
DECEMBER 12TH - 2019

BakingTimer: Privacy Analysis of
Server-Side Request Processing Time

Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos

Copyright © 2019 NortonLifeLock Inc. All rights reserved.

Cookies were originally introduced as a way to provide state awareness to websites, but
nowadays they are not limited to store the login information or the current state of user. In
several cases, third-party cookies are deliberately used for web tracking.

Motivation

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 2

Motivation

Cookies were originally introduced as a way to provide state awareness to websites, but
nowadays they are not limited to store the login information or the current state of user. In
several cases, third-party cookies are deliberately used for web tracking.

But even if the most famous, cookies are not the only technique capable of retrieving the
users’ browsing history. In fact, history sniffing techniques can do it without relying on any
specific code in a third-party website, but only on code executed in one site.

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 3

Threat Model

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 4

Threat Model

Shopping

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 5

Threat Model

Shopping News

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 6

Threat Model

Shopping News

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 7

Threat Model

Shopping News

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 8

Threat Model

Shopping News

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 9

Threat Model

Shopping News

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 10

Threat Model

Shopping News

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 11

Threat Model

Shopping News

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 12

Threat Model

Shopping News

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 13

Threat Model

Shopping News

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 14

Threat Model

Shopping News

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 15

Threat Model

Shopping News

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 16

Threat Model

Shopping NewsStreaming

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 17

Threat Model

Shopping NewsStreaming

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 18

Threat Model

Shopping NewsStreaming

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 19

Threat Model

Shopping NewsStreaming

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 20

Threat Model

Shopping NewsStreaming

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 21

Threat Model

Shopping NewsStreaming

Alice

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 22

BakingTimer

We present a new timing side-channel attack, that relies on the presence of first party
cookies set by the target websites to perform history sniffing.

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 23

BakingTimer

We present a new timing side-channel attack, that relies on the presence of first party
cookies set by the target websites to perform history sniffing.

Our system is based on the analysis of how servers process HTTP requests, and by
using this information, is able to detect both if the user previously visited the website and
whether she is currently logged in.

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 24

BakingTimer

The main observation behind our approach is that, when the browser sends a cookie
along with a request, it is reasonable to assume that the server will check its value.

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 25

BakingTimer

The main observation behind our approach is that, when the browser sends a cookie
along with a request, it is reasonable to assume that the server will check its value.

Then, it may use the value to retrieve the associated user session and load additional data
from the database, or that it will simply execute a different path with respect to a request
that does not contain any cookie.

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 26

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 27

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 28

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 29

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 30

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 31

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 32

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 33

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 34

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 35

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 36

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 37

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 38

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 39

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 40

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 41

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 42

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 43

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 44

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 45

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 46

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 47

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 48

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 49

BakingTimerBakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

CASE A

CASE B

CASE C

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 50

BakingTimer

REQUEST 1 + REQUEST 2

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 51

BakingTimer

REQUEST 1

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 52

BakingTimer

xmlHttpRequest.withCredentials = FALSE;

REQUEST 1

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 53

BakingTimer
BakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

S
E
R
V
E
R

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 54

BakingTimer
BakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

S
E
R
V
E
R

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 55

BakingTimer

REQUEST 2

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 56

BakingTimer

xmlHttpRequest.withCredentials = TRUE;

REQUEST 2

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 57

BakingTimer
BakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

S
E
R
V
E
R

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 58

BakingTimer
BakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

S
E
R
V
E
R

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 59

BakingTimer
BakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

S
E
R
V
E
R

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 60

BakingTimer
BakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

S
E
R
V
E
R

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 61

BakingTimer
BakingTimer: Privacy Analysis of Server-Side Request Processing Time ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

1 <?php
2 $userID = �0bc63ecec05112d03544fde0b5a18c70�;
3
4 if (isset($_COOKIE [[�consent�]) {
5
6 if (isset($_COOKIE [[�userID�]) {
7
8 if ($_POST[�userID�] == $userID) {
9 getUserData (); // Case C
10 }
11
12 } else {
13 saveNavigation (); // Case B
14 }
15
16 } else {
17 askConsent (); // Case A
18 }
19 ?>

Figure 1: Example code of a PHP server presenting the three
di�erent possible cases of a cookie process schema.

is currently logged in into certain websites by timing of speci�c
requests [7], exploiting the AppCache [28], or by estimating the
size of certain resources [44]. As explained in Section 3, our own
attack belongs to the this timing-based attack category.

Countermeasures and Shortcomings Some of the attacks dis-
cussed above are already mitigated by browser vendors. For in-
stance, for the CSS:visited style check, all the corresponding
browser functions (e.g., getComputedStyle and querySelector)
have been modi�ed to always return that the user has never visited
the link [30]. Despite these mitigations, recent work has shown that
the attack is still possible using new features available in modern
browsers. However, several possible defenses exist to avoid the
problem, such as the ones proposed by Smith et al. [40]. In fact,
one of these new techniques has already been blocked in recent
versions of Google Chrome [19].

In fact, all existing techniques fall in the classic “arms race” cate-
gory, in which attacker and researchers constantly discover new
tricks that are in turn mitigated by browser vendors, website devel-
opers, or even simply careful user settings. Therefore, we decided to
investigate if it was possible to devise a new technique that would 1)
rely only on server-side information, and 2) that could not be easily
prevented without degrading the performance or functionalities of
a web application.

2.3 Threat Model
In the timing attack presented in this paper, we adopt the same
threat model used by previous work in the area [7, 44]. In particular,
we assume an attacker can run JavaScript code on the client browser
to perform cross-origin requests. This code can be either loaded
directly by the �rst-party website, or by a third-party service (e.g.,
by an advertisement or analytics company).

The information collected by our technique allows an attacker
to determine which websites were previously visited by the user
and on which website the user is currently logged in. There are
multiple usages for this data that can result on serious security

Figure 2: Server cookie procress schema.

and privacy implications. The most obvious is related to adver-
tisement, as the usage of the browsing history allows to display
targeted advertisements. Moreover, an interested tracker could cre-
ate a prede�ned list of websites and generate a temporal �ngerprint
of various users, indicating the user’s state in each of them. Even if
the �ngerprint could not be used as an standalone �ngerprinting
solution, it will de�nitely improve the �ngerprinting capabilities
of other web tracking techniques. Finally, from a security point
of view, this information can be used to perform targeted attacks
against particular victims.

3 BAKINGTIMER
Out of all the requests a web server receives, some contains cookies
and some do not. The main observation behind our approach is that,
when the browser sends a cookie along with an HTTP request, it is
reasonable to assume that the server-side application will check its
value, maybe use it to retrieve the associated user session and load
additional data from the database, or that it will simply execute
a di�erent execution path with respect to a request that does not
contain any cookie (in which case, for example, the application may
execute the routines necessary to create new cookies).

For instance, Figure 1 shows a simple PHP skeleton that em-
pathizes three di�erent possible cases. First, the program checks if
the user already accessed the website before, by testing for the pres-
ence of the consent cookie using the isset function. If the cookie
is not found (either because it is the �rst time the user access the
website or because it has been deleted), the program takes the path
we named Case A that calls the askConsent function. Otherwise,
the program performs additional checks by looking for some login
information stored in the cookies. If userID is not indicated, Case B
is followed, that calls function saveNavigation, else, the userID
information is �rst validated, and then the application follows Case
C by calling the getUserData function.

Figure 2 shows a simpli�ed representation of the control-�ow of
our toy application, emphasizing the di�erent paths. Our hypothe-
sis is that the time di�erence among the three cases is su�cient,
even across a network connection, to tell the three behaviors apart
and therefore to accurately identify whether or not cookies are
submitted alongside an HTTP request. In particular, there are two
main tests that make detecting a timing di�erence possible: the �rst
to verify if there are cookies at all and the second to analyze them
and load session data. While the comparison themselves are too

S
E
R
V
E
R

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 62

Experiment Dataset

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 63

Access Detection

PHASE 1 + PHASE 2

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 64

Access Detection

PHASE 1

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 65

Access Detection

NEVER VISITED

PHASE 1

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 66

Access Detection

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 67

Access Detection

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 68

Access Detection

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 69

Access Detection

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 70

Access Detection

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 71

Access Detection

PHASE 2

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 72

Access Detection

PREVIOUSLY VISITED

PHASE 2

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 73

Access Detection

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 74

Access Detection

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 75

Access Detection

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 76

Access Detection

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 77

Access Detection

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 78

Access Detection

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 79

Access Detection

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 80

Access Detection

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 81

PREVIOUSLY VISITED

NEVER VISITED

Access Detection

More than half of the websites analyzed were vulnerable to our attack. More concretely,
around 70% with private personal information, and around 40% of highly accesible.

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 82

Access Detection

More than half of the websites analyzed were vulnerable to our attack. More concretely,
around 70% with private personal information, and around 40% of highly accesible.

We compared the mean and standard deviation of the number of cookies, and results
show that highly accessed websites have a higher number of cookies. This hints that
slower servers or less optimized code seem the resposible of the difference.

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 83

Login Detection

We can also check if the user is logged in. In our dataset, we found highly accesible
website such as World of Warcraft (WoW) or Gucci, and websites related to private
personal information such as LGBTchat or Dynamic Catholic.

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 84

Login Detection

We can also check if the user is logged in. In our dataset, we found highly accesible
website such as World of Warcraft (WoW) or Gucci, and websites related to private
personal information such as LGBTchat or Dynamic Catholic.

Curiously, some websites do not properly delete all cookies related to the login, what we
call persistant login. In this cases, it is possible to detect a previous logged-in state even
if not logged at that moment (e.g., Microsoft/MSN and Openload).

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 85

Stability Test

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 86

Stability Test

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 87

Stability Test

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 88

Countermeasures

Regular defenses for server-side timing attacks include, a random delays in the response
time, or fixed response times for sensitive requests. But are difficult and impractical to
implement in reality due to performance issues.

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 89

Countermeasures

Regular defenses for server-side timing attacks include, a random delays in the response
time, or fixed response times for sensitive requests. But are difficult and impractical to
implement in reality due to performance issues.

Another option would be cookies with the SameSite attribute, that can indicate that they
do not want to be send in third-party requests. However, as long as one of the cookies
involved does not indicate it, the attack would still work.

Copyright © 2019 NortonLifeLock Inc. All rights reserved. 90

Thank You!
iskander_sanchez@symantec.com

iskander-sanchez-rola.com

Copyright © 2019 NortonLifeLock Inc. All rights reserved.

