is efficient,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2008, pp. 1–8.

[22] B. Üstün, W. Melssen, and L. Buydens, “Facilitating the application of
support vector regression by using a universal pearson vii function based
kernel,” Chemometrics and Intelligent Laboratory Systems, vol. 81,
no. 1, pp. 29–40, 2006.

[23] B. Cho, H. Yu, J. Lee, Y. Chee, I. Kim, and S. Kim, “Nonlinear support
vector machine visualization for risk factor analysis using nomograms
and localized radial basis function kernels,” IEEE Transactions on
Information Technology in Biomedicine, vol. 12, no. 2, pp. 247–256,
2008.

[24] J. Quinlan, C4. 5: programs for machine learning. Morgan kaufmann,
1993, vol. 1.

[25] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[26] Y. Singh, A. Kaur, and R. Malhotra, “Comparative analysis of regression
and machine learning methods for predicting fault proneness models,”
International Journal of Computer Applications in Technology, vol. 35,
no. 2, pp. 183–193, 2009.


