Known and Unknown Generic Web Tracking Analyzer: A 1 Million
Websites Study

Iskander Sanchez-Rola and Igor Santos

DeustoTech , University of Deusto
{iskander.sanchez, isantos}@deusto.es

Technical Report

Abstract

Web tracking is a widespread technique on the Internet to
gather user data. While tracking may not pursue user dam-
age, it may violate user consent and privacy. In addition, some
recent reports have linked web tracking with targeted mal-
ware campaigns. Recent research studied well-known and ad-
vanced tracking techniques. Despite the fact that these works
improved the understanding of the current tracking landscape,
they were not intended to generically detect and understand
all types of web tracking techniques. In this paper, we present
the first general large-scale analysis of different known and
unknown web tracking scripts on the Internet to understand
its current ecosystem and behavior. To this end, we imple-
mented TRACKINGINSPECTOR the first automatic method to de-
tect generic web tracking scripts. This technique automati-
cally retrieves scripts of a website and, through code similarity
and machine learning, detects modifications of known track-
ing scripts and discovers unknown web tracking script can-
didates. TRACKINGINSPECTOR analyzed the Alexa top visited
1,000,000 websites, computing the tracking prevalence and
its ecosystem, as well as the influence of hosting, website cat-
egory, and website reputation. More than 90% websites per-
formed some sort of tracking and more than 50% scripts were
used for web tracking. Over 2,000,000 versions of known
tracking scripts were discovered and we examined the script
renaming techniques they used to avoid blacklists. In addition,
5,500,000 completely unknown likely tracking scripts were
found, including more than 700 new different potential device
fingerprinting (canvas and font probing) unique scripts. Our
system also automatically detected the fingerprinting behav-
ior of a previously reported targeted fingerprinting-driven mal-
ware campaign in two different websites not previously docu-
mented.

1 Introduction

Web tracking is a common practice on the Internet to gather
user browsing data for different tasks such as advertisement,
personalization, analytics, and identity checking. Many meth-
ods exist for web tracking: cookies [1] that utilize user’s ma-
chine to store information, device fingerprinting that computes
a unique id for each machine (e.g., by retrieving the installed
components such as fonts [2], the computed difference in ren-
dering text by the HTML5 Canvas API [3], or the combina-
tion of attributes of different browsers [4]), evercookies that

bypass user cookie cleaning by exploiting browser storage,
cookie syncing that allows trackers to share users’ fingerprints,
and ETags inserted within images used to check the user iden-
tity [5]. Some of these techniques (e.g., cookies or HTML5
storage) require a stateful user navigation to store user envi-
ronment and variables. In contrast, stateless techniques do
not require storage to identify a user and, therefore, cannot be
blocked by common private browsing configurations.

Despite the fact that web tracking poses a threat to users’
privacy and anonymity, it is not usually considered harmful by
itself. Indeed, web advertising companies defend web tracking
as a fundamental component of the web economy [6]. How-
ever, recent reports by Symantec [7] and FireEye [8] discov-
ered two different targeted malware campaigns that employed
a fingerprinting stage to increase the exploit success rate and
to hide their exposure.

Recent work studied both stateful [9-11] and stateless
[12,13] web tracking, raising a general concern in the com-
munity about the prevalence of these techniques on the web.
These studies provided a better understanding of a particular
subset of web tracking techniques but they were not devoted
to fully understand and to generically discover web tracking
scripts. An unpublished work [14], parallel to our paper, com-
bines some of the previous approaches and ideas to analyze
and study both stateful and stateless web tracking. However,
due to the nature of these proposed approaches, only concrete
web tracking techniques are analyzed and, thereby, a generic
web tracking analysis and discovery cannot be performed with
these methods.

Given this background, we present here the first large-scale
analysis of generic web tracking scripts. Due to the limita-
tions of current tracking analysis solutions, we build our own
tracking inspection tool called TRACKINGINSPECTOR. In con-
trast to existing solutions, based either on blacklists or static
rules, this tool is based on code similarity and machine learn-
ing. TRACKINGINSPECTOR automatically detects known track-
ing script variations and also identifies likely unknown track-
ing script candidates. We use TRACKINGINSPECTOR to analyze
the Alexa' top 1,000,000 websites in order to answer the fol-
lowing research questions: (i) how widespread is web track-
ing on the Internet?, (ii) what is the current ecosystem in web
tracking provision and deployment on the Internet?, (iii) can
current blacklistings solutions limit or block most web tracking
on the Internet?, and (iv) can TRACKINGINSPECTOR discover
new web tracking scripts? To what extent?

Thttp://www.alexa.com/

http://www.alexa.com/

The major contributions and findings of this paper are:

e The first global large-scale study of generic web tracking.
Our results show that more than 90% of the websites per-
formed tracking and that more than 50% of the scripts
exhibited tracking behavior. We also computed the most
prevalent domains hosting tracking and analyzed their
ecosystem.

o TRACKINGINSPECTOR, the very first tool to automatically
detect generic web tracking scripts through code simi-
larity and machine learning. The results of the large-
scale study show its ability to automatically detect known
tracking scripts and their modifications, and to discover
potentially unknown web-tracking scripts. Our method
was able to detect more than 2,000,000 known track-
ing script versions whereas current blacklisting solutions
were only able to detect 64.65% of them in the best
scenario. This indicates that many variations of track-
ing scripts are bypassing current anti-tracking solutions.
Hence, we studied these hiding techniques, discovering
several script renaming techniques that script versions are
using.

e More than 5,500,000 new scripts that exhibited tracking
behavior not previously reported or blacklisted. These
scripts include over 700 new unique potential device fin-
gerprinting scripts: more than 400 performing canvas
fingerprinting, more than 200 performing font probing,
and more than 50 exhibiting both. TRACKINGINSPEC-
TOR also automatically detected a previously reported tar-
geted fingerprinting-driven malware campaign exhibiting
fingerprinting behavior, present in two websites not re-
ported as infected.

The remainder of this paper is organized as follows. Section
2 presents TRACKINGINSPECTOR, our automatic web tracking
analyzer. Section 3 describes the large-scale analysis and out-
lines the major global findings of this study. Section 4 describes
selected interesting case studies extracted from our results.
Section 5 discusses the main findings of this work and their
implications. Section 6 contextualizes this work with recent
related work. Finally, we extract our conclusions in Section 7.

2 Tracking Analysis & Detection

2.1 General Description

Current Solutions

To understand what is the current landscape of tracking scripts
on the Internet, we evaluated the available solutions for track-
ing detection: blacklisting (e.g., EasyPrivacy? and Ghostery®),
the EFF’s tool Privacy Badger* based on simple heuristics, FPDe-
tective framework [12], and OpenWPM solution.®

Blacklisting tools rely on a list with blacklisted script names,
URLs, and domains. Although these methods detect the

’https://easylist.adblockplus.org/

Shttps://www.ghostery.com/

“https://chrome.google.com/webstore/detail/privacy-
badger/

Shttps://github.com/citp/OpenWPM

@

N

.
|

[)2
| 4

Text-based
Analyzer

Crawler

Script Database

Figure 1: General overview of TRACKINGINSPECTOR.

known tracking scripts and domains, they fail to detect sim-
ple variations such as renaming the script or modifying the
domain where the scripts are hosted. Besides, they may in-
correctly block scripts devoid of tracking behavior but named
with the same script name as one within the blacklist.

The heuristics used in the Privacy Badger plugin block third-
party cookies. This approach raises false positives and only
focuses in cookies. Nevertheless, web tracking adopts many
other different forms that are not covered by this tool.

FPDetective and OpenWPM are tracking analysis frameworks
based on blacklisting and/or rules to detect several tracking
behaviors. These frameworks solve the main limitations of
sole blacklisting techniques. However, as these techniques are
based on predefined rules, the tracking script can be modified
with techniques that bypass the existing rules. Although new
rules can be included, the process requires a considerable man-
ual effort and rules are fixed for the detection of specific fin-
gerprinting techniques, while our goal is a generic automatic
tracking analysis.

Due to the limitations of current solutions for our goal, we
decided to implement TRACKINGINSPECTOR, our own tracking
detection method to answer our research questions.

TRACKINGINSPECTOR Solution

TRACKINGINSPECTOR (see Figure 1) is composed of three main
components: (i) a Crawler; (ii) a Script Database with both
tracking and non-tracking scripts, and (iii) a Text-based Ana-
lyzer.

The basic functionality of TRACKINGINSPECTOR starts by
downloading scripts through the Crawler. To this end, we im-
plemented a set of heuristics to maximize the number of scripts
downloaded by the Crawler from each website, improving the
methods previously proposed in the literature. The Crawler
waits until every script in the site is downloaded; including
third-party, first-party, or HTML-embedded scripts.

These scripts are then analyzed by the Text-based Analyzer
through its two analysis components:

1. The Known Tracking Analysis measures the similarity of
each script with the tracking and non-tracking scripts
stored in the Script Database. The script under inspec-
tion can be detected as a variation of a particular known

https://easylist.adblockplus.org/
https://www.ghostery.com/
https://chrome.google.com/webstore/detail/privacy-badger/
https://chrome.google.com/webstore/detail/privacy-badger/
https://github.com/citp/OpenWPM

tracking script based on their code similarity or it can be
flagged as a non-tracking script. This analyzer is intended
to be an end-user solution.

2. When no match is found, the Unknown Tracking Analy-
sis inspects the script using a machine-learning algorithm
trained with the Script Database to detect likely track-
ing scripts not previously known or variations of known
scripts whose differences are enough to consider them
unknown. This component is devoted to discover new
tracking scripts to be added to the Script Database for the
Known Tracking Analysis.

In contrast with other methods devoted to detect specific
tracking [12], TRACKINGINSPECTOR does not perform a com-
plete dynamic analysis of the scripts. Instead, the Crawler dy-
namically retrieves all the scripts of the website and, then, the
script is analyzed by the Text-based Analyzer. To detect and
block tracking, dynamic tracking detection approaches moni-
tor the website behavior during browsing and compare it with
specific rules set for concrete types of web tracking. Other-
wise, TRACKINGINSPECTOR is oriented to detect any sort of
web tracking and not only specific types of it and, therefore,
it requires the general and complete behavior of a website un-
der inspection. In order to adapt a dynamic approaches to
our desired generic tracking detection, we need to construct
a rule database with every possible set of rules to every type
of known tracking behavior. However, such an approach will
lack TRACKINGINSPECTOR’S capabilities to generically detect
all variations of known tracking behaviors and will not be ca-
pable to discover unknown tracking candidates.

2.2 Crawler

Overview

The Crawler component is devoted to automatically retrieve
every JavaScript file statically or dynamically loaded in a web-
site. The Crawler is based on PhantomJS,? a well-known head-
less browser. To avoid the typical detection of the automated
browsing when using headless browsers, we adapted existing
advanced hiding methods’ to disguise the browser as a com-
mon one. With this adaptation, our Crawler is capable of per-
forming a transparent and exhaustive browsing. The Crawler
also deals with obfuscation, and cleans the generated caches
and cookies after each website inspection.

Methodology

The Crawler starts visiting the frontpage of the website un-
der inspection. It saves all the downloaded scripts, taking into
consideration if different scripts have the same name or if they
are downloaded multiple times. To retrieve them, rather than
waiting a fixed time and gathering them, like previous work on
fingerprinting detection [12,13], we empirically analyzed the
different script generation behaviors in 250,000 random web-
sites within the Alexa top 1M websites to determine a global
methodology for web analysis and to set the adequate times to
retrieve every script.

Shttp://phantomjs.org/
7https://github.com/ikarienator/phantomjs_hide_and_
seek

The resulting methodology starts with the Crawler waiting
until all frames in the website are loaded with a fixed maxi-
mum time of 60 seconds. When all frames are loaded before
the 60 seconds are elapsed, the Crawler waits for other addi-
tional 15 seconds (or until the maximum time is elapsed). We
added this second waiting time, because in several cases addi-
tional scripts were downloaded after every frame had already
been loaded because other scripts may have called them.

If scripts are downloaded during this extra time window,
the Crawler will wait until the remaining of the 60 seconds are
elapsed since additional scripts were triggered in that time.
The computation time takes into account the possible redi-
rections within the website or its frames. Then, the Crawler
retrieves the resulting HTML code, with all the generated pos-
sible modifications, and gathers the scripts embedded in the
HTML code.

Once the scripts have been gathered, the Crawler starts a
deobfuscation phase and finally, the Crawler starts a process of
cleaning duplicate scripts, files that are not actually JavaScript,
or empty files.

De-Obfuscation

We implemented a deobfuscator based on JSBeautifier,® a
well-known online deobfuscator. Using the techniques imple-
mented in this tool, our method tries to unravel the original
code, checking in each iteration whether or not the script has
been completely deobfuscated with the metrics specified for
each obfuscator.

In this way, we can deal with multiple layers and multiple
known techniques of obfuscation. In fact, we discovered some
JavaScript obfuscators that use other obfuscators iteratively to
perform a multiple layer obfuscation. When the script is deob-
fuscated, our method performs an additional step to deal with
one obfuscator with a particular behavior.

This obfuscator, when the free version is used, places the
original code in an escaped string within the code while the
rest of the code is used to call functions in the string and also
performs a callback function to notify the authors of this tech-
nique that the script has been executed. Our deobfuscator re-
trieves the code stored in the string and unescapes it, discard-
ing the additional code within the script.

2.3 Script Database

The Script Database stores both known tracking and non-
tracking scripts. For the non-tracking scripts, we downloaded
scripts from open-source projects and scripts from randomly
accessed websites (that did not belong to the Alexa top 1M
sites), manually verified afterwards.

In order to generate the tracking scripts dataset, we re-
trieved scripts on blacklists, open-source projects, academic
papers, and also tracking scripts found during the manual in-
spection when searching for non-tracking scripts:

e Blacklists: We used EasyPrivacy, Kaspersky Tracking List
(ABBL),° ABINE,'° the tracking version of AdGuard,'! the

8http://jsbeautifier.org/
http://forum.kaspersky.com/
Ohttps://www.abine.com/index.html
"https://adguard. com/

http://phantomjs.org/
https://github.com/ikarienator/phantomjs_hide_and_seek
https://github.com/ikarienator/phantomjs_hide_and_seek
http://jsbeautifier.org/
http://forum.kaspersky.com/
https://www.abine.com/index.html
https://adguard.com/

tracking list FanBoy,'? and the Tracking Detection System
(TDS) by Rob van FEijk.!*> These lists were selected be-
cause they include scripts and not just domains. We omit-
ted blacklisted domains in these lists because our goal
is to detect tracking scripts rather than domains. How-
ever, this information was used in the large-scale analysis
(along with other 6 tracking domain blacklists that will
be detailed in Section 3) to compare the results and find-
ings of TRACKINGINSPECTOR. Some of these lists included
a whitelist composed of tracking scripts that are not con-
sidered harmful. Since our goal is to detect tracking be-
havior, we included this type of scripts.

e Open-source Tracking Projects: We retrieved several
open-source tracking projects to complement the infor-
mation already stored in the blacklisting services: Beaver-
Bird,'* FingerPrintJS,'® and Evercookie.'®

e Academic Papers: Regarding academic papers, we also
included in our tracking Script Database the scripts found
in [12,13]. With these scripts, we complement the infor-
mation of the Script Database with newly advanced types
of tracking scripts.

We processed the list of potential scripts and stored the
scripts whose complete URL was available. However, some
scripts were not available. In those cases, we tried to download
them through archive. org, removing all the service-related
text and code afterwards. In other cases script names were
only available and we searched it using several code searchers
(e.g., meanpath,'” NerdyData,'® FileWatcher'?), or common
search engines (e.g., Google and Bing). We manually checked
each script afterwards to determine whether it was actually
tracking or not.

Since some of the scripts were obfuscated, we applied the
deobfuscation process already described in section 2.2. After-
wards, we performed an additional step to remove duplicates
or different versions of scripts. To this end, we modeled the
code of each script using a Bag of Words (BOW) in a Vector
Space Model (VSM) approach [15], computing the cosine simi-
larity of each script within the Script Database. After an empir-
ical testing of different versions of various scripts, we defined
0.85 as the similarity threshold for a script to be considered as
a version or modification of another, adding the original scripts
to Script Database. However, we also added a small number of
script versions that, albeit being considered modifications of
original scripts, they presented new functionalities or behav-
iors that TRACKINGINSPECTOR should be capable of detecting.
After this process, 957 original tracking scripts were stored in
our Script Database. To balance the Script Database, we ran-
domly selected 957 non-tracking scripts from the aforemen-
tioned sources. We also added some additional non-tracking
scripts that may be incorrectly flagged as web tracking (e.g.,
jquery.cookies. js, jquery.form.min. js, or jquery-

2https://www.fanboy.co.nz/
Bhttps://github.com/rvaneijk/ruleset-for-AdBlock
Yhttps://github.com/AlexanderSelzer/BeaverBird
Shttps://github.com/Valve/fingerprintjs
https://github.com/samyk/evercookie
https://meanpath.com/

http://nerdydata.com/
Yhttp://www.filewatcher.com/

ui. js) in order to avoid false positives in the Unknown Track-
ing Analysis phase. These scripts will only be used in the Known
Tracking Analysis phase and not in the Unknown Tracking Anal-
ysis since training may be biased, losing accuracy.

2.4 Text-based Analyzer

Overview

The Text-based Analyzer is the component responsible for the
detection of tracking scripts. This component is divided in
two different sub-components: a (i) Known Tracking Analy-
sis, responsible for the detection of versions, modifications or
variants of known scripts stored in the Script Database and a
(ii) Unknown Tracking Analysis, whose goal is to automatically
identify tracking script candidates.

In previous studies, tracking and fingerprinting behaviors
were detected by means of blacklisting or manually-generated
rules [12,13]. Since our goal is to perform a large-scale anal-
ysis of current tracking behaviors, we consider that these ap-
proaches were either limited in the case of blacklisting, or not
feasible in the case of generating rules because our goal is
not to analyze a particular tracking behavior but the global
overview of web tracking.

Scripts Representation

We use the text representation of the script source code. There
are different approaches to represent it.

In our case, we tested two different approaches: Abstract
Syntax Trees (ASTs) and Bag of Words (BOW). While ASTs rep-
resented the specific syntax of the functions within the code,
BOW approach captures the token frequencies to model the
script. Despite the fact that ASTs have been widely applied for
static analysis, in our preliminary tests, the text-categorization
approach BOW behaved better to detect generic tracking be-
haviors, because ASTs model code syntax strictly taking also
into account the script structure, BOW models the usage of
tokens. Therefore, ASTs are worse when dealing with script
modifications or new scripts than the standard BOW model.
Since our goal is not to capture any particular behavior but to
generically detect any type of web tracking, other approaches
may overfit and fail to detect modifications or new web track-
ing scripts.

This approach has also its shortcomings. In particular, the
BOW approach will take into account the tokens within the
code including variables and identifiers. Nevertheless, since it
is designed to capture all of them, a single modification of a
variable name will never avoid detection. On the other hand,
our approach may fail if someone willingly changes the iden-
tifiers to those typical on web tracking. However, there is no
explainable reason why a legitimate script would perform such
transformation, since the script will impersonate a web track-
ing script and will be blocked.

Text Representation of the Script Database

Although the goals of known and unknown approaches are dif-
ferent, they both represent scripts using the aforementioned
BOW approach. As in the Script Database, all the scripts are
modeled through a VSM, composed of the vocabulary of terms

https://www.fanboy.co.nz/
https://github.com/rvaneijk/ruleset-for-AdBlock
https://github.com/AlexanderSelzer/BeaverBird
https://github.com/Valve/fingerprintjs
https://github.com/samyk/evercookie
https://meanpath.com/
http://nerdydata.com/
http://www.filewatcher.com/

within the scripts. Text-based Analyzer represents each script
as a sequence of each term frequencies, using the well-known
Term Frequency [16] — Inverse Document Frequency (TF-IDF)
[17] weighting schema. Known Tracking Analysis is dedicated
to detect versions or modifications of currently known track-
ing scripts stored in the Script Database. To this end, this com-
ponent computes the similarity of the script under inspection
with known tracking scripts. When the already empirically
computed threshold of 0.85 is surpassed, the script is flagged
as a known tracking script version. Otherwise, Known Track-
ing Analysis compares the script under inspection with non-
tracking scripts in the Script Database to avoid false positives
in the Unknown Tracking Analysis phase. If the 0.85 threshold
is surpassed, the script will be marked as non tracking.

Unknown Tracking Analysis is based on supervised machine
learning. Using the aforementioned Script Database, we per-
formed a 10-fold stratified cross-validation experimental eval-
uation with several well-known machine-learning algorithms
to decide which classifier to use for this task. The best perform-
ing classifier was Random Forest [18] configured with 950 Ran-
dom Trees. This classifier is an ensemble learning method for
classification that generates several decisions trees at training
and decides the classification based on the mode or mean of
their partial classifications. In the training phase for Random
Forest, the bagging technique is used to generate the weak ran-
dom tree learners. Then, to build the aggregate, a similar but
more general method is used to select the different high-level
splits sometimes known as feature bagging.

Evaluation

The Known Tracking Analyzer using a 0.85 threshold did no
report any false positives in our tests, and, as it is obvious,
will be capable of detecting any modification of known track-
ing scripts that are, at least, 85% similar than the ones in the
Script Database. Therefore, we believe that this component
should be used in an end-user environment as a replacement
of blacklisting techniques. Therefore, we will compare its per-
formance with blacklisting solutions in Section 3.

We consider any script not detected by the Unknown Track-
ing Analyzer as previously unknown. These scripts, can only be
detected by the extitUnknown Tracking Analyzer and not by
any other method in the literature. During the cross-validation
evaluation, this component achieved an area under the ROC
curve of 0.982, a 93.6% accuracy, a true positive rate of 94.4%,
and a false positive ratio of 7.5%. With this classifier, we built
the Unknown Tracking Analysis to discover likely candidates of
unknown tracking scripts. It is important to remark that this
component is the first one in the literature capable to detect
previously unseen generic tracking scripts and that it is de-
voted to the discovery of new tracking scripts rather than and
end-user environment. Therefore, we believe that for this us-
age the reported false positive ratio is more than acceptable.
However, in order to further evaluate the tracking discovery
capabilities of the Unknown Tracking Analysis component, an
additional evaluation of the method will be performed through
a manual inspection of web tracking scripts in the wild in Sec-
tion 3.

3 Large-Scale Analysis

3.1 Preliminaries

The main goal of this analysis is to answer the following re-
search questions:

e How widespread is web tracking on the Internet?

e What is the current ecosystem in web tracking provision and
deployment on the Internet?

e Can current blacklisting solutions limit or block most web
tracking on the Internet?

e Can TRACKINGINSPECTOR discover new web tracking
scripts? To what extent?

To this end, we selected the Alexa top 1M websites. The
Crawler retrieved the scripts within the 1,000,000 websites
and the Text-based Analyzer inspected them. When download-
ing scripts from a website that had been removed, the site
was searched through archive.org. Since archive.org
adds code and also files to the downloaded website, we per-
formed a cleaning process. First, we removed any reference
to archive.org from the domain. Second, we removed the
scripts related with this service both external and embedded
in the HTML. Finally, we removed any reference in the code
comments to archive.org.

We failed to retrieve the scripts of 3.67% of the websites
because its access was restricted (401 and 403), the site was
not accessible, or it was not possible to find in archive.org.

Since TRACKINGINSPECTOR only uses the scripts of well-
known blacklisting services in its Script Database but not the
domains, some of the scripts flagged as unknown likely track-
ing scripts by the Unknown Tracking Analyzer may be only un-
known by TRACKINGINSPECTOR but known by existing black-
listing tools. To discriminate between these two cases, we used
the blacklisting tracking detection tools EasyPrivacy, Kasper-
sky Tracking List (ABBL), ABINE, the tracking version of Ad-
Guard, the tracking list of FanBoy, the Tracking Detection Sys-
tem (TDS), Disconnect,?° Truste, Ghostery,22 Privacy Choice,?
Privacy Badger,** and Web of Trust®>® (the domains classified
there as the category 301 - online tracking).

In order to retrieve the information about the web tracking
ecosystem, we gathered several additional information about
the hosted website and the top-level domains from where the
scripts were downloaded. We also analyzed the domains, be-
cause, in other related topic, the hosted scripts in domains
have proven to have a strong influence in the trust of the
websites [19]. To correctly retrieve the top-level domains
and to reduce the domain name to its origin, we used the
effective_tld_names.dat by Mozilla.?® Next, we ex-
tracted the country where the domains were hosted, which ISP
gave access to the domain, the associated ASs, and the cate-
gory of the website. To determine the category of the website,

2nttps://disconnect .me/
2lhttps://www.truste.com/
2https://www.ghostery.com/
2nttps://www.privacyfix.com
Zhttps://www.eff.org/es/node/73969
https://www.mywot .com/
2https://publicsuffix.org/list/

https://disconnect.me/
https://www.truste.com/
https://www.ghostery.com/
https://www.privacyfix.com
https://www.eff.org/es/node/73969
https://www.mywot.com/
https://publicsuffix.org/list/

we utilized three different services: Cloudacl,?” Blocksi,?® and
Fortiguard.?’ The categories of these three services are similar,
and, after a process of category name normalization, 78 cate-
gory names were established. We also performed an analysis of
the online reputation of the websites through the Webutation
service,?° that uses a combination of various users’ feedback,
comments, and also different analyses of the website such
as Google Safe Browsing, Norton Antivirus, phistank.com,
among others.

For the sake of clearness, we define and clarify the terminol-
ogy that we will be using in the rest of the section to name and
classify the web tracking and non-tracking scripts. Regarding
the type of tracking, we can distinguish between:

e Known Tracking Scripts: We call known tracking scripts
to script that are in the range between 85% and 100%
similarity to the ones in the database.

e Unknown Tracking Scripts: We name this way to scripts
that are not at least 85% different to the ones in the script
database. In this way, these script can be either new
scripts from scratch or versions of known scripts that have
been modified enough to be considered new or unknown.
These scripts are flagged by the unknown text-analyzer
that has a small percentage of error and therefore we will
also name them sometimes tracking script candidates or
likely tracking scripts. In this category, we also distinguish
between two sub-categories.

— Unknown Blacklisted Tracking Scripts: These scripts
are unknown tracking scripts whose hosting domain
is in one of domain blacklisting domains but the
script it is not. Therefore, the domain is known to
be hosting web tracking but the script has not par-
ticularly flagged by any blacklist as web tracking.

— Completely Unknown Tracking Scripts: These scripts
are unknown and their hosting domains has not
been blacklisted either.

Since there can be different samples or version of the same
original unique script, we have also classified these three pos-
sibilities:

e Unique Script: Different scripts compared by hash. Ver-
sions of known tracking scripts that are not exactly equal
are considered different unique scripts.

e Original Script: The unique source scripts in the script
database.

e Script Version or Script Sample: Each occurrence or
download of a script.
3.2 Tracking Ecosystem

General Overview

A total of 20,969,926 script samples (tracking and non-
tracking scripts) were downloaded from the the Alexa top 1M

2’http://www.cloudacl.com/
2nttp://www.blocksi.net/
Phttp://www.fortiguard. com/
30nttp://www.webutation.net/

Table 1: Tracking and non tracking behavior prevalence in
scripts.

Type # Scripts % Scripts
Tracking 11,984,469 57.15%
Non tracking 8,985,457 42.85%
TOTAL 20,969,926 100.00%

Table 2: Tracking and non tracking behavior prevalence in
websites. % W. S. stands for the percentage of websites, con-
sidering only websites with scripts. % W. represents the per-
centage considering every website.

Type % W. S. % W. # Websites
Tracking 97.58% 92.89% 894,779
Non tracking 2.42% 2.31% 22,220
No scripts N/A 4.80% 46,277
Number of websites with scripts 916,999
Total number of websites 963,276

Table 3: Detected tracking script distribution. Domains refer
to top-level domains where the scripts are downloaded. Un-
known (blacklisted) refers to likely tracking script candidates
unknown in the Script Database but whose domain is black-
listed.

Type # Scripts # Domains
Known 2,439,835 540,369
Unknown (blacklisted) 3,923,615 7,455
Unknown 5,621,019 841,425
TOTAL tracking 11,984,469 891,873

websites. Impressively, nearly 60% of them were flagged as
web tracking (see Table 1). In other words, more than the
half of the functionality in the web is potentially devoted to
track users. We also measured if this overwhelming number of
tracking behaviour was hidden by obfuscation techniques. It is
important to remark that we only consider obfuscation and not
mimification or other techniques in this measurement, as they
did in other studies [20] because our target is different. Al-
though web tracking include lots of well-known and accepted
techniques as analytics, we believed than more advanced and
controversial techniques will try to hide their nature some-
how. However, as opposite to initially expected, the number
of scripts obfuscated is irrelevant: just a 0.45% of them. Like-
wise, only a 4.75% were downloaded via HTTPS, indicating
lack of security in their communications.

There was also an interesting 46,277 of the websites did
not use any scripts at all. However, after analyzing them, we
found out that the size of the main page of these websites was
very small (an average of 7.53KB), implying that these web-
sites were very basic or not completely functional. Therefore,
we computed the tracking prevalence percentage both in every
analyzed website and also in websites with scripts (see Table
2), discovering that nearly every website performed web track-
ing.

Regarding the known tracking scripts, they represented only
around a 20% of the tracking script samples, whereas the un-
known samples represented an stunning majority. In this way,
the majority of the flagged samples were not previously stored

http://www.cloudacl.com/
http://www.blocksi.net/
http://www.fortiguard.com/
http://www.webutation.net/

Table 4: Relation between webutation (by the reputation on-
line service) and websites using some or only tracking scripts.
% Some T means the percentage of websites with some track-
ing scripts and % Only T means the percentage of websites
with only tracking scripts.

Category # Websites % SomeT. % Only T.
Red 6,322 96.98% 15.41%
Yellow 11,329 97.48% 15.31%
Grey 37,3050 96.74% 6.45%
Green 518,069 98.21% 5.95%

in the Script Database. However, using the previously omit-
ted domain blacklists, we discovered that 41.11% of these un-
known scripts were in blacklisted domains (see Table 3 for de-
tails), being unknown blacklisted scripts. Anyhow, the number
of scripts that neither the script and the hosting domain were
blacklisted, was the impressive majority of 46.90%.

The web tracking scripts were downloaded from a total of
891,873 different top-level domains. In particular, known
tracking script samples were downloaded from 540,369 dif-
ferent top-level domains, while unknown tracking scripts were
hosted in 841,425 different domains.

To understand the demographics of tracking usage and pro-
vision, we analyzed several features of the websites that down-
loaded the script and, also, of the domains that are providing
these scripts.

Website Demographics

To obtain a better understanding of which websites performed
more tracking, we analyzed their different aspects and their
tracking prevalence, omitting, for obvious reasons, websites
without scripts. To discover the relevance of web tracking
in each analyzed aspect (website category and webutation in
both cases, and origin country and network entities in the case
of domains), we run several preliminary tests computing the
differences of several tracking script ratios per website to de-
termine which ratio was able to discriminate between the ex-
amined categories. The results showed that computing the
number of websites with only tracking scripts per each stud-
ied aspect eased the discrimination, while the number of web-
sites with some tracking and the number of scripts per aspect
showed the overall behavior.

We computed the following ratios: (i) percentage of track-
ing scripts per script in the category, (ii) percentage of websites
performing any type of tracking per website in the category,
and (iii) percentage of websites with only tracking scripts per
website in each category.

The website categories with the highest tracking script per-
centage were, among others, personal websites, hacking, spy-
ware and adware, social networks, or peer to peer websites. On
average, each category included 97.78% =+ 1.45 of websites
with some tracking. Seven of the categories included 100%
tracking websites. However, these concrete categories had a
low number of websites ranging from just 1 to 79. The average
percentage of websites per category that only contained track-
ing scripts was much lower: 7.50% £ 4.53. In this case, there
was an important difference between categories: the highest
ratio of only tracking websites included was 26.67% while the

Table 5: Domain distribution with regards to tracking. Only
Tracking represents the top-level domains that only contain
tracking scripts, whereas Only non tracking represents top-
level domains with only non-tracking scripts. Tracking & non
tracking represent the top-level domains that contain both
tracking and non-tracking scripts.

Type # Domains
Only tracking 98,359
Only non tracking 41,640
Tracking & non tracking 793,515
TOTAL 933,514

lowest was 0.00%. The top categories were mainly malicious,
questionable, unknown, and websites with adult content. This
ratios indicate that, despite, that web tracking by itself can-
not be used to discriminate the maliciousness or greyness, sur-
prisingly, malicious or grey websites tend to only include web
tracking scripts and not other functionality.

The relation between websites with some or only tracking
scripts with Webutation (see Table 4) hinted that the presence
of only tracking scripts is correlated to the reputation of a web-
site. 15.41% of the websites in the Red category and 15.31%
in the Yellow categories only used tracking scripts, while only
the 6.45% and 5.95% of the Grey and Green categories did, re-
spectively. Since users do not tend to think about web tracking
and the high presence of web tracking in every sort of website,
we believe that this results indicate that websites perceived as
bad by users’ have a higher ratio of web tracking than non-
tracking, similarly as happened with the websites category.

Domain Demographics

We also measured domains used to host tracking scripts, non-
tracking scripts, and both tracking and non-tracking scripts
(see Table 5). The reason to not only analyze websites but
also domains, is that we seek to analyze both the usage and
also the provision of web tracking in the web. In fact, previous
work in web vulnerabilities found the relevance of the domains
hosting scripts with the ultimate nature of them [19].

We discovered that, similarly as happened to websites using
web tracking scripts, domains usually host web tracking scripts
alongside non-tracking scripts. Indeed, the percentage of them
hosting solely tracking scripts is not negligible (10.54%).

With regards to the relation of countries with their domains,
despite the fact that small countries and tax havens surpris-
ingly appeared in the list with the highest number of domains
hosting only tracking scripts, the small number of domains in
those cases render it as a not conclusive finding.

Likewise, we found several cases of either AS owners, ASNs,
or ISPs whose domains were only used to host tracking scripts
but given their small number of domains in each of the cases,
we consider these results irrelevant.

As we did when studying websites, we analyzed the cor-
relation between the webutation of the domain and its host-
ing of tracking scripts (see Table 6). We corroborated that, as
happened with websites, the presence of only tracking scripts
in domains had an effect in the reputation: Yellow and Red
were composed of a 22.87% and 23.71% of the domains host-
ing only tracking scripts while Grey and Green categories only

Table 6: Relation between webutation (by the reputation
online service) and domains hosting some or only tracking
scripts. % Some T. means the percentage of domains hosting
some tracking scripts and % Only T means the percentage of
domains that only host tracking scripts.

Category # Domains % Some T. % Only T.
Red 5,898 95.07% 22.87%
Yellow 10,447 95.83% 23.71%
Grey 447,687 94.05% 11.23%
Green 465,007 96.99% 9.44%

Table 7: Known tracking detection comparison between black-
listing, code hashing, and TRACKINGINSPECTOR that detected
the 100% of the known tracking scripts.

Solution # Scripts % Known Sc.
Blacklisting (scripts) 1,068,652 43.80%
Blacklisting (domains) 825,617 33.84%
Blacklisting (all) 1,577,251 64.65%
Code hashing 49,807 2.04%

contained 11.23% and 9.44%. Taking into account how webu-
tation works, the results may be due to negative user ratings
aware of tracking techniques or also, because the external tools
determine it as malicious. In both cases, it seems likely that
malicious or suspicious websites (determined either by users
or services) tend to host only tracking scripts and not a com-
bination of web tracking and non-tracking scripts.

3.3 Analysis of Known Tracking

To compare the detection capabilities of TRACKINGINSPECTOR
with current web tracking blocking solutions, we measured
the number of known script samples that blacklisting solutions
would have blocked. From all the script blacklisting mech-
anisms (e.g., script name or script complete URL), we chose
script name blacklisting as the baseline because it provided a
broader detection than the other alternatives. In this way, we
computed the number of known tracking script samples whose
name was the same as the one stored in the Script Database.
The blacklisted domains were also used in order to measure
their blocking capability. Another possible solution not used
in web tracking detection but widely used in other domains
has also been explored: code hashing: we measured the num-
ber of scripts whose code exactly matches scripts in the Script
Database. Results (shown in Table 7) show that script and do-
main blacklisting captured 43.80% and 33.84% of the known
tracking script versions, respectively. Combined blacklisting
solutions would had blocked the 64.65% of the known track-
ing script samples while code hashing only would had cap-
tured 2.04% of the samples. These results indicate that cur-
rent anti-tracking solutions are clearly not enough, not only
to fight against completely unknown tracking scripts, but they
cannot deal with known tracking scripts versions whose code
has been modified and nearly the half of all the script samples
in the wild would not have been blocked by them.

Moreover, we measured the prevalence of samples and ver-
sions of the tracking scripts stored in the Script Database.
In particular, Google related scripts were the most popular:

Table 8: Known tracking prevalence in websites.

websites 770,440
— % in websites with tracking 86.10%
— % in websites (considering sites with scripts) 84.02%

Table 9: 10 most popular top-level domains hosting known
tracking script samples.

Domain # Websites
google-analytics.com 608,223
google.com 144,853
googlesyndication.com 140,260
ytimg.com 60,373
yandex.ru 47,805
doubleclick.net 44,509
ajax.googleapis.com 40,610
scorecardresearch.com 36,297
googleadservices.com 34,770
googletagservices.com 33,303

60.90% of the samples correspond to their scripts, including
29.27% of samples with analytics capabilities. Among other
popular scripts we can find: 20.92% regarding advertisement
companies (33Across, Pzyche, and QuantCast), 3.49% from an-
alytics companies (Yandex Metrica and comScore), and 2.00%
social analytics samples (FlCounter and Pinterest). These
known tracking script samples were used by the 84.02% of
the websites with scripts (see Table 8).

The known scripts samples were hosted in 540,369 top-level
domains. The 10 most popular domains are shown in Table 9,
beings google-analytics.com was the most popular do-
main. Their scripts were present in 63.14% of the websites
with scripts. The rest of the domains belonged to Google or to
well-known advertisement services. As it can be noticed, the
hosting of known tracking scripts follows a long-tail distribu-
tion with a small number of domains (or companies) hosting
the most number of script downloads , confirming the long-
tail nature of web tracking provision regarding known tracking
script samples.

3.4 Analysis of Unknown Tracking

Regarding the Unknown Tracking Analysis, TRACKINGINSPEC-
TOR flagged 79.64% of all the tracking script samples as likely
unknown tracking candidates. 41.11% of them corresponded
to samples downloaded from blacklisted domains. The re-
maining 5,621,019 likely tracking script candidates were not
previously known by any solution. Due to the high prevalence
of unknown tracking scripts, we analyzed them separately to
understand their nature.

Unknown Tracking Analysis In-the-wild Evalua-
tion

TRACKINGINSPECTOR’s Unknown Tracking Analysis component
flagged more than 8,000,000 of scripts as unknown track-
ing candidates and more than 5,000,000 were not previously
known by any blacklist or solutions present. Even thought
we already performed a 10-fold cross validation of the Script

Table 10: Unknown tracking downloaded from blacklisted do-
mains prevalence in websites.

websites 646,428
- % in websites with tracking 72.24%
— % in websites (considering sites with scripts) 70.49%

Table 11: 10 most popular blacklisted top-level domains host-
ing unknown tracking script samples.

Domain # Websites
facebook.com 177,443
akamaihd.net 176,616
googlesyndication.com 166,469
google.com 156,214
twitter.com 120,843
gstatic.com 114,153
facebook.net 86,299
googleusercontent.com 86,023
googleadservices.com 83,676
ytimg.com 72,571

Database, due to the large number of scripts discovered, we de-
cided to perform an additional in-the-wild manual validation
to measure the real capacities of our technique and to obtain
a more real-wold measurement about our tool’s capabilities.

To this end, we extracted a random sample from the ones
marked as potentially unknown tracking scripts in the large-
scale analysis. The sample is composed of 273 scripts, repre-
senting a 90% confidence level and a 5% confidence inter-
val. By manually analyzing these samples, we discovered that
85.35% are directly involved in some type of web tracking, al-
though nearly all of them showed suspicious behaviours (e.g.,
checking different data from the browser). These results are in
the same line as the ones that our tool obtained in the 10-fold
cross validation described in Section 2. Since the goal of this
component is to discover new tracking scripts for the database
and it is not intended to be used as a client-side detector, we
believe that the percentage of FP is more than acceptable for
this task.

Unknown Tracking in Blacklisted Domains

Unknown tracking scripts downloaded from blacklisted do-
mains appeared in 70.49% of the websites with scripts (see
Table 10). Although we cannot consider that all the scripts
hosted in blacklisted domains as web tracking, the fact that
Unknown Tracking Analysis detected them, suggested its dis-
covery capabilities.

Surprisingly, only 7,455 blacklisted domains (see Table 11
for details about the 10 most prevalent ones) hosted 3,923,615
of this type of unknown tracking script samples. This num-
ber of domains is much smaller than in the case of known or
completely unknown tracking scripts. This fact demonstrates
the relevance of these blacklisted domains in the web tracking
ecosystem. In particular, script samples from facebook.com
was present in 18.42% of the websites with scripts.

Table 12: Completely unknown tracking prevalence in web-
sites.

websites 831,677
— % in websites with tracking 92.95%
— % in websites (considering sites with scripts) 90.69%

Table 13: Distribution of unknown tracking candidates in do-

main types.
Domain # Samples # Uniques
HTML 4,145,542 2,744,244
1st Party 679,319 283,337
3rd Party 796,158 241,578
TOTAL 5,621,019 3,245,238

Table 14: 10 most popular top-level domains hosting previ-
ously unknown tracking script candidates.

Domain # Websites
disquscdn.com 15,185
vk .me 9,228
baidustatic.com 4,848
kxcdn.com 4,189
adformdsp.net 2,958
jivosite.com 2,829
yandex.net 2,739
st-hatena.com 2,399
gtimg.cn 2,384
bitrix.info 2,374

New Unknown Potential Tracking
SCRIPTS & DOMAINS

In relation to completely unknown tracking candidates, they
represented 58.89% of the likely completely unknown track-
ing samples flagged by the Unknown Tracking Analysis com-
ponent. The script presence in websites varied with regards to
whether the domain was blacklisted or not. In the case of com-
pletely unknown tracking script candidates, their prevalence
was higher than in the case of blacklisted domains: 90.69%
of the websites with scripts used likely unknown tracking (see
Table 12), corroborating again the low detection coverage of
current anti-blocking solutions.

Due to the high number of discovered scripts, we performed
an additional analysis to comprehensively understand the na-
ture of these scripts. To this end, we measured the number
of unique scripts and the domain type (third-party, first-party,
and HTML-embedded) and performed a clustering analysis to
find the most common behaviors.

We removed identical versions of the same script through
code hashing and measured the number of unique scripts in
each domain type (see Table 13). The typical way of using
web tracking is with third-party domains, but we found that
the number of websites that use their their own domain is
significant in the case of unknown potential tracking scripts.
In particular, most of them (73.75%) were embedded in the
HTML, that can be used to bypass current blacklisting solu-
tions.

We also found that 57.73% of the completely unknown

600,000

500,000
400,000

300,000

scripts

200,000

100,000
pofupun UL iH,H‘\ ‘ \‘,

O~ O~ OO - OO~ O
OQOUVUOITITONONNT——

71+

cluster ranking

Figure 2: Distribution of the unknown tracking candidates in
the computed known tracking clusters.

Table 15: Popular clusters per domain type.

Domain Cluster % Scripts
Downloading 24.53%
HTML Statistics 13.47%
Social Sharing 3.33%
Statistics 26.70%
1st Party Stateless Tracking 15.98%
Advertisement 11.16%
Statistics 20.86%
3rd Party Stateless Tracking 15.27%
Advertisement 14.08%

scripts were unique by hash. TRACKINGINSPECTOR also discov-
ered a relative small number of unique scripts whose samples
were repeated across different domain types, specially among
first and third party domains. This indicates that using scripts
in different domain types is not a common practice.

We computed the presence of the top-level domains hosting
unknown tracking candidates in websites. Due to their distri-
bution in the different domain types, we focused only on the
scripts downloaded from third-party domains. The 10 most
popular domains (shown in Table 14) that hosted previously
unknown tracking candidates were different types of domains
such as CDNs, search engines, social networks, gambling com-
panies, or advertisement companies.

CLUSTERING

In order to understand the 3,245,238 unique tracking candi-
date scripts, we performed a cluster analysis. To overcome the
high overhead of performing a cluster analysis directly on the
large number of unknown tracking candidates, we conducted
a clustering analysis in two different steps. The first step con-
sisted in clustering the 957 known tracking scripts stored in
our Script Database to find the different known script cate-
gories/types. We chose the Affinity Propagation clustering al-
gorithm [21] due to its capability of automatically computing
the cluster membership of an unknown sample and because it
does not need to specify the number of clusters. As result, the
known scripts were distributed in 106 different clusters.

In the second step, we computed the closest cluster for each

10

of the different unknown tracking script candidates through
the previously calculated clusters (see Figure 2 for the distri-
bution of unknown tracking candidates in the clusters). The
most popular category contained downloading scripts and com-
prised the 16.53% of the tracking candidates. The second most
popular cluster included 12.85% of the scripts and was formed
of statistics tracking scripts.

We also analyzed the clusters with regards to the type of do-
main that hosted the scripts (see Table 15). We discovered that
scripts hosted in first-party and third-party domains behaved
similar, whereas HTML-embedded domains did not.

4 Case Studies

4.1 Script Renaming Techniques

Script blacklisting techniques only blocked 43.80% of the
known scripts or versions TRACKINGINSPECTOR detected.
Since script renaming is an effective technique to circumvent
current blacklisting solutions, we performed a study of this
phenomenon to deepen in its understanding.

More than 35% of the samples of each original scripts
changed their name. Each original script behaved differently:
while samples of 200 of the original scripts did not present
any modification, versions from other 95 original scripts al-
ways changed their name. Therefore, we analyzed in more de-
tail three particular scripts to discover different script renaming
techniques: evercookie. js 3!, piwik.js *?, and dota.js
33, In particular, 58.33% of the samples of evercookie. js,
91.13% of the versions of piwik. js, and 99.66% of dota. js
modified their original script name.

Among the script renaming techniques, the following cate-
gories can be established: (i) related script renaming, (ii) ran-
dom /neutral script renaming, (iii) functionality script renaming,
and (iv) misleading script renaming. Related script renaming
changes the script name to one that is directly or indirectly re-
lated to another service or website using the original script. For
example, some versions changed their name to chrysler. js
and dodge . js. Random/neutral script renaming replaces the
name of the original to an apparently random name, such as
penguin2.js, scripts3. js, and welcome. js. Function-
ality script renaming modifies the name describing the inter-
nal goal or functionality of the script. For instance, several
scripts changed the original script name to fingerprint. js,
and tracking.js. Finally, misleading script renaming pos-
sibly bypasses blacklisting by modifying the original script
name to a well-known one such as jquery.alt.min. js and
j.min.js.

4.2 Canvas and Font Fingerprinting

Canvas fingerprinting [3] and font probing [2] are two types
of stateless device fingerprinting. Due to their relevance and
the concern they raise, we decided to study them separately
and determine how many unknown scripts of this type of fin-
gerprinting TRACKINGINSPECTOR discovered.

3lpiwik. js is a well-known open-source analytics service.
32evercookie. js bypasses the cookie storage policy of the browser.
33dota. js performs canvas fingerprinting (as reported in [13]).

Table 16: Potential unknown device fingerprinting prevalence.

Type # Scripts # Websites # Domains
Font 25,502 24,873 704
Canvas 2,810 2,776 290
Shared 320 320 45
Total 28,632 27,818 1,037

Table 17: Website prevalence of top 3 potential unknown de-
vice fingerprinting scripts.

Script Domain # Websites
Font probing
buttons. js sharethis.com 18,625
ice.js infolinks.com 5,333
loaded. js acexedge.com 110
Canvas fingerprinting
Admeta. js atemda.com 981
sat.js myswitchads.com 514
bs-engine.js bshare.cn 163
Font & Canvas fingerprinting
image.js magnuum. com 131
fp.min. js adtarget.me 31
ax.js gmyze .com 31

We implemented two small programs: one for the detection
of font probing and another one for detecting canvas finger-
printing scripts. These programs were designed to filter the
unknown potential tracking script samples that match rules
for font probing and for canvas fingerprinting. In this way, we
built two basic set of static rules based on the scripts discov-
ered by [12] and [13]. It is important to note, that these rules
are not detection methods by themselves but a filtering tech-
nique for scripts that have already exhibited web tracking or
fingerprinting behavior. 710 unknown unique potential device
fingerprinting scripts were found through these methods: 408
exhibited canvas fingerprinting behavior, 247 font probing be-
havior, and 55 showed both behaviors.

Since blacklisted domains may have blocked some of ver-
sions of these unknown device fingerprinting scripts, we used
these new potential device fingerprinting scripts as the Script
Database and performed a Known Tracking Analysis to measure
the prevalence of their samples and versions in the Alexa top
1M as well as the domains used for hosting them (see Table
16). 28,632 samples were detected and 27,818 websites used
these unknown scripts.

We also analyzed the top potential device fingerprinting un-
known scripts for each type (see Table 17 for the top 3 scripts
per fingerprinting type). The most prevalent unknown font
probing script was buttons. js. This script was hosted by
sharethis.com, a well-known social widget for sharing content
in different social networks. In the case of canvas finger-
printing, the most used unknown script was Admeta. js that
was downloaded by 981 websites from atemda.com, an ad ex-
change provider. In the case of scripts containing both canvas
and font probing techniques, image . js was the most preva-
lent unknown script, being downloaded by 131 websites from
the domain magnuum. com, a content delivery network.

11

<iframe
name="z4Pdb4sl"
src="http://202.172.54.119/

jquery .min. js"

width="400" height="400"
style="position: absolute;
left: -9999em;">

</iframe>

Figure 3: The iframe used to download the malicious script.

4.3 Fingerprinting-driven Malware

The goal of this paper was to understand the current landscape
of web tracking and not to study its potential relation with tar-
geted malware. However, recent reports [7,8] linked targeted
malware campaigns with a previous fingerprinting step and
also according to our own results, websites using only track-
ing tend to be more prevalent in questionable categories.

Therefore, we inspected domains hosting only tracking
scripts and discovered very suspicious scripts. For example, a
script started by performing a fingerprinting step that included
identification of the browser, Java, Flash Player, SilverLight,
and checked the presence of a Chinese antivirus. Then, it per-
formed very suspicious calls to conduct a likely malicious be-
havior. It is important to remark, that the malicious script dis-
covery was performed manually, based on the fingerprinting
behavior and our findings, but we did not build any specific
fingerprinting-driven malware detection technique.

This script was hosted in two IPs: 101.99.68.18 and
202.172.54. The server 101.99.68.18 was allocated in
the ISP Piradious-NET and the server 202.172.54 was hosted
in M1 Connect Pte. Ltd., both of them known for some cases
of malware hosting. The script was named jquery.min. js,
posing as a well-known script of the benign library jQuery. Be-
sides this obvious hiding effort, the script, surprisingly, was not
obfuscated and its code was very clear. Two Chinese websites
in the Alexa top 1M (521ife.cc and examres.com) used
this script. Each website contained a different iframe sharing
the same name (one of them is shown in Figure 3) that was
used to download the malicious script.

By searching the name of the iframes, we discovered that
this script was part of the Chinad botnet, as reported by Mal-
wareBytes [22,23]. We did not perform a manual malware
analysis, since it has already performed by MalwareBytes. As
explained in their report, this script was a exploit kit that com-
promised Chinese websites to fingerprint users looking for vul-
nerable installed components to later exploit vulnerabilities in
Java (CVE-2011-3544 and CVE-2012-4681), Internet Explorer
(CVE-2014-6332), and Flash (CVE-2015-0311) and download
versions of the Chinad botnet. This malware was apparently
oriented to perform DDoS attacks.

To the best of our knowledge, the websites where the ex-
ploit kit was discovered had not been previously documented
as infected. In fact, it is important to note that the goal of this
paper is not study malicious scripts and, therefore, we did not
explore this phenomena beyond this interesting case study.

5 Discussion

After presenting the results of our large-scale study on web
tracking on the Internet, we discuss here our findings regard-
ing the raised research questions, including the implications
and limitations of our results.

How widespread is web tracking on the Internet?

Our results indicate that web tracking is very frequent in popu-
lar websites. In fact, we believe that web tracking is such a big
part of the web, that it is going to be hard to limit or change.

We discovered that more than 40% of the analyzed samples
correspond to previously unseen potentially tracking scripts.
After analyzing the differences between the known tracking
script samples and the unknown ones, we also found that the
variability among known and unknown tracking scripts var-
ied: while known tracking samples are versions of an original
script, unknown samples tend to be more unique. Since the
most popular scripts can also be considered the most invasive
ones, currently known tracking samples pose a more invasive
threat. However, the discovered large number of unknown po-
tential tracking samples is concerning and, therefore, we think
that further efforts should be done in version and unknown be-
haviors detection.

Advertising companies have already stated that web track-
ing is required for the web economy [6]. However, other tech-
niques have been proposed for analytics and targeting preserv-
ing users’ privacy (e.g., [24-29]). We consider that this line of
work may overcome privacy-invasive techniques for web track-
ing and reduce their usage, while preserving the core function-
ality of web advertisement.

What is the current ecosystem in web tracking provision and
deployment on the Internet?

In our study, questionable categories (e.g., phishing, spam,
malware) tend to present a higher number of websites us-
ing only tracking scripts. By further exploring these results,
we discovered several IPs that only hosted tracking scripts
within the domains. In two of them, TRACKINGINSPECTOR
discovered the fingerprinting behavior of a script that was
part of a targeted fingerprinting-driven malware campaign di-
rected to Chinese websites previously reported by Malware-
Bytes [22,23]. This script was found in two additional web-
sites that were not reported as infected. We believe that this
type of fingerprinting-driven and targeted malware campaigns
may become an important concern.

These results also show that the tracking provision distribu-
tion varies depending on the script being previously known,
hosted in a blacklisted domain or completely unknown. While
known tracking scripts are mainly hosted in Google or ana-
lytics/advertisement companies, unknown tracking scripts are
hosted in different domains types. One relevant finding is that
the well-known ShareThis service resulted to host a font prob-
ing script. We also found that network entities such as the
AS owner, ASN and ISP or the country where they are hosted
do not seem to have any influence on tracking, but reputation
does.

The correlation between domains or websites using only
tracking scripts and questionable categories or low reputation,

can be explained because malicious activities do not usually
exhibit additional functionalities besides the ones oriented to-
wards their endeavors.

Can current blacklisting solutions limit or block
most web tracking on the Internet?

After performing a comparison between our solution with
blacklisting solutions (both at domain and script level), only
43.8% of the known scripts detected by TRACKINGINSPECTOR,
would have been blocked by script blacklisting and 33.84% by
domain blacklisting (64.65%, combining both solutions). Re-
garding to unknown potential tracking scripts, just 41.11% of
the scripts were hosted in blacklisted domains.

These blacklisting solutions were not able to capture the
majority of the web tracking scripts. Indeed, in one of our
case studies, we analyzed the name variations that circumvent
script blacklisting, discovering that it is an extended practice
among web tracking scripts. Therefore, we believe that cur-
rent blacklisting solutions should be extended or substituted
by other approaches such as the one presented here for Known
Tracking Analysis.

Can TRACKINGINSPECTOR discover new web track-
ing scripts on the Internet? To what extent?

TRACKINGINSPECTOR discovered more than 5.5 million com-
pletely unknown candidate tracking scripts. By analyzing a
random sample of these scripts we further evaluate the dis-
covery capability, with a result of more than 85% true positive
ratio.

More than 700 new potential device fingerprinting unique
scripts were discovered, a number higher than any reported re-
sult. These device fingerprinting scripts were present in many
websites and domains, including well-known services.

We believe that the findings of TRACKINGINSPECTOR are
enough to demonstrate its capability of discovering new web
tracking scripts. However, we also think that there are two
major limitations in the presented approach. Firstly, our tool
is highly reliant on previously known web tracking scripts for
both known and unknown tracking analysis. Despite the fact
that this approach results in a framework easier to general-
ize and to upgrade than rule-based ones, it also represents a
problem when updating the Script Database. To overcome this
limitation, both components of TRACKINGINSPECTOR should be
used for different but complementary tasks. Known Tracking
Analysis would detect variations of known tracking scripts and
Unknown Tracking Analysis would gather websites flagging any
possible tracking script candidate. These samples would be
further analyzed to confirm their nature and then added to
the Script Database. Secondly, Unknown Tracking Analysis may
flag erroneously scripts that, even they exhibit fingerprinting
behavior, they are not intended for web tracking but for per-
sonalization or similar tasks. To reduce these errors, our tool
may be combined with a whitelisting approach.

6 Related Work

Due to the concern that web tracking raised to users’ privacy,
a hectic research line emerged in the past years dedicated to

12

analyze and block these techniques. Researchers themselves
created new web tracking methods using several techniques
such as fonts and browser metrics [2], measurement of timing
metrics [30,31], the JavaScript engine [32], the use of the ren-
dering engine [33], the clock skew [34], or the HTML5 Canvas
API [3].

One of the first web tracking analysis that included HTML
cookies was the influential work performed in [35]. Following
this work, Mayer & Mitchell [36] studied the different tech-
niques for web tracking including their policies and developed
a tool to measure web privacy. Several more recent works have
studied the presence of different forms of web tracking on the
web. Roesner et al. [9] presented a taxonomy for third-party
tracking using cookies, measuring their presence in the web.
Nikiforakis et al. [10] studied three known fingerprinting com-
panies and discovered 40 websites within the Alexa top 10,000
sites using techniques such font probing. Acar et al. [12] dis-
covered 404 sites in the top million using JavaScript-based fin-
gerprinting and 145 sites within the Alexa top 10,000 sites
using Flash-based fingerprinting. In another work, Acar et
al. [13] found a 5% prevalence of canvas fingerprint in the
Alexa top 1M web sites. They also found respawning by Flash
cookies on 10 of the 200 most popular sites and 33 respawning
more than 175 HTTP cookies. In the topic of web vulnerabil-
ities, a previous analysis of the JavaScript included [19] de-
termined the important correlation between the trust of the
included scripts as well as the domains hosting the scripts.
However, our work differs from this large-scale study since we
focus specifically in web tracking rather than vulnerabilities
Very recently, an unpublished parallel work [14] analyzed the
Alexa top 100K websites with regards to stateful tracking and
the top 1M regarding stateless fingerprinting using blacklists
and static rules, finding new sophisticated device fingerprint-
ing techniques. A recent work [4] has shown the capability
of 17 attributes to build technique of fingerprinting and have
shown that it can used with all modern browsers, including
mobile ones. In also recent work, Lerner et al. [11] presented
TrackingExcavator and performed a retrospective analysis of
how tracking has evolved since 1996. Their findings include
that third-party has increased over time and how the most im-
portant trackers have become popular over time.

Compared with these previous contributions, our work dif-
fers in many ways. First, it is committed to a truly generic web
tracking detection rather than to specific techniques. TRACKIN-
GINSPECTOR does not depend on blacklists or specific rules to
detect tracking scripts, but on the previous known tracking
scripts. Second, through our method we have been capable
of detecting any type of tracking in our large-scale study, dis-
covering more than 3 million new unique tracking script can-
didates, a number higher than any reported previous work.
We also discovered 710 new potential device fingerprinting
scripts, including 408 canvas fingerprinting scripts, 247 font
probing scripts, and also 55 completely new scripts that exhib-
ited both fingerprinting behaviors, a number also higher than
previous work. Our tool also automatically detected the fin-
gerprinting behavior of an already known targeted malware
campaign for the first time in the literature.

7 Conclusions

In this paper we presented the first large-scale study of generic
web tracking on the web. Existing tools are limited in the de-
tection of web tracking. Therefore, we developed TRACKIN-
GINSPECTOR, a generic web tracking script detector to iden-
tify known tracking script samples and flag unknown tracking
script candidates.

Using our method, we measured the web tracking preva-
lence in websites and their providing domains as well as web
tracking ecosystem. The results show that web tracking is
very extended and that current solutions cannot detect every
known or unknown tracking scripts. In addition, we examined
the hiding techniques used to avoid blacklists, determining dif-
ferent script renaming techniques. TRACKINGINSPECTOR de-
tected both known or variations of tracking scripts and discov-
ered likely unknown web tracking candidates. We also found
new potential stateless device fingerprinting scripts and mea-
sured their prevalence, showing that even well-known compa-
nies provide these type of scripts. Among the discovered un-
known web tracking scripts, we found a previously reported
malware campaign that targeted Chinese websites, showing
that malicious activities sometimes exhibit fingerprinting be-
havior that TRACKINGINSPECTOR can automatically detect. We
also believe that fingerprinting-driven malware may become an
relevant problem in the future.

References

[1] Ashkan Soltani, Shannon Canty, Quentin Mayo, Lauren
Thomas, and Chris Jay Hoofnagle. Flash cookies and pri-
vacy. In Proceedings of the AAAI Spring Symposium: In-
telligent Information Privacy Management, volume 2010,
2010.

Peter Eckersley. How unique is your web browser? In
Proceedings of the Privacy Enhancing Technologies (PETS).
Springer, 2010.

Keaton Mowery and Hovav Shacham. Pixel perfect: Fin-
gerprinting canvas in HTML5. Proceedings of the Web 2.0
Workshop on Security and Privacy (W2SP), 2012.

Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry.
Beauty and the beast: Diverting modern web browsers
to build unique browser fingerprints. In Proceedings of
the IEEE Symposium on Security and Privacy (Oakland),
2016.

[5] M Ayenson, DJ Wambach, A Soltani, N Good, and
CJ Hoofnagle. Flash cookies and privacy II: Now with
HTMLS5 and Etags respawning (2011). Social Science Re-

search Network Working Paper Series, 2011.
[6]

Natasha Singer. Do not track? advertisers say “don’t
tread on us”. http://www.nytimes.com/2012/10/
14/technology/do-not-track-movement-is-

drawing-advertisers-fire.html, 2012.

Security Response, Symantec. The Waterbug attack
group. http://www.symantec.com/content/
en/us/enterprise/media/security_response/

13

http://www.nytimes.com/2012/10/14/technology/do-not-track-movement-is-drawing-advertisers-fire.html
http://www.nytimes.com/2012/10/14/technology/do-not-track-movement-is-drawing-advertisers-fire.html
http://www.nytimes.com/2012/10/14/technology/do-not-track-movement-is-drawing-advertisers-fire.html
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/waterbug-attack-group.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/waterbug-attack-group.pdf

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

whitepapers/waterbug-attack-group.pdf,
2015.

Threat Intelligence, FireEye. Pinpointing Tar-
gets: Exploiting Web Analytics to Ensnare Victims.
https://www2.fireeye.com/rs/848-DID-
242/images/rpt-witchcoven.pdf, 2015.

Franziska Roesner, Tadayoshi Kohno, and David Wether-
all. Detecting and defending against third-party track-
ing on the web. In Proceedings of the USENIX conference
on Networked Systems Design and Implementation (NDSI),
2012.

Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen,
Christopher Kruegel, Frank Piessens, and Giovanni Vi-
gna. Cookieless monster: Exploring the ecosystem of
web-based device fingerprinting. In Proceedings of IEEE
Symposium on Security and Privacy (Oakland), 2013.

Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno,
and Franziska Roesner. Internet Jones and the Raiders
of the Lost Trackers: An Archaeological Study of Web
Tracking from 1996 to 2016. In Proceedings of the USENIX
Security Symposium (SEC), 2016.

Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz,
Seda Giirses, Frank Piessens, and Bart Preneel. FPDetec-
tive: dusting the web for fingerprinters. In Proceedings
of the ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), 2013.

Gunes Acar, Christian Eubank, Steven Englehardt, Marc
Juarez, Arvind Narayanan, and Claudia Diaz. The web
never forgets: Persistent tracking mechanisms in the
wild. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2014.

Steven Englehardt and Arvind Narayanan. Online track-
ing: A 1-million-site measurement and analysis. http:
//randomwalker.info/publications/OpenWPM_
1_million_site_tracking_measurement.pdf,
2016. [Draft].

Gerard Salton, Anita Wong, and Chung-Shu Yang. A vec-
tor space model for automatic indexing. Communications
of the ACM, 18(11):613-620, 1975.

Hans Peter Luhn. A statistical approach to mecha-
nized encoding and searching of literary information.
IBM Journal of Research and Development, 1(4):309-317,
1957.

Karen Sparck Jones. A statistical interpretation of term
specificity and its application in retrieval. Journal of Doc-
umentation, 28(1):11-21, 1972.

Tin Kam Ho. Random decision forests. In Proceedings
of the International Conference on Document Analysis and
Recognition (ICDAR), 1995.

Nick Nikiforakis, Luca Invernizzi, Alexandros Kaprav-
elos, Steven Van Acker, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. You

14

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

are what you include: large-scale evaluation of remote
javascript inclusions. In Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security
(CCS).

Charlie Curtsinger, Benjamin Livshits, Benjamin G Zorn,
and Christian Seifert. ZOZZLE: Fast and Precise In-
Browser JavaScript Malware Detection. In Proceedings
of the USENIX Security Symposium (Sec), 2011.

Brendan J Frey and Delbert Dueck. Clustering by passing
messages between data points. Science, 315(5814):972~
976, 2007.

MalwareBytes. Unusual exploit kit targets chinese
users (part 1). https://blog.malwarebytes.org/
exploits-2/2015/05/unusual-exploit-kit-
targets-chinese-users-part-1/.

MalwareBytes. Unusual exploit kit targets chinese
users (part 2). https://blog.malwarebytes.org/
intelligence/2015/06/unusual-exploit-kit-
targets-chinese-users-part-2/.

Vincent Toubiana, Arvind Narayanan, Dan Boneh, Helen
Nissenbaum, and Solon Barocas. Adnostic: Privacy pre-
serving targeted advertising. In Proceedings of the Net-
work and Distributed System Symposium (NDSS), 2010.

Saikat Guha, Bin Cheng, and Paul Francis. Privad: prac-
tical privacy in online advertising. In Proceedings of the
USENIX conference on Networked Systems Design and Im-
plementation (NDSI), 2011.

Matthew Fredrikson and Benjamin Livshits. Repriv: Re-
imagining content personalization and in-browser pri-
vacy. In Proceedings of the IEEE Symposium on Security
and Privacy (Oadkland), 2011.

Mikhail Bilenko, Matthew Richardson, and Janice Tsai.
Targeted, not tracked: Client-side solutions for privacy-
friendly behavioral advertising. In Proceedings of the Pri-
vacy Enhancing Technologies (PETS), 2011.

Michael Backes, Aniket Kate, Matteo Maffei, and Kim
Pecina. Obliviad: Provably secure and practical online
behavioral advertising. In Proceedings of the IEEE Sympo-
sium on Security and Privacy (Oakland), 2012.

Istemi Ekin Akkus, Ruichuan Chen, Michaela Hardt, Paul
Francis, and Johannes Gehrke. Non-tracking web an-
alytics. In Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CSS), pages
687-698. ACM, 2012.

Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Ho-
vav Shacham. Fingerprinting information in javascript
implementations. Proceedings of the Web 2.0 Workshop
on Security and Privacy (W2SP), 2011.

Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis.
The clock is still ticking: Timing attacks in the modern
web. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CSS), 2015.

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/waterbug-attack-group.pdf
https://www2.fireeye.com/rs/848-DID-242/images/rpt-witchcoven.pdf
https://www2.fireeye.com/rs/848-DID-242/images/rpt-witchcoven.pdf
http://randomwalker.info/publications/OpenWPM_1_million_site_tracking_measurement.pdf
http://randomwalker.info/publications/OpenWPM_1_million_site_tracking_measurement.pdf
http://randomwalker.info/publications/OpenWPM_1_million_site_tracking_measurement.pdf
https://blog.malwarebytes.org/exploits-2/2015/05/unusual-exploit-kit-targets-chinese-users-part-1/
https://blog.malwarebytes.org/exploits-2/2015/05/unusual-exploit-kit-targets-chinese-users-part-1/
https://blog.malwarebytes.org/exploits-2/2015/05/unusual-exploit-kit-targets-chinese-users-part-1/
https://blog.malwarebytes.org/intelligence/2015/06/unusual-exploit-kit-targets-chinese-users-part-2/
https://blog.malwarebytes.org/intelligence/2015/06/unusual-exploit-kit-targets-chinese-users-part-2/
https://blog.malwarebytes.org/intelligence/2015/06/unusual-exploit-kit-targets-chinese-users-part-2/

[32]

(33]

[34]

Martin Mulazzani, Philipp Reschl, Markus Huber,
Manuel Leithner, Sebastian Schrittwieser, Edgar Weippl,
and FC Wien. Fast and reliable browser identification
with javascript engine fingerprinting. In Proceedings of
the Web 2.0 Workshop on Security and Privacy (W2SP),
2013.

Thomas Unger, Martin Mulazzani, Dominik Fruhwirt,
Marco Huber, Sebastian Schrittwieser, and Edgar Weippl.
Shpf: Enhancing http (s) session security with browser
fingerprinting. In Proceedings of the 8th Interna-
tional Conference on Availability, Reliability and Security
(ARES), 2013.

Tadayoshi Kohno, Andre Broido, and Kimberly C Claffy.

15

[35]

[36]

Remote physical device fingerprinting. IEEE Transac-
tions on Dependable and Secure Computing, 2(2):93-108,
2005.

Balachander Krishnamurthy and Craig Wills. Privacy dif-
fusion on the web: alongitudinal perspective. In Proceed-
ings of the International Conference on World Wide Web
(WWW), 2009.

Jonathan R Mayer and John C Mitchell. Third-party web
tracking: Policy and technology. In Proceedings of the
International Symposium on Security and Privacy (Oak-
land), 2012.

	1 Introduction
	2 Tracking Analysis & Detection
	2.1 General Description
	2.2 Crawler
	2.3 Script Database
	2.4 Text-based Analyzer

	3 Large-Scale Analysis
	3.1 Preliminaries
	3.2 Tracking Ecosystem
	3.3 Analysis of Known Tracking
	3.4 Analysis of Unknown Tracking

	4 Case Studies
	4.1 Script Renaming Techniques
	4.2 Canvas and Font Fingerprinting
	4.3 Fingerprinting-driven Malware

	5 Discussion
	6 Related Work
	7 Conclusions

