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Abstract. Memory errors have been present in software for more than
three decades now, leading to numerous security issues. Low-level lan-
guages like C and C++ that are prone to this class of errors are in
widespread use, meaning that a large number of current systems are sus-
ceptible to attacks that target memory corruption vulnerabilities. There-
fore, hardening programs and protecting against this type of attacks is
of the utmost importance to build secure systems. This paper explains
the basis of memory errors and their characteristics, analyzes the huge
research effort that has been carried out in relation to memory error de-
tection, exploitation and attack prevention, and depicts the most relevant
approaches in this area.

1 Introduction

Among all the software errors that lead to security vulnerabilities, memory cor-
ruption is one of the most dangerous and oldest problems in which the systems
security community has focused on, and despite the numerous approaches pro-
posed to mitigate them, they are still found in generalized and specialized soft-
ware [48, 10]. Memory corruption occupies the top positions in the CWE most
dangerous software weaknesses list [11], appearing separately as out-of-bounds
writes, out-of-bounds reads, Use-after-Frees (UAF), and so on.

Several factors influence the prevalence of memory errors, but one of the main
reasons is that a large amount of proposed detection and protection solutions are
not deployed in practice due to performance overhead, compatibility problems,
lack of completeness in protection, or dependence conflicts [47, 44].

The primary intention of this paper is to provide a general understanding
about memory errors, pointing out the most recent research in detection, ex-
ploitation and convenient defense methods.

The remainder of this paper is organized as follows. Section 2 depicts the
basis of memory errors and classifies them in accordance with their properties.
Section 3 systematizes the main approaches in the context of memory corrup-
tion detection. Then, section 4 describes software attacks that exploit memory
corruption focusing on code-reuse attacks and data-only attacks, the two most
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actively researched classes. Section 5 analyzes attack countermeasures. Section 6
reviews the research related to our work. Finally, section 7 concludes the paper.

2 Background

Memory corruption becomes apparent as a consequence of the lack of memory
and type safety in low-level languages such as C and C++. Since these languages
provide low level control over implementation details for example through man-
ual memory management, they open up the possibility for the program to access
memory in unintended ways.

It is commonly said that the execution of a program is memory safe as long
as a set of memory errors never occur.

Memory errors include every access to undefined memory, i.e., memory that
the program has not allocated or not initialized, but also accesses to not des-
ignated memory regions (i.e., a pointer dereference that does not point to its
assigned memory area). According to their characteristics, they are commonly
classified into spatial and temporal memory errors.

– Spatial Memory Errors: On the one hand, spatial errors comprise ev-
ery memory access outside the established bounds of its referent. The most
prominent example are buffer overflows, where data is written beyond the
limit of a buffer, potentially overwriting other values. Therefore, we can ob-
serve out-of-bounds reads and writes as part of this class.

– Temporal Memory Errors: On the other hand, temporal errors are those
caused by the usage of pointers whose referents are not valid at the time
of dereference, because they have not been initialized or they have been
previously freed, for instance. In that context, we can observe Use-After-Free
(UAF) errors, uses of uninitialized memory, null pointer dereferences and
illegal frees (i.e., calling free to a non-allocated or an already-freed pointer).

3 Memory Error Detection

Over the years, many detection systems that use different strategies and program
analysis techniques have been proposed, usually putting together diverse analysis
methods [44, 42].

In the same way as user-space programs, operating system kernels such as
Linux suffer from memory corruption. Detection in OS kernels entails its own
challenges since their characteristics (e.g., generalized use of machine-level code,
large and complex code bases) differ from userland programs. Among the pro-
posed approaches, we can find static-analysis-based solutions [22, 29] and dy-
namic analysis frameworks [41].

In this section we refer to general detection methods, not specific to any
domain.
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3.1 Static Analysis

Given the source or binary code of a program, several approaches make use of
static analysis methods to find memory errors without running the program.
The most common include: pointer analysis [50], model checking [19], abstract
interpretation [9] and pattern matching [29].

In general, pure static analysis implementations have the advantage of exam-
ining the whole program rather than only executed paths, but are more likely
to report false positives.

3.2 Instrumentation and Runtime Monitoring

Program instrumentation is a remarkably versatile method that enables a great
variety of analyses. The so-called sanitizers and many other vulnerability detec-
tion tools leverage instrumentation capabilities from e.g., compiler toolchains,
to insert reference monitors into the program to then enforce a security policy
at runtime [42].

To detect memory errors, a diverse range of strategies have been implemented
and numerous sanitizers have been proposed [43]. To illustrate, AddressSani-
tizer [36] introduces red zones around memory objects to detect out-of-bounds
accesses and delays the reuse of freed memory regions to discover temporal safety
issues. Moreover, SoftBound+CETS [24, 25] track pointers with bounds and allo-
cation status metadata and perform checks on dereference operations to provide
full memory safety at the cost of higher overhead and compatibility issues.

Likewise, when program source code is not available, Dynamic Binary In-
strumentation (DBI) frameworks like Valgrind [26] or DynamoRIO [3] provide
the means to build memory corruption detection tools. Excellent examples are
Memcheck [37] and Dr. Memory [4]. However, DBI usually introduces excessive
performance overhead to the execution.

3.3 Fuzzing

Fuzz testing is a dynamic approach that has become one of the most used and
effective techniques in recent years, while developing several new strategies and
algorithms [18]. The main idea behind fuzzing resides in randomly generating
inputs to test target programs, sometimes with the aim of discovering memory
errors [48].

Since one of the main problems of sanitizers and other instrumentation-based
detection tools is that they can only detect vulnerabilities when they are get-
ting triggered, the combination with fuzzing turned out natural [13, 28]. Fuzzing
has also been shown to be effective in finding memory corruption in embed-
ded systems, even though it exhibits different challenges to those of commodity
systems [23].
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3.4 Symbolic Execution

Rather than regularly executing a target program, input values and variables are
represented as symbolic values instead of concrete values in a symbolic execution.
These values generate path conditions that represent the state of the program
and transformations between states, opening up the possibility to analyze all
possible states [1].

These techniques have been successfully used to detect memory errors [31],
and combined with other techniques such as Natural Language Processing (NLP)
[49].

In practice, symbolic execution approaches are infrequently adopted because
of its limitations in terms of scalability due to the path explosion problem, and
complex constraint solving [1].

4 Memory Corruption Exploitation

Over the last years, there has been a constant arms race between memory cor-
ruption attacks and defenses. Triggering a memory error is usually the first step
to carry out several attacks. By making a pointer go out of bounds or making
it become dangling and then dereferencing it, a potential attacker could modify
code pointers and variables, for instance [44].

The most usual objective is to divert program execution away from the in-
tended control flow. In that context, code corruption attacks try to modify pro-
gram code in memory while code injection schemes introduce new code, in any
case to make the program execute the attacker-provided code. However, they are
easily prevented using current processor features. Memory errors can be further
exploited to disclose memory contents [27], usually to leak secrets in order to
bypass several defenses [35].

Amid existing attacks, the security community has lately paid more attention
to two classes: code-reuse and data-only attacks.

4.1 Code-Reuse Attacks

Since general attack mitigations became ubiquitous and code corruption and
injection were no longer viable, new attacks emerged that reuse program code
already present in memory [32].

Return-into-libc is the simplest form of these kind of attacks. By redirecting
the control-flow to libc functions, an attacker is able to execute sequences of
arbitrary function calls chained together [12].

These attacks evolved into Return-Oriented Programming (ROP), that in-
stead of targeting whole functions, chains the execution of short instruction
sequences (i.e., gadgets) that end with a return instruction [38, 46]. While main-
taining the basis of the technique, further ROP attacks have been proposed over
the years to overcome emerging defenses [33], showing its effectiveness.
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4.2 Data-Only Attacks

Unlike previous approaches, data-only attacks (also called non-control-data at-
tacks) do not require hijacking the control-flow of the target program. Instead,
this class of attacks focus on modifying security-sensitive data such as user input,
configuration data, user identity, or decision-making data to bypass authentica-
tion checks, escalate privileges and so on [7].

Moreover, Hu et al. [15] proposed FlowStitch, a tool that successfully au-
tomates the process of generating data-oriented attacks from common memory
errors by systematically joining data flows in the program. Afterwards, a follow-
up work [16] introduced the notion of Data-Oriented Programming (DOP), a
systematic technique to construct Turing-complete data-only exploits by finding
data-oriented gadgets, in a similar fashion to ROP. Likewise, Ispoglou et al. [17]
proposed Block-Oriented Programming (BOP), which uses entire basic blocks
as gadgets and produces payloads that follow the valid Control-Flow Graph of
the program but not its Data-Flow Graph.

5 Defense Strategies

As a consequence of the increasing number of developed attacks over the years,
several countermeasures have been equally proposed. However, many of them
are not deployed in practice, or a less strict version is used, since they usually
incur high performance overhead.

The most basic and widely used defenses include: Address Space Layout
Randomization (ASLR), the Write XOR Execute policy for memory pages, and
stack canaries. ASLR randomizes the arrangement of the process memory layout
so that attackers do not know the location of interesting targets. Write XOR
Execute ensures that memory pages can be writable or executable but not both
to thwart code injection. While stack canaries introduce values (i.e., canaries)
into the stack that are checked when a function terminates to prevent control-
flow hijacking. Unfortunately, they have been shown to be ineffective against
more sophisticated attacks [32, 35] and consequently more advanced defenses
have been developed.

5.1 Enhanced Software Diversity

Since the main problem of secret-based defenses like ASLR is that they are sus-
ceptible to information disclosure attacks [27], a lot of research effort has been
put in developing leakage-resistant software diversity techniques [20]. As an ex-
ample, ASLRGuard [21] uses a secure memory region to store most code locators
and encryption for the rest of the code pointers with the aim of preventing its dis-
closure. Another approach is live re-randomization, which prevents the attacker
from exploiting the obtained knowledge about the program by systematically
re-randomizing the address space to invalidate current code pointers [2, 8].
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5.2 Control-Flow Integrity

An interesting alternative are integrity-based defenses, being Control-Flow In-
tegrity (CFI) [5] the most extended approach. CFI builds the Control-Flow
Graph (CFG) of the program to obtain possible execution paths and then en-
sures that execution follows one of those paths at runtime. Nevertheless, precise
CFI enforcement entails high performance overhead and, consequently, several
implementations trade security for performance. Therefore we discern two broad
classes of CFI: a more relaxed integrity checking called coarse-grained CFI [51,
45] and a more precise fine-grained CFI [30].

In order to improve overall performance, researchers have explored the ap-
plication of hardware features, successfully enforcing CFI using Intel’s processor
trace [14] for example.

5.3 Data-Flow Integrity

In a similar fashion, Data-Flow Integrity (DFI) aims to mitigate non-control data
attacks by preventing the program from deviating from the intended data-flow.

With the aid of static analysis (i.e., reaching definitions analysis) a Data-Flow
Graph (DFG) is built that, in short, maps instructions to definition identifiers.
Then, read and write instructions are instrumented to ensure at runtime that all
data flows are within the DFG [6, 40]. Any deviation from the DFG terminates
the execution.

5.4 Software Fault Isolation

To deal with untrusted code, Software Fault Isolation (SFI) isolates untrusted
modules in a sandbox in the host’s address space so that it cannot access memory
outside the sandbox. As representative examples, Google’s NaCl [34] loads the
untrusted code into a predefined area and instruments it to confine its memory
and instruction references to the sandbox, while ARMlock [52] uses the ARM
hardware support for memory domains to create sandboxes that constrain every
memory access inside them.

6 Related Work

In the context of this research, several systematization of knowledge works have
been already proposed.

Van der Veen et al. [47] provide a historical overview and analysis of memory
errors. They found that memory errors are unlikely to lose significance in the
near future and that state-of-the-art detection and containment techniques fail
to protect against motivated attackers.

Szekeres et al. [44] organize the knowledge about diverse protection methods
by setting up a general model for memory corruption attacks to find that stronger
protection policies are needed.
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Shoshitaishvili et al. [39] propose angr, a unified framework for the automated
identification and exploitation of memory corruption vulnerabilities at binary-
level.

In relation to defense approaches, Larsen et al. [20] systematize the under-
standing of software diversity and highlight fundamental trade-offs between fully
automated approaches.

With regard to program reasoning and vulnerability detection, Baldoni et
al. [1] survey the main aspects of symbolic execution and the most notable tech-
niques used in testing and security applications, while Klees et al. [18] perform
an extensive evaluation of the most recent fuzzers and analyze their experimental
methodologies.

Lastly, Song et al. [42] bring together the knowledge about sanitizers. They
propose a new taxonomy of available tools and the security vulnerabilities they
cover, describe their performance and compatibility properties, and emphasize
different trade-offs.

7 Conclusion

As observed, memory errors have been extensively studied from different per-
spectives but they still remain as one of the principal difficulties to build secure
systems, which suggests that further research is needed.

By using techniques like runtime monitoring or fuzzing, researchers have ef-
fectively mitigated memory corruption. While, software diversity and integrity-
based defenses have been found to be capable of preventing complex attacks.
However, in order to keep exploiting memory vulnerabilities, attacks have evolved
from basic code-injection to more advanced code-reuse and data-only attacks.

We hope that this review provides security researchers with solid background
knowledge to contribute to the field.
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35. Seibert, J., Okhravi, H., Söderström, E.: Information leaks without memory disclo-
sures: Remote side channel attacks on diversified code. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security (CCS), pp.
54–65 (2014)

36. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: Addresssanitizer: A fast
address sanity checker. In: 2012 USENIX Annual Technical Conference (USENIX
ATC 12), pp. 309–318 (2012)

37. Seward, J., Nethercote, N.: Using valgrind to detect undefined value errors with
bit-precision. In: USENIX Annual Technical Conference (USENIX ATC 2005), pp.
17–30 (2005)



10

38. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc with-
out function calls (on the x86). In: Proceedings of the 14th ACM conference on
Computer and Communications Security (CCS), pp. 552–561 (2007)

39. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Kruegel, C., et al.: Sok:(state of) the art of war:
Offensive techniques in binary analysis. In: 2016 IEEE Symposium on Security
and Privacy (SP), pp. 138–157. IEEE (2016)

40. Song, C., Lee, B., Lu, K., Harris, W., Kim, T., Lee, W.: Enforcing kernel security
invariants with data flow integrity. In: Proceedings of the 2016 Annual Network
and Distributed System Security Symposium (NDSS) (2016)

41. Song, D., Hetzelt, F., Das, D., Spensky, C., Na, Y., Volckaert, S., Vigna, G.,
Kruegel, C., Seifert, J.P., Franz, M.: Periscope: An effective probing and fuzzing
framework for the hardware-os boundary. In: Proceedings of the 2019 Annual
Network and Distributed System Security Symposium (NDSS) (2019)

42. Song, D., Lettner, J., Rajasekaran, P., Na, Y., Volckaert, S., Larsen, P., Franz, M.:
Sok: sanitizing for security. In: 2019 IEEE Symposium on Security and Privacy
(SP), pp. 1275–1295. IEEE (2019)

43. Stepanov, E., Serebryany, K.: Memorysanitizer: fast detector of uninitialized mem-
ory use in c++. In: 2015 IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO), pp. 46–55. IEEE (2015)

44. Szekeres, L., Payer, M., Wei, T., Song, D.: Sok: Eternal war in memory. In: 2013
IEEE Symposium on Security and Privacy (SP), pp. 48–62. IEEE (2013)
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