

A Comprehensive Structure and Privacy Analysis of Tor Hidden Services

Iskander Sanchez-Rola, Davide Balzarotti, Igor Santos

Tor Hidden Services

- Provides anonymity through the onion routing protocol
- Tor has the largest number of users among the different types of Darknets
 Over 7000 relays
- Are used to provide access to different applications

Such as chat, email, or websites

Motivation

Previous studies about Tor hidden services have been focused on:

Relay Analysis and Routing Analysis (e.g., Sanatinia et al. 2016)

Criminal activity (e.g., Ciancaglini et al. 2015, Soska et al. 2015)

Some studies about connectivity (OnionScan, 2016 & Deeplight, 2016)

Lack of a complete application-level structure analysis like in Surface Web

Lack of a complete privacy analysis

Our Work

The MOST complete exploration and crawl of Tor hidden services to date

- Comprehensive structure and privacy analysis
- Not only limited to home pages

According to our data, home pages contain only:

11% of links, 30% resources,

21% of the scripts and 16% of tracking

We crawl more than 1.5M of unique onion URLs

Analysis Platform (in a nutshell)

The ephemeral and isolated nature of onion sites makes crawling a challenge.

- 1) We manually collected a .onion URLS comprising 195,748 domains from 25 public forums and directories.
- 2) We implemented a specific crawler for web Tor hidden services
- 3) We perform a **structure analysis** regarding different connection types: links, resources, and redirections
- 4) We inspect the **privacy implications** of the connections and perform a measurement study of **web tracking** in Tor Dark Web

Design of the crawling phase

Crawler implementation based on PhantomJS

Modified to hide its automatic nature from sites

Can deal with script obfuscation (modification of JSBeautifier)

Two modes

Collection mode

Connectivity mode

Crawler - Collection mode

Data Retrieved

HTML headers, Redirections (+type)

HTML content, Scripts and Links

Crawling Strategy & Boundaries

3 levels of depth

10 links per each level → Prioritize : keywords & (link size + position)

Modifies the "referrer" to mimic user navigation

Crawler - Connectivity mode

Retrieved Data

Links (all of them: visible or invisible)

Not position ones: "#" or files (e.g., pdf, images)

Crawling Strategy & Boundaries

No limit in depth or links visited

Avoid the so called calendar effect: 10,000 URLs per each domain

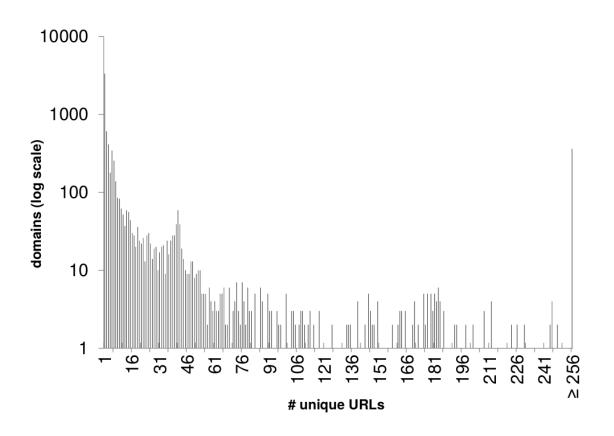
Goal: capture the remaining structure not previously crawled

Size & Coverage

Domains Data

198,050 domains gathered → 7,257 were active domains

Confirmation of the ephemeral nature of onion sites


3 more crawling attempts (days and month of difference)

81.07% were completely crawled by the collection mode

18.49% were added by the connectivity mode

0.54% contained more than 10,000 URLs

Onion Domains/URL Distribution

46.07% of the domains contained just one URL

>80% of the domains less than 17 URLs

Language & Categories - Methodology

Languages

We use the Google Translate API

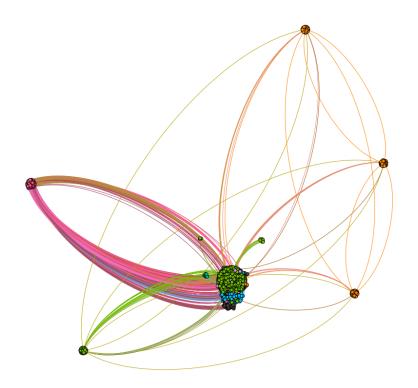
Categories

- 1) Translate the HTML plain text with Google Translate API
- 2) Remove stop words + stemming
- 3) Model as Bag of Words (Vector Space Model)
- 4) Clustering process with Affinity Propagation
- 5) Manual inspection of the clusters to find the category

Language Distributions

Language	% Domains
English	73.28%
Russian	10.96%
German	2.33%
French	2.15%
Spanish	2.14%

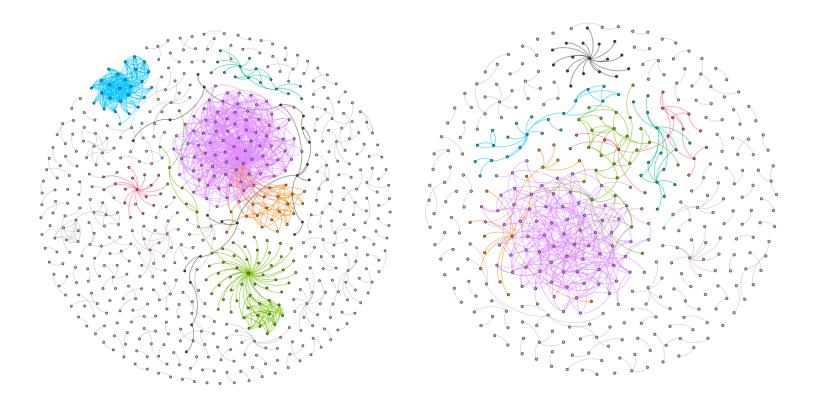
Ranking is similar to the surface web, with the omission of Japanese


The ranking is different to other studies (Deeplight)

Category Distributions

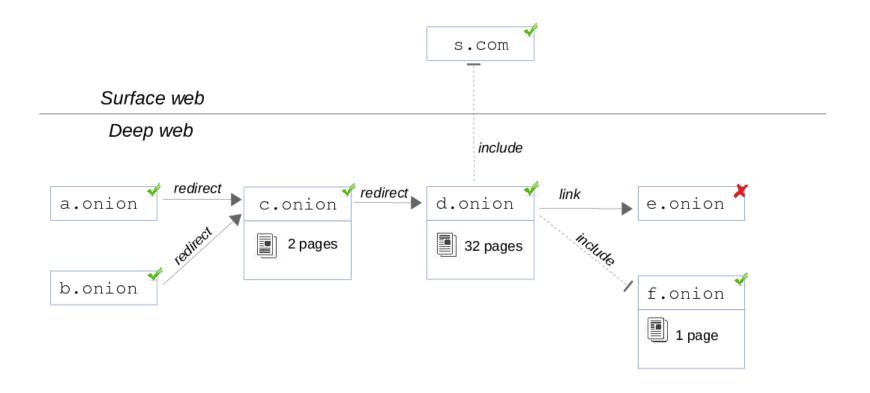
Category	% Domains
Directory/Wiki	63.49%
Default Hosting Message	10.35%
Market/Shopping	9.80%
Bitcoins/Trading	8.62%
Forum	4.72%
Online Betting	1.72%
Search Engine	1.30%

15.4% of the domains belonged to more than 1 category


Structure Analysis - Links

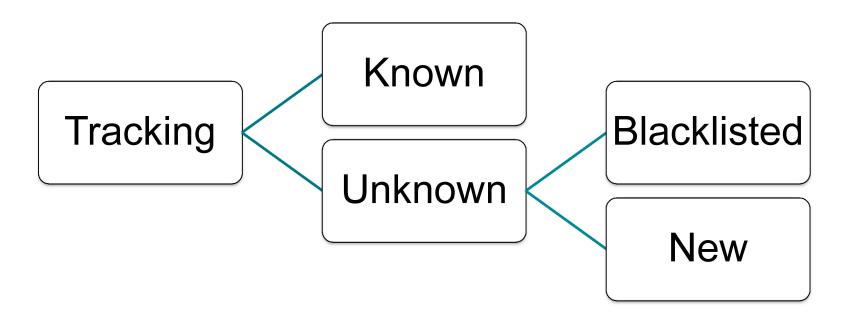
Highly connected but sparse (>60,000 connections)

10% were complete isolated and not reachable \rightarrow 90% are

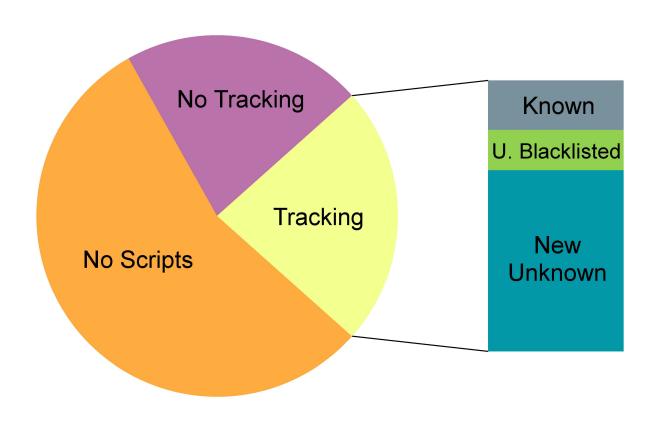

Structure Analysis – Resources and Redirections

82.83% and 84.88% of the nodes are strongly connected

Also highly connected but smaller networks of connections than links


Privacy Analysis - Dark-to-Surface Leakage

21% of the sites import resources from the surface


Google alone can monitor the 13% of the Tor hidden services

Privacy Analysis - Web Tracking

TrackingInspector is used to analyze scripts

Privacy Analysis - Web Tracking - Prevalence

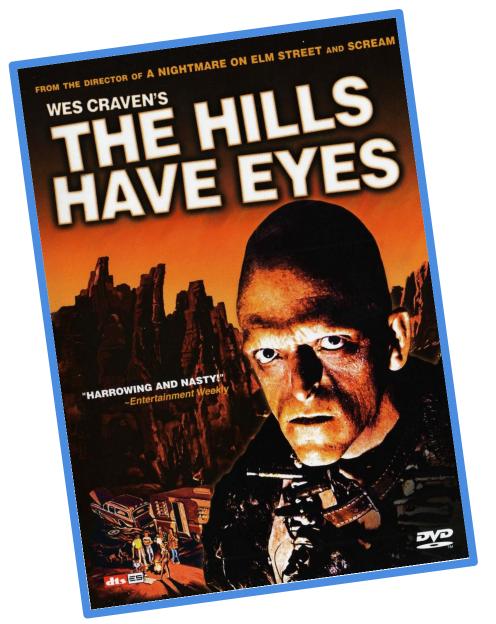
Privacy Analysis - Web Tracking - Specifics

Туре	% Tracking Scripts
Statistics	17.10%
Stateless Tracking	15.04%
Advertisement	10.48%
Web Analytics	10.08%
Stateful Tracking	7.22%

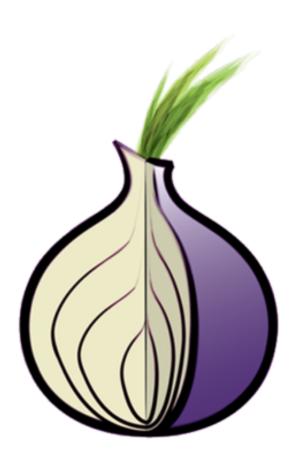
10% of the tracking scripts were unique

32.50% of the tracking came from surface web

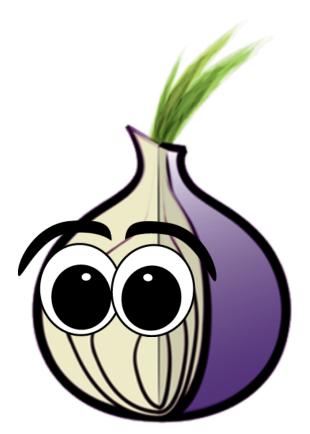
Privacy Analysis - Tracking Hiding techniques


- Obfuscated tracking exists in the dark web: 0.61% of the scripts did
- **Script embedding** is highly used (16.28%) and with a large number of techniques, e.g.:

```
dota.js → canvas fingerprinting


analytics.js → the usual Google tracking
```

New technique: intermediate tracking in redirections: 1.67%


We already knew that the hills have eyes...

but we didn't expect onions to have them too...

but they do... The Onions Have Eyes

iskander.sanchez@deusto.es iskander-sanchez-rola.github.io