

Extension Breakdown:

Security Analysis of Browsers Extension Resources Control Policies

Iskander Sanchez-Rola, Igor Santos, Davide Balzarotti

Extensions

Browser extensions are the most popular technique currently
available to extend the functionalities of modern web browsers.

Extensions exist for most browser families, including major web
browsers such as Firefox, Chrome, Safari, Opera and Edge.

They can be easily installed by users from a central repository.

Extensions

An extension is a bundle of resources, including code (such as
HTML or JS), images, style sheets...

Third-party websites should never have access to them, as some
contain private information, vulnerabilities, keys…

Browsers need to somehow control the access to extensions files.
This task is tricky and error prone.

Resources Control Policies

Access Control Settings (Chromium+Firefox)
Extensions themselves specify which resources they need to be
kept private and which can be made publicly available. By default
all resources are considered private.

URI Randomization (Safari)
There is no distinction between private or public resources, but
instead the base URI of the extension is randomly re-generated
in each session.

Access Control Settings

Browsers currently implement ACS by performing two
consecutive checks to verify:
 (i) if a certain extension is installed
 (ii) if the requested resource is publicly available

This is prone to a timing side-channel attack that an adversary
can use to identify the actual reason behind a request denial:
● The extension is not present
● Its resources are kept private

Access Control Settings
 X-extension://[fakeExtID]/[fakePath]

Access Control Settings
 X-extension://[realExtID]/[fakePath]

Access Control Settings
 X-extension://[realExtID]/[fakePath]

Access Control Settings

We compared our approach to previous techniques capable
of enumerating extensions by subverting access control
settings. These methods are based on checking the existence
of externally accessible resources in extensions.

Chrome Firefox Total

Extensions Tested
% Previous Approaches

10,620
12.73%

10,620
8,17%

21,240
10,45%

% Our Approach 100.00% 100.00% 100.00%

URI Randomization

Extensions are often used to inject additional content,
controls, or simply alert panels into a website.

This newly generated content can unintentionally leak the
random extension URI, thus bypassing the security control
measures and opening access to all the extension resources
to any other code running in the same page.

It is left to the extension developers to make sure this does
not happen.

URI Randomization

URI Randomization

URI Randomization

URI Randomization

We propose a static analysis of all the JavaScript components
of an extension.

URI Randomization

We propose a static analysis of all the JavaScript components
of an extension.

(i) Identify the source locations where the code accesses
 the random extension URI (looking for calls to baseURI)

URI Randomization

We propose a static analysis of all the JavaScript components
of an extension.

(i) Identify the source locations where the code accesses
the random extension URI (looking for calls to baseURI)

(ii) Analyze all the components that can use the retrieved
value following the information flow

URI Randomization

We propose a static analysis of all the JavaScript components
of an extension.

(i) Identify the source locations where the code accesses
 the random extension URI (looking for calls to baseURI)

(ii) Analyze all the components that can use the retrieved
 value following the information flow

(iii) For every identified components, locate the sinks
 (i.e., the location where new content is injected in the page)

URI Randomization

URI Randomization

URI Randomization

Category # Ext. % Leak

Shopping
Email
Security
News
Photos
Bookmarking
Productivity
RSStools
Entertainment
Translation
Social
Developer
Other
Search
urlshorteners

95
13
84
20
25
61

147
5

37
8

80
57
42
42
5

57.89%
53.85%
52.38%
45.00%
44.00%
42.62%
40.82%
40.00%
37.84%
37.50%
30.00%
29.82%
26.19%
24.43%
0.00%

Total 721 40.50%

URI Randomization

URI Randomization

We performed an exhaustive manual code review of security
extensions to confirm the leakage.

● Popular protection extensions such as Adblock,
Ghostery, Web Of Trust, and Adguard

● Password managers, such as LastPass, Dashline, Keeper,
and TeedyID

● Combinations of the two, such as Blur from Abine

Impact

There are several possible consequences of abusing the information
provided by our two techniques:

● Fingerprinting and Analytics:
➔ Stateless tracking
➔ Browser identification (checking built-in extensions)
➔ Determine users’ demographics

Impact

There are several possible consequences of abusing the information
provided by our two techniques:

● Fingerprinting and Analytics:
➔ Stateless tracking
➔ Browser identification (checking built-in extensions)
➔ Determine users’ demographics

● Malicious Applications
➔ Information gathering phase
➔ Social-driven attacks
➔ Exploitation of potential vulnerabilities

ImpactImpact

Device Fingerprinting Viability Study

Method Entropy

Extensions 0.869

List of Plugins
List of Fonts
User Agent
Canvas
Content Language
Screen Resolution

0.718
0.548
0.550
0.475
0.344
0.263

Vulnerability Disclosure

Developers were quite surprised, because they believed that the
time difference in the checking phase were not significant enough
to allow this type of attack.

Developers are still working to solve this problem.

In addition, as the new Firefox WebExtensions and Microsoft
Edge (both currently in their early stages) use the same extension
control mechanisms, we also notified their developers.

Chromium Family

Vulnerability Disclosure

Firefox non-WebExtensions problem was acknowledged and
developers are currently discussing how to proceed.

Regarding WebExtensions, the Firefox developers recently
changed the way extensions are accessed to solve this timing
side-channel and other related attacks.
In particular, they changed the initial scheme from
moz-extension://[extID]/[path] to moz-extension://[random-UUID]/[path]

Firefox Family

Vulnerability Disclosure

Firefox non-WebExtensions problem was acknowledged and
developers are currently discussing how to proceed.

Regarding WebExtensions, the Firefox developers recently
changed the way extensions are accessed to solve this timing
side-channel and other related attacks.
In particular, they changed the initial scheme from
moz-extension://[extID]/[path] to moz-extension://[random-UUID]/[path]

This change introduced a new dangerous problem: the
random-UUID token can now be used to precisely fingerprint
users as once it is generated it never changes (also reported).

Firefox Family

Vulnerability Disclosure

The method that Safari’s extension control employs to
assure the proper accessibility of resources is, in
principle, correct.

We started reporting the problem to the developers
of security extensions we already manually
confirmed vulnerable, to help them solve their URI
leakage problem.

Safari

Security Proposal

1
All browsers should follow an extension scheme
that includes a random value in the URI:
X-extension://[randomVal]/[path].

This random value should be modified across and
during the same session and should be
independent for each extension installed. In this
way, the random value cannot be used to
fingerprint users.

Security Proposal

Browsers should also implement an access
control (such as web accessible resource) to
avoid any undesirable access to all extensions
resources even when the random value is
unintentionally leaked by the extension.2

Security Proposal

Extensions should be analyzed for possible leakages
before making them public to the users. For example,
adopting a lightweight static analysis solution
(similar to the one we discuss) to analyze the
extensions in their market and flag those that leak the
random token.

Moreover, developer manuals should specifically
discuss the problems that can cause the leakage of any
random value generated.3

We already knew about the communication breakdown…

We already knew about the communication breakdown…

We already knew about the communication breakdown…

We already knew about the communication breakdown…

but browsers didn’t told us about…

their new single…

Extension Breakdown

iskander.sanchez@deusto.es iskander-sanchez-rola.github.io

