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Exploits different features to uniquely identify a machine. The 
entity interested in computing the fingerprint is able to run 
arbitrary code with user privileges in the machine.

(i) malicious applications that want this information to perform 
selective attacks against certain victims

(ii) proprietary applications that want to bind a license to a single 
machine.
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Web Device Fingerprinting

A website computes a unique identifier for each visitor’s machine, 
without storing any information on the client side. The entity 
interested in computing the fingerprint is able to run arbitrary 
code with user privileges in the browser.

(i) advertisers or tracking companies can use it to obtain the 
browsing history of users.

(ii) websites that require strong authentication (e.g., banking and 
shopping) can use this technique to include an additional 
verification to their process.

                   



Web Device Fingerprinting

Attribute-based
Uses several browser attributes (e.g., installed fonts/plugins, or  
UserAgent). Unfortunately, these attributes change rapidly, 
rendering the fingerprint obsolete.

Hardware-based
Uses browser implementations of different APIs to compute the 
differences between devices that are based in hardware features 
(e.g., HTML5 Canvas or WebGL).
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Hardware-based Identification

We notice that the execution time of certain functions was 
uniquely correlated to the machine where it was running, and 
could be used to differentiate even among identical devices

What is the reason behind this?



Clock Imperfections I

Computers can be fingerprinted by comparing different clocks.

Salo proposed to compare the CPU clock cycles of ticks in the clock 
with the cycles needed for the digitalization of an analog signal 
using a sound card. Afterwards, the author computed different 
statistical tests to distinguish among different machines.

Timothy J Salo. 2007. Multi-Factor Fingerprints for Personal Computer Hardware. 
In Proceedings of the Military Communications Conference (MILCOM). IEEE.
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Clock Imperfections  II

Several factors play a crucial role for this technique to work:

(1) The program needs to have access to the CPU clock cycles, 
which is not a common option in high-level languages. 

(2) The sound card used must not rely on the CPU clock and 
should use an independent crystal-controlled oscillator.

(3) The experiment needed to run for  approximately one hour.



Our Observation

When a small function is repeated a sufficient number of times, it 
can be used to amplify the small differences between the CPU 
and the timer clocks. By measuring the execution time by using 
the datetime API, we can use this information to remotely 
fingerprint a machine.

Our algorithm is divided into two different phases: the 
generation of the fingerprint, and the comparison phase.
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Fingerprint Comparison

This process is then repeated, inverting the order and checking the
most common values in the second one (fp2) with all the values 
from the first one (fp1).

In this case, the percentage of similarity would have been 100%, 
which is a perfect match. Our method would have determined 
that both fingerprints belonged to the same computer.



Function Selection

We decided to perform a preliminary set of tests to assess the 
different candidate functions, such as string::compare or crypt.

According to our results, different candidates provided good 
results, but one important point is that our method needs to 
use a function not often interrupted by the scheduler because, 
otherwise, the timing values would obviously be polluted.



Stability Tests 

CPU Temperature
We stressed the CPU for 20 minutes at 100% load, successfully 
doubling the internal temperature.

While the increase in temperature can impacts clock-based 
measurements, we did not observe any variations or errors in our 
fingerprint identification.  

A possible explanation is that as the two clock are physically 
located in the same machine, temperature would affect similarly 
both of them.



CryptoFP

Since this clock-based fingerprinting method works with virtually 
any simple function, we selected one based on its general 
availability and on the possibility to generalize our results and 
compare our native and web-based approaches.

We decided to implement our prototype by timing the execution of 
the pseudo-random generator, as it is available also in JavaScript, 
called by a wrapper in this scripting language.



Native Device Fingerprinting

In order to provide homogeneity and test our fingerprinting 
technique with the same type of computers rather than with 
different computers, we performed our experiments using two 
groups of machines with perfectly identical software (installed 
through a disk image) and hardware components. 

The groups included 176 and 89 computers, respectively.



Native Device Fingerprinting

CryptoFP was able to distinguish every computer in each group. In 
other words, the uniqueness of our method in both tests is 100%, 
even when both hardware and software are identical.

This shows that it is capable of detecting clock imperfections in 
order to accurately distinguish machines.



Web Device Fingerprinting

We used the HTML5 Web Cryptography API, that provides a 
wrapper that allows system-level cryptographic operations such as 
hashing, encryption, or generating random numbers. 

In this case, we compare it with the other two state-of- the-art web 
hardware-level techniques: canvasFP and WebGL fingerprinting.



Methodology I

Since our fingerprinting does not produce a hash but it needs a 
comparison phase and is not transitive, we adapted the anonymity 
set measurement to an identical comparison sets that translates 
the idea behind anonymity sets to the comparisons performed by 
our method.

The size is no longer the number of computers with the same 
fingerprint, but the number of computers with the same number 
of positive matches with other computers.
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Methodology II

Imagine four different machines: A, B, C and D.

– A matches B
– B matches A and D
– C matches D
– D matches C and B

sizes={1:2,2:2}



Evaluation

Homogeneous
Both companies and universities often rely on large numbers of 
identical machines, which can greatly complicate fingerprinting 
(265 machines).

Heterogeneous
A classical web evaluation where users were asked to visit a 
website that performed all the techniques. Users where using their 
own machines and had no restriction on the computer
 (300 participants).



Homogeneous Scenario

Existing techniques could not differentiate any of the computers 
in none of the two homogeneous groups, resulting in the same 
fingerprint for all computers.

CryptoFP was able to cover around 18% of the computers with the 
two first equally divided sets, outperforming previous techniques. 
Is less precise than the native implementation, due to a more 
coarse-grain precision offered by the HTML5 API.
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canvasFP

webGL FP

CrytoFP



Heterogeneous Scenario

canvasFP + CryptoFP

webGL FP + CryptoFP

CryptoFP + Both



Conclusions

We showed that a timing side-channel present in all modern 
computers can be used to uniquely identify a machine, tackling 
the main limitations of previous approaches.

We ported our technique to the web and showed that it 
overcomes state-of-the-art device fingerprinting techniques both 
in a homogeneous scenario and in a real-world web fingerprinting 
experiment.



People used to Rock Around the Clock, we prefer to

Clock Around the Clock
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