
Received 27 March 2023, accepted 21 April 2023, date of publication 3 May 2023, date of current version 11 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3272833

When Memory Corruption Met Concurrency:
Vulnerabilities in Concurrent Programs
OSCAR LLORENTE-VAZQUEZ 1, IGOR SANTOS-GRUEIRO2,3, AND PABLO GARCIA BRINGAS 1
1Deusto Institute of Technology, University of Deusto, 48007 Bilbao, Spain
2Faculty of Engineering, Mondragon University, 20500 Arrasate-Mondragon, Spain
3HP Labs, BS34 8QZ Bristol, U.K.

Corresponding author: Oscar Llorente-Vazquez (ollorente@opendeusto.es)

The work of Oscar Llorente-Vazquez was supported in part by the Basque Government under a Pre-Doctoral Grant.

ABSTRACT Concurrent programs are widespread in modern systems. They make better use of processor
resources but inevitably introduce a new set of problems in terms of reliability and security. Concurrency
bugs usually lead to program crashes and unexpected behavior, and are an active research topic. From
a security perspective, concurrency vulnerabilities are those that exhibit harmful behavior exclusively in
concurrent executions. They can take place in a diverse range of environments, such as in operating system
kernels, file system operations, or general-purpose multithreaded programs. A particular characteristic of
concurrency is that it not only introduces new problems, but also enables traditional vulnerabilities to be
triggered in concurrent-specific ways. Those that lead to dangerous security vulnerabilities usually cause
memory corruption, a strong and flexible primitive for exploitation, and are known as concurrency memory
corruption vulnerabilities. In this paper, we systematically analyze concurrency vulnerabilities in C and C++
programs, their exploitation and their detection, focusing on concurrency memory corruption vulnerabilities.
We organize previous work on concurrency bug characteristics and detection, and highlight the differences
in relation to vulnerabilities. Then, we examine the existence of concurrency vulnerabilities in real-world
programs by searching the CVE database and point out a growing trend. Further, we analyze and compare
existing detection approaches towards concurrency memory corruption.

INDEX TERMS Concurrency memory corruption, concurrency vulnerabilities, race condition.

I. INTRODUCTION
Concurrency is a crucial capability in modern systems.
By means of different technologies, it makes it possible to
maximize the usage of computing resources and increase
overall performance. However, concurrency brings in new
problems and challenges as well, especially in the context of
security vulnerabilities. In contrast to sequential programs,
concurrent program states are not only affected by program
inputs but also by thread scheduling and the different thread
interleavings, making it challenging to find, reproduce, and
fix errors and vulnerabilities due to non-determinism [1].

Concurrency bugs usually arise as a result of concurrent
accesses to a shared resource without proper synchronization.
The most representative scenarios include shared memory

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

accesses among threads within the same process, and sys-
tem resource accesses among different processes [2], [3].
As a result of improper synchronization, different concur-
rent accesses are executed in non-deterministic interleavings,
which compromises reliability and can lead to incorrect out-
puts, program crashes, and so on. Different from concurrency
bugs (e.g., data races), concurrency vulnerabilities exhibit
harmful behavior from a security perspective. Therefore,
attackers are able to exploit these vulnerabilities to escalate
privileges, execute malicious code, leak sensitive data, and
so on. Concurrency vulnerabilities are relatively similar in
nature to concurrency errors and have been generally oriented
towards the file system (e.g., to read from or write to sensitive
files) [4].

In practice, a concurrency vulnerability can become appar-
ent as a result of a concurrency error, but it is not a manda-
tory requirement. In fact, making thread accesses to shared

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 44725

https://orcid.org/0009-0000-7910-1995
https://orcid.org/0000-0003-3594-9534


O. Llorente-Vazquez et al.: When Memory Corruption Met Concurrency: Vulnerabilities in Concurrent Programs

memory race-free does not necessarily prevent a concurrency
vulnerability from taking place, even if they are correctly
protected by the same lock [5]. Therefore, a potential concur-
rency vulnerability may appear if two or more out of a set of
events (i.e., memory operations) in a given execution can have
their order changed, leading to harmful program behavior.

In a different direction, memory errors are still pervasive
in current software (i.e., written in low-level languages such
as C and C++) and have been the focus of research for
many years. By now, researchers have proposed a myriad
of approaches to exploit memory corruption, protect systems
from these attacks, and to enforce memory safety to prevent
errors [6]. However, memory errors do not take place exclu-
sively in their traditional form (i.e., sequentially). The role of
concurrency makes it possible for memory corruption to be
triggered in additional ways in concurrent executions. This
gives rise to concurrency memory corruption vulnerabilities
that standard detection approaches fail to unmask and to
which little attention has been paid. In fact, while examin-
ing kernel commits to search for concurrency use-after-free
bugs, researchers found that most of reported concurrency
use-after-free errors were identified by manual inspection or
runtime testing [7].

At first, it was assumed that concurrency memory corrup-
tion vulnerabilities were only a consequence of concurrency
errors such as data races [8], [9], and that they were vis-
ible later in the execution flow. However, a concurrency
vulnerability is more related to the orders of events (at
different granularities) that can be inverted in alternative
executions and exhibit harmful behavior, no matter whether
the corresponding accesses can form data races [10]. A major
difference between these two concepts is that conflicting
accesses are usually expected to take place simultaneously
in a data race, but not in concurrency vulnerabilities, as long
as the harmful execution order can materialize.

The most naive method to try to find concurrency vulner-
abilities would be to explore all possible thread interleavings
of a program to identify harmful execution orders of opera-
tions. However, the number of possible thread interleavings
grows exponentially, leading to interleaving space explosion
and making this method unfeasible. Further, using data race
detectors to find concurrency vulnerabilities leads to potential
vulnerabilities being missed, and requires additional effort,
since usually only a small portion of all reported data races are
indeed harmful and even some are purposefully introduced by
developers. Recently, some approaches have been proposed
that focus on detecting concurrency memory corruption vul-
nerabilities. Some of them rely on fuzzing due to its demon-
strated effectiveness [11], [12], whereas others borrow and
adapt predictive detection techniques from concurrency bug
detection approaches [10], [13].

Although concurrency error characteristics and detection
approaches have been extensively studied previously [1],
[14], concurrency vulnerabilities — especially those related
to memory corruption — have not received nearly as
much attention. More worryingly, an increasing number of

concurrency vulnerabilities are being reported each year.
Therefore, a comprehensive analysis of concurrency mem-
ory corruption vulnerabilities and known detection methods
remains an important open task. A systematic study in this
field will lead to a better understanding and to the devel-
opment of new detection approaches. In this paper, we aim
at filling this gap by highlighting the differences between
bugs and vulnerabilities, revealing the existence and growing
trend of reported concurrency vulnerabilities in widely used
software, and systematically analyzing the state-of-the-art in
concurrency memory corruption detection for C and C++
programs.

The remainder of this paper is organized as follows:
Section §II depicts the general taxonomy of concur-
rency bugs and reviews the state-of-the-art detection
approaches. Section §III details the characteristics of con-
currency memory corruption vulnerabilities and mea-
sures reported vulnerabilities in the CVE database.
Section §IV explores the subtleties of exploiting concurrency
vulnerabilities. Section §V describes and classifies state-of-
the-art approaches towards concurrency memory corruption.
Section §VI discusses the most remarkable points with regard
to the presence of concurrency memory corruption in real-
world programs and its detection approaches. Section §VII
reviews the different works that are related to this paper.
Finally, Section §VIII concludes the paper.

II. CONCURRENCY ERRORS
Concurrency errors are common in multithreaded programs
and lead to unintended program behavior, resulting in wrong
outputs, program crashes, and security vulnerabilities, for
instance. Explicitly exploring their consequences revealed
that they often lead to memory corruption [8], which suggests
that traditional memory error detection approaches may fail
detecting these specific cases since they are usually triggered
under a certain scheduling sequence.

Although a concurrency error is not a necessary require-
ment to trigger a concurrency vulnerability [10], [12], their
characteristics are remarkably similar. Moreover, many con-
currency vulnerability detection approaches rely on or adapt
existing concurrency error detection methods.

A. CLASSIFICATION
According to their observable properties, concurrency errors
are usually classified into deadlocks, data races, atomicity
violations and order violations [1].

Deadlocks arise as a consequence of improper coordina-
tion in the use of a synchronization mechanism (i.e., mutex
locks). Specifically, a deadlock materializes when a set of
threads are circularly waiting to each other to obtain a
resource (i.e., a lock) that is held by another thread, not being
able to continue the execution.

Data Races take place when multiple memory accesses
from different threads access the same memory location
(i.e., a shared variable) simultaneously without proper syn-
chronization, and at least one of them is a write operation.

44726 VOLUME 11, 2023



O. Llorente-Vazquez et al.: When Memory Corruption Met Concurrency: Vulnerabilities in Concurrent Programs

As a result, memory operations may get their intended order
changed, leading to inconsistent memory views from dif-
ferent threads, unexpected memory values, and so on. Sur-
prisignly, data races are often intentionally introduced in
programs (e.g., for optimization) [15].

It is worth noting that data races and race conditions are
different concepts, even though they are often used inter-
changeably. While data races are exclusive to improper syn-
chronization in concurrent memory accesses with at least
one memory write, race conditions refer to timing dependent
behavior in the execution.

Atomicity Violations materialize when the desired seri-
alizability among multiple operations in a concurrent execu-
tion is interleaved with operations from another thread (i.e.,
a code region is assumed to be atomic, but the atomicity
is not enforced during execution). Atomicity violation bugs
are closely connected to unserializable interleavings, which
are interleavings that are not equivalent to any sequential
execution of the involved operations [16], [17].

Order Violations, in a conceptually similar vein to atom-
icity violation errors, take place when the desired order for
a set of concurrent operations is assumed but not enforced
during the execution. For instance, when a memory access
is expected to precede another but the order is flipped at
runtime.

B. DETECTION APPROACHES
Over the years, many different approaches have been pro-
posed towards the challenge of identifying concurrency errors
in multithreaded programs. Some try to detect or predict
specific bug categories whereas others work towards auto-
matically fixing concurrency bugs. In reality, there is no
absolute solution, but the different approaches have their own
strengths and weaknesses in terms of false negatives, false
positives, and performance.

We focus on non-deadlock bugs since their characteristics
are the most similar to concurrency vulnerabilities, and have
been shown to lead to memory corruption and even to con-
currency vulnerabilities. However, we encourage the reader to
refer to existing literature for further information on deadlock
detection andmitigation [18], [19]. Since this work is focused
on unsafe C and C++ programs, we also do not consider
approaches for other languages such as Java [20].

DATA RACES
Data races have been the focus of most concurrency bug
detection works [1], [2], [21], [22], [23], proposing many dif-
ferent static, dynamic, and systematic testing (e.g., stateless
model checking) methods.

Static approaches are intended to approximate the runtime
behavior of the program without it being executed, obtain-
ing thread identifiers, identifying synchronization operations
and checking memory operations that potentially access the
same memory location statically. For instance, RacerX [24]
uses flow-sensitive inter-procedural analysis to infer

lock-protected operations, multithreaded contexts and
dangerous shared accesses, whereas LOCKSMITH [21] uses
context-sensitive correlation analysis to determine whether
the accessed memory locations are consistently protected by
locks. Unfortunately, pure static approaches usually produce
a high number of false alarms, increasing manual effort.

Dynamic solutions reason about synchronization opera-
tions and memory accesses in specific execution traces and
have been proven to be very effective in data race detec-
tion. Existing algorithms can be broadly classified into three
groups: sound predictive analysis, lock-set analysis, and par-
tial order based techniques.

Firstly, sound predictive analyses are intended to explore
all possible feasible reorderings of a given trace, thus being
sound and complete in theory. In practice, these techniques
are expensive since each trace has exponentially numerous
valid reorderings. Therefore, completeness is traded for per-
formance by slicing traces into small fragments and analyz-
ing these fragments individually. These approaches usually
formulate race detection as a constraint solving problem and
rely on SAT/SMT solvers [23], [25] to detect data races.

Secondly, lock-set based approaches track the set of locks
that are held during memory accesses in the execution. They
report a potential race whenever two threads access the same
memory location without proper locking [15], [26].

Thirdly, partial order based methods formulate a partial
order P on the events in a given trace so that event pairs
unordered by P conform data races. The most common
implementation uses the happens-before relation (HBR).
HBR detects a data race when two conflicting accesses (i.e.,
accesses from different threads to the same memory loca-
tion including at least one write operation) are not causally
ordered so that neither is forced to happen before the other,
meaning that a reordering exists. Many tools are based on
HBR and have explored different ways to implement it effi-
ciently [2], [27]. In an effort to overcome the limitations
of HBR, other partial order techniques such as schedula-
ble happens-before [28], weak-causally-precedes [29], and
doesn’t commute analysis [30] have been proposed in recent
years.

Lastly, hybrid approaches such as ThreadSanitizer
[22] and Helgrind [31] combine lock-set and HBR analy-
ses to improve detection capabilities and are widely used in
practice.

Other techniques aim at exposing concurrency bugs by sys-
tematically exploring different executions andmultiple thread
interleavings. For instance, testing methods for concurrent
programs are based on some sort of controlled scheduling,
since ordinary testing is inadequate due to non-determinism
[3]. To this end, existing solutions modify thread priorities
dynamically [11], [12], introduce delays at specific loca-
tions [3], or explore the interleaving space in a randomized
way [32]. Conzzer [33] is a fuzzing framework for con-
current programs that uses a new context-sensitive coverage
metric based on pairs of concurrently executed functions,
augmented with their calling contexts (i.e., the runtime call

VOLUME 11, 2023 44727



O. Llorente-Vazquez et al.: When Memory Corruption Met Concurrency: Vulnerabilities in Concurrent Programs

stack). To explore as many thread interleavings as possi-
ble, it uses an adjacency-directed mutation strategy of the
already covered concurrent call pairs to infer other potential
concurrent call pairs. Then, it leverages previously injected
breakpoints at function entries to tamper with thread schedul-
ing, to try to cover these new thread interleavings. To detect
data races, it implements a dynamic lock-set analysis on the
identified concurrent function pairs, and verifies them by
injecting breakpoints at the racy instructions.

Moreover, controlled concurrency testing and stateless
model checking are both actively and effectively applied tech-
niques in the industry [34], [35]. To illustrate,Nekara [34] is
an open-source library that facilitates the development of sys-
tematic testing solutions for multiple platforms. It provides
an API to model the set of supported concurrency primitives,
and encapsulates state-of-the-art search heuristics to explore
the interleaving space from existing frameworks (e.g., in a
randomized fashion, or focusing on schedules with limited
context switches).

ATOMICITY VIOLATIONS
Following data races, atomicity violations are the second
most discussed class of non-deadlock concurrency errors in
the literature. Atomicity violation bugs widely exist because
which part of the code needs to be atomic depends on
programmers’ intentions, who are often used to sequential
thinking and assume non-atomic code regions to be atomic.
Therefore, one of the most challenging tasks for the detection
of atomicity violations is how to identify atomic regions.

On the one hand, some static approaches rely on user anno-
tations and type systems to specify and verify atomic code
regions (i.e., functions) [36]. On the other hand, dynamic
methods such as AVIO [16] propose access interleaving
invariants and build a system that extracts these invariants
to detect violations at runtime, whereas Atomizer [37]
leverages lock-set and reduction algorithms to verify that
the execution of atomic blocks is not affected and does not
interfere with other threads. Other approaches build upon the
concept of conflict serializability of execution traces, soundly
identifying traces that cannot be transformed into equivalent
serial traces and detecting violations dynamically [38], [39].

From a testing perspective, frameworks such asCTrigger
[17] and AssetFuzzer [40] focus on the directed explo-
ration of specific thread interleavings inherently correlated to
atomicity violations. They first perform analyses to identify
candidate interleavings to then direct the execution towards
them.

ORDER VIOLATIONS
In concurrency bug detection research, order violations have
received the least attention, although they are widely found
among concurrency errors [1]. Preventing and fixing them
is particularly difficult, since even if two shared memory
accesses are protected by the same lock or two conflicting
code regions are atomic to each other, the execution order
between them still may not be guaranteed.

Similar to atomicity violations, it is common among devel-
opers to assume an execution order but enforcing that order
is notably challenging. Further, to detect order violations, one
needs to be able to identify whether the executed instructions
have been executed in the right order or not. Consequently,
this raises the challenge of determining the expected orders
between pairs of events.

Among the proposed approaches, not many target order
violations specifically. Instead, there are general detectors
that are not focused on a single class of concurrency bugs
but target multiple classes in a more general fashion. For
instance, Falcon [14] uses a pattern-based dynamic anal-
ysis method that identifies conflicting interleaving patterns
that access shared memory to then statistically rank them
based on a suspiciousness measure. ConMem [8] targets
concurrency errors that lead to program crashes, building
on bug effects instead of on specific interleaving patterns,
unlike most approaches. To this end, it predicatively detects
errors by identifying potentially harmful memory opera-
tions and then checking timing conditions among them. In a
similar vein, ConSeq [41] proposes a backwards analysis
approach that covers more failure patterns besides program
crashes. Recently, other frameworks that target order vio-
lations specific to the Android platform have also been
developed [42], [43].

BUGS IN SPECIFIC DOMAINS
Some approaches are specifically tailored to particular prob-
lems and domains such as operating system kernels, embed-
ded systems, file systems, and so on. Therefore, they do not
target general-purpose concurrent programs and are designed
to overcome unique challenges.
PASAN [44] is one of such approaches and seeks to protect

peripherals in embedded systems from concurrency issues
that corrupt on-going jobs and result in erroneous sensor val-
ues, for instance. To this end, it (i) parses device documents
to identify MMIO address ranges for peripherals, (ii) extracts
concurrency-related functions from firmware compiled into
LLVM bitcode, (iii) computes points-to information, identi-
fies concurrently executable instructions by tracking process
and thread life spans, and performs a context-sensitive lock-
set analysis of the call stacks. Then, it (iv) identifies transac-
tion spans (that should ideally be locked), and (v) verifies that
the identified transaction spans that access the same MMIO
address range are correctly locked.

Other approaches are focused on detecting data races in
operating system kernels (i.e., Linux). Razzer [45] uses
a combination of static analysis and fuzzing. It first iden-
tifies potential racy memory access instructions through
context-insensitive and flow-insensitive points-to analysis,
over-approximating race candidate pairs. Then, it injects
breakpoints at the identified points, and performs fuzz test-
ing seeking to execute the race candidates while controlling
thread interleavings. Krace [46] is a fuzzing framework that
targets kernel file systems. Apart from the common branch
coverage metric, it uses a concurrency-coverage metric called

44728 VOLUME 11, 2023



O. Llorente-Vazquez et al.: When Memory Corruption Met Concurrency: Vulnerabilities in Concurrent Programs

alias instruction pair, which describes thread interleavings
by tracking memory access instruction pairs from different
contexts to each memory address. It also injects random
delays at memory accesses to discover thread interleavings.
To check for data races, it implements offline happens-before
and lock-set algorithms.

In a different direction, researchers found that jointly
exploring interleavings and test inputs in kernels has received
little attention due to the big search space [47]. In that con-
text, Snowboard [47] is a concurrency testing framework
that first executes a corpus of sequential tests generated by
Syzkaller [48], and collects non-stack memory accesses
for the relevant thread using a customized hypervisor. It then
identifies and clusters pairs of tests that read and write the
same memory region respectively. Next, it concurrently exe-
cutes test pairs, segregating threads in separate vCPUs, and
executing one vCPU at a time to enforce different interleav-
ings. To find bugs, it relies on existing bug detectors, and
ranks them by frequency, manually inspecting the highest-
ranked ones.

C. FROM ERRORS TO VULNERABILITIES
Some of the approaches described above are also used to
detect security vulnerabilities stemming from the aforemen-
tioned concurrency errors, usually through manual inspection
[33], [45]. In this way, they have been able to identify denial
of service opportunities, privilege escalation, and memory
corruption instances. However, these tools are geared towards
detecting certain concurrency bugs, and even discerning
benign races from harmful ones is often a costly manual task.
To illustrate, researchers spent approximately 80 hours on
manual inspection and reproduction of 100 data races [47].
To find and verify security consequences, it requires further
manual inspection and extra effort — a time consuming
process that requires meticulous code analysis.

III. CONCURRENCY VULNERABILITIES
In previous works [9], [49], researchers analyzed and dis-
cussed how concurrency errors can be exploited to carry out
several attacks. However, further research showed that even
though vulnerabilities and errors have similar characteris-
tics, their surrounding conditions are different and neither
is a necessary requirement for the other to take place [10],
[11]. For instance, concurrency vulnerabilities can exist in
race-free executions [5], and triggering a concurrency bug
and a vulnerability usually need different inputs and thread
interleavings.

Therefore, existing bug detection approaches may fail to
detect vulnerabilities on their own. In the event that a vul-
nerability would arise out of an error, they would be able to
detect the corresponding error but not whether there could
be a vulnerability or its triggering conditions, since they do
not reason about harmful program behavior from a security
perspective. Similarly, concurrency vulnerability detection
approaches that build upon bug detectors may miss potential
vulnerabilities.

FIGURE 1. CVE-2021-3348 in the Linux kernel.

Among the vulnerabilities that have their origin in con-
currency, the most well-known include Time-Of-Check-to-
Time-Of-Use (TOCTOU) vulnerabilities that target the file
system [4], and double-fetches [50]. However, concurrency
can also lead to other vulnerabilities that for instance enable
side-channel attacks [51]. In this paper, we focus on memory
corruption exclusive to concurrent executions.

A. REAL-WORLD VULNERABILITY EXAMPLES
In order to provide a practical illustration of real-world
concurrency memory corruption vulnerabilities, we have
manually selected two representative examples from the CVE
database. Figure 1 shows a simplified version of the code
in drivers/block/nbd.c in the Linux kernel, that is
affected by CVE-2021-3348 [52], a concurrency use-after-
free vulnerability.

When a Network Block Device (NBD) is being set up,
the function nbd_add_socket gets called, which in turn calls
krealloc to reallocate memory for the config->socks array to
add new sockets to the configuration. Usually, krealloc will
decide to expand or shrink the original memory block in place
if possible, or to allocate a new memory block, copy the data,
and free the original block. At that point, if an I/O request
is received, nbd_handle_cmd will get called, dereferencing
config->socks without any locking. Since this happens after
config->socks is reallocated but before it gets assigned the
new memory address, a use-after-free will take place.

To fix this vulnerability, locking accesses to config->socks
was not a feasible solution, as it would introduce excessive

VOLUME 11, 2023 44729



O. Llorente-Vazquez et al.: When Memory Corruption Met Concurrency: Vulnerabilities in Concurrent Programs

FIGURE 2. CVE-2019-11366 in atftp.

overhead. Instead, kernel developers opted to freeze the
request queue to not receive requests when adding sockets
to the configuration.

In a similar vein, Figure 2 illustrates a shortened version
of the relevant code with regards to CVE-2019-11366 [53] in
atftp [54], a multi-threaded implementation of the Trivial File
Transfer Protocol (TFTP).

In tftpd_list.c, atftp uses a global linked list
of server threads thread_data. These threads are started
by the main thread when new requests arrive. To do
so, the main function calls pthread_create to execute
tftpd_receive_request, which later calls tftpd_list_add. This is
shown in the bottom lines of the code. Inside tftpd_list_add,
atftp initializes a local pointer to the head of the thread list
thread_data. Then, it checks whether the thread list is empty
by checking whether thread_data points to NULL. In that
case, it inserts the first element to the list. Otherwise, it walks
the list using the local pointer current and inserts the element
at the end of the list.

Since the assignment to current is not lock-protected, the
harmful behavior occurs when thread_data is NULL when

assigned to current in a thread, but modified by another thread
before it is checked. In such a case, the program will try to
walk the list and dereference current->next, resulting in a
null-pointer dereference.

B. VULNERABILITY PRESENCE
To observe and study the presence and the possible trends in
concurrency vulnerabilities in real-world software, we have
developed a series of scripts that automatically download
and parse all CVE entries from the National Vulnerability
Database (NVD) data feeds [55].

CATEGORIZATION
We classify vulnerabilities by looking at their assigned Com-
mon Weakness Enumeration (CWE) identifiers combined
with pattern matching using regular expressions. Unfortu-
nately, it is nearly impossible to obtain fully accurate results
for several reasons. To begin with, descriptions and vulnera-
bility reports do not follow a particular standard and therefore
are occasionally unstructured or contain incomplete informa-
tion. Many entries do not have a CWE assigned or, in the
case of concurrency vulnerabilities, their assigned identifiers
do not fall into the category of concurrency issues but into
the categories of the consequent weaknesses (e.g., use-after-
free), making it harder to identify them. In addition, searching
for simple keywords such as ‘‘thread’’ or ‘‘concurrent’’ is not
appropriate because they may wrongly match cases where
they are used to describe software functionality or other unre-
lated execution aspects. Consequently, more sophisticated
patterns are needed.

Bear in mind that our goal is not to develop the most
accurate and comprehensive possible tool, but to obtain a
more general understanding of the concurrency vulnerability
landscape. Therefore, even though it may not yield the finest
results and more exhaustive techniques could have been used,
it still provides useful and valuable insights.

STATISTICS
Using the method described above, we then collected statis-
tical information about the reported vulnerabilities ranging
from 2002 to the end of 2021. Note that we are primarily
interested in concurrency-related vulnerabilities and thus we
only include other categories as a reference. There are many
different categories and subclasses, as well as many possi-
ble classification criteria. For simplicity, we chose to show
memory corruption since it is the sequential equivalent of
the vulnerabilities we are interested in, and web-related vul-
nerabilities as a reference to another broad category. Within
concurrency vulnerabilities, we further identify those that
result in memory corruption.

Table 1 shows the number of reported vulnerabilities in
the NVD database for each of the categories that we selected
along with the mean and standard deviation of their Common
Vulnerability Scoring System (CVSS) scores. CVSS base
scores represent the innate characteristics and severity of

44730 VOLUME 11, 2023



O. Llorente-Vazquez et al.: When Memory Corruption Met Concurrency: Vulnerabilities in Concurrent Programs

TABLE 1. Number of reported CVEs for the selected categories and the
total, along with their mean CVSS score.

FIGURE 3. Concurrency vulnerabilities and concurrency memory
corruption growth over the years.

vulnerabilities, and range from 1 to a maximum of 10. Unfor-
tunately, not every CVE entry has a CVSS score specified. For
instance, out of the 35.899 memory corruption vulnerabilities
identified, only 22.292 had a CVSS score assigned.

1,461 out of the 172,915 total reported vulnerabilities are
concurrency vulnerabilities, of which 419 are concurrency
memory corruption vulnerabilities. In contrast, other exten-
sive and persistent categories such as memory corruption and
web-related vulnerabilities account for 35,899 and 46,602
vulnerabilities respectively. Regarding CVSS scores, the four
selected categories have similar values, resulting in a high
severity rating in most of the cases. As expected, broad
categories that have more diversity in the nature of the vul-
nerabilities show a higher standard deviation.

Figure 3 shows the number of both reported concurrency
vulnerabilities and the subclass of concurrency memory cor-
ruption vulnerabilities per 3 months from 2002 to end 2021.
Not surprisingly, in the early years barely any vulnerabilities
were reported in either of the two cases. Out of these, the vast
majority were TOCTOU and other file system related race
condition vulnerabilities. Afterwards, the number of reported
concurrency vulnerabilities started to gradually increase until
2016, from where it experienced a substantial and continuous
growth up to 2021, reaching its peak at nearly 60 vulnera-
bilities per 3 months. This growth can be attributed to both
the rising development of increasingly complex concurrent
software and the recently proposed detection approaches.
Concurrency memory corruption vulnerabilities followed a

similar trend. The number of reported vulnerabilities started
to steadily grow from 2014 onwards. Although it initially
looked like it may have stabilized as of 2018, it then continued
to grow until it peaked in 2021 as well, at over 20 reported
vulnerabilities per 3 months. It is worth noting that 74% of
the total number of concurrency memory corruption vulnera-
bilities have been reported over the period from 2017 to 2021,
following an upward trend.

IV. CONCURRENCY EXPLOITATION
Some research works have been devoted to understand
and improve the exploitation of concurrency vulnerabilities.
OWL [9] was the first study that analyzed the problem of
exploiting concurrency vulnerabilities stemming from data
races. Their approach uses existing data race detectors and
checks whether the corresponding memory region propa-
gates to attack sites (e.g., strcpy() calls, NULL dereferences)
through control-flow or data-flow via inter-procedural static
analysis. Then, it tries to trigger the bug and execute an attack
site.

They found that the duration of the vulnerablewindow (i.e.,
the timing window in which the error may materialize) is
key to successfully exploit a concurrency error. While some
concurrency errors have large vulnerablewindows that enable
their exploitation without much difficulty through triggering
sequences of UI events or re-running commands a few times,
those with shorter vulnerable windows are harder to exploit.
Moreover, hardware cache leases and CPU time slices are
often larger than these short timing windows, masking the
errors.

In order to increase the probability of success of the attacks,
they proposed two methods: (i) to retry multiple times until
the exploit succeeds, and (ii) to provide carefully crafted
inputs to enlarge the vulnerable window (e.g., by making a
thread copy a large array, or triggering blocking operations
such as disk I/O).

Afterwards, researchers verified that traditional race
exploitation in practice relies on brute-force attacks until it
succeeds [56]. Such attacks work for some kernel races and
have been leveraged by most race-based privilege escalation
attacks. However, brute-force is not effective at all in some
cases. The exploitation complexity varies for single-variable
races and multi-variable races. They also found that some
multi-variable races (named non-inclusive multi-variable
races) are almost impossible to successfully exploit through
brute-force, since they require a unique execution order that
cannot be triggered without using debugging features.

Even though the probability of successful exploitation of
single-variable races and inclusive multi-variable races (i.e.,
when the execution time between the two writes in one task
is shorter than the time taken between the two reads in the
other task) through brute-force appears to be low, exploitation
is indeed possible and effective with many trials. In fact,
publicly available brute-force exploits succeed in between
5 to 30 seconds. However, the probability of successful
exploitation of non-inclusive multi-variable races (i.e., the

VOLUME 11, 2023 44731



O. Llorente-Vazquez et al.: When Memory Corruption Met Concurrency: Vulnerabilities in Concurrent Programs

execution time between the two writes in one task is greater
than or equal to the time taken between the two reads in the
other task) using brute-force is virtually zero due to timing
constraints for the tasks to satisfy the required execution
orders.
ExpRace [56] proposes a generic exploitation technique

for non-inclusive multi-variable kernel data races, which can-
not be exploited through brute-force. The main objective is to
intentionally enlarge the execution time of the target instruc-
tion sequence of the task that performs the read accesses
using interrupts, so that a non-inclusive multi-variable race
turns into an inclusive multi-variable race. Since the interrupt
mechanisms are not accessible from user-space, ExpRace
indirectly raises interrupts using different methods to enlarge
the time window that enables exploitation. In particular,
it focuses on inter-processor interrupts and hardware inter-
rupts through system calls and interrupt requests to devices.
They found that hardware interrupts yield the better results in
terms of exploitation success and stability.

In a different direction, COMRace [57] seeks to auto-
matically synthesize proof-of-concept (PoC) exploits that
concurrently execute unsafe method pairs with conflicting
member field accesses in vulnerable Component Object
Model (COM) interfaces. To do so, it finds interface methods
that access member fields without synchronization through
reverse engineering and static analysis. Then, given a pair of
interface methods with conflicting accesses, it automatically
synthesizes PoC exploits that concurrently invoke thesemeth-
ods in a loop, expecting to trigger the vulnerable interleaving.

V. DETECTION APPROACHES
Memory errors are widespread in current software and pose
a major threat from a security perspective since they enable
several attacks [6]. In consequence, numerous detectors and
mitigations have been proposed in over three decades of
research. Unfortunately, concurrency introduces new ways
in which memory corruption may take place, giving rise to
the need for new detectors that can find vulnerabilities that
traditional tools cannot identify.

In this section, we bring together the relevant proposed
concurrency memory corruption detectors in the literature.
As in previous sections, we only consider approaches that
target C and C++ programs. Thus, we do not include frame-
works such as ExceptioNULL [58], specific to Java pro-
grams. The individual approaches are described in their own
sections below.

A. PREDICTIVE DETECTION ALGORITHMS
Tools within this category seek to predict vulnerabilities that
can take place from an observed correct execution. They are
usually based on existing concurrency bug detection algo-
rithms that have been adapted to vulnerability detection.

Table 2 summarizes proposed predictive detection algo-
rithms for concurrency memory corruption detection in the
literature. It details the underlying detection method of each
tool. We also specify the vulnerability subclasses targeted

by the different tools. In addition, we point out the output
scheme of the reported vulnerabilities since it is a relevant
aspect in the reproduction and verification of findings. The
validation method refers to whether the proposed approaches
try to trigger the identified vulnerabilities to verify their exe-
cution. Although this is intrinsic to testing approaches such as
fuzzing, tools based on predictive detection may also benefit
from it to avoid false positives.

UFO
UFO [13] formulates concurrency use-after-free detection as
a constraint solving problem and builds upon a maximal
causality model with the intention to predict the maximal
set of vulnerabilities from an observed concurrent execution
trace. Since the original maximal causal model [23] is not
aware of the semantic properties that define a use-after-free,
UFO first extends it by including allocation, use, and free
events to then encode the model and use-after-free violations
as first order logical constraints to be solved using a SMT
solver.

To this end, UFO first modifies ThreadSanitizer to
produce the execution trace that contains occurrences of all
the previously defined events in the model. This data is
encoded and written to disk for offline analysis for correct-
ness and efficiency. Afterwards, UFO builds the model’s con-
straints from the traces and finds allocation and free operation
pairs along with the conflicting memory accesses. In order
to detect use-after-frees, it then carries out a happens-before
analysis for each pair of use and free events on overlapping
memory ranges. If the HBR is not satisfied either way by
inter-thread synchronization, thenUFO builds the conjunction
of the model and the use-after-free constraints and invokes
Z3 [59] to solve it. If it produces a solution, UFO reports the
specific scheduling that triggers the use-after-free.

CONVUL
In ConVul [10], the authors highlight the differences
between data races and concurrency memory corruption vul-
nerabilities, and the ineffectiveness of data race detectors in
finding concurrency vulnerabilities.

They propose the concept of exchangeable events to refer
to pairs of events whose orders can be reversed. In its strict
version, when for a pair of events both execution orders are
observed, they are considered to be exchangeable. However,
that approach is not practical. In consequence, they define a
relaxed model that heuristically predicts whether two events
are exchangeable based on their synchronization distance.
The synchronization distance is the minimal number of syn-
chronization edges that order the two events, being synchro-
nization edges sequences of either lock acquire and release
operations in the same thread, or release and later acquire
operations by different threads. Taking this definition into
account, they determine that, for a pair of events, if their syn-
chronization distance is 3 or less, there is a high probability to
reverse their execution order. Further, if there is a third event

44732 VOLUME 11, 2023



O. Llorente-Vazquez et al.: When Memory Corruption Met Concurrency: Vulnerabilities in Concurrent Programs

TABLE 2. Predictive detection approaches for concurrency memory corruption vulnerabilities along with their main characteristics.

such that the distances from both events to it are close to 0,
then there will be an increased probability.

Given the above definition, they implement a detection
system on top of Pin [60] dynamic binary instrumentation
framework that instruments synchronizations and memory
accesses to track exchangeable events. Whenever two con-
flicting operations, as defined by the different algorithms for
each targeted concurrency memory corruption vulnerability
(see Table 2), are found to be exchangeable, a potential
vulnerability is reported.

To verify reported vulnerabilities, ConVul tries to trigger
the harmful execution order by suspending the thread that
should execute the last operation (e.g., the use in a use-after-
free) right before its execution.

CONVULPOE
In a similar vein to ConVul, ConVulPOE [61] focuses on
exchangeable event pairs because they are more likely to
cause concurrency memory corruption. In this approach, two
events are considered exchangeable if two valid traces exist
in which the execution order of these events is different.

The main objective of ConVulPOE is to construct feasible
traces that manifest vulnerabilities from an observed execu-
tion trace. To that end, it leverages partial orders that represent
the execution orders of events. In the first place, it needs to
identify vulnerability-potential event pairs from an observed
trace, in accordance with the targeted vulnerabilities (see
Table 2). Next, it assembles a feasible subset of events. These
feasible event sets are the events that should be included in the
new trace (i.e., the event pairs that can lead to a vulnerability if
reordered) alongwith the other events thatmake the execution
correct. To prove that a potential vulnerability may exist,
it tries to generate a new feasible trace by building a partial
order over the feasible event set to add ordering between
events while meeting all necessary constraints.
ConVulPOE is composed of a trace recorder and a

vulnerability predictor component. The trace recorder is
implemented on top of Pin to instrument threading and
dynamic memory allocation operations, as well as pointer
dereferences heuristically. Taking the generated traces as
input, the vulnerability predictor works as an offline analysis

to find potential event pairs and construct partial orders incre-
mentally.

B. CONCURRENCY TESTING
Testing methods specific to concurrency randomly or system-
atically explore different thread interleavings and program
states. For instance, systematic state space exploration by
model checking is an effective verification method. Since tra-
ditional model checkers are not practical for concurrent pro-
grams, stateless model checkers systematically explore traces
of shared memory accesses without capturing all program
states. A custom scheduler controls the non-determinism in
the program and enumerates all execution paths.

Furthermore, dynamic analyses through testing such as
fuzzing and controlled concurrency testing aim at effectively
triggering concurrency memory corruption vulnerabilities
in actual executions. Their main objectives and challenges
include the exploration of the thread interleaving space and
the orchestration of thread scheduling.

Table 3 encapsulates concurrency testing approaches
towards concurrency memory corruption detection. It spec-
ifies the underlying detection technique of each tool, and
the vulnerability subclasses targeted by the different tools.
In addition, we point out the output scheme of the reported
vulnerabilities since it is a relevant aspect in the reproduction
and verification of findings.

CONAFL
ConAFL [11] is an heuristic framework composed of a static
analysis phase and thread-aware fuzzing using a priority-
based strategy. In the first place, the static analysis locates
sensitive concurrent operations on shared memory (e.g., calls
to memcpy()) and categorizes them into a potential type of
vulnerability from the targeted concurrency vulnerabilities
(i.e., buffer overflow, use-after-free and double-free). Then,
a custom fuzzer built upon AFL [62] adjusts thread priorities
through instrumentation and executes the target program.

The static analysis is implemented upon the concurrency
bug detector LOCKSMITH and can be divided into four steps:
(i) discover shared memory by recording pointers that are
either passed through pthread_create or point to a global

VOLUME 11, 2023 44733



O. Llorente-Vazquez et al.: When Memory Corruption Met Concurrency: Vulnerabilities in Concurrent Programs

TABLE 3. Proposed concurrency testing approaches towards memory corruption vulnerability detection along with their main characteristics.

variable in the different threads, (ii) mark sensitive operations
by building a Data-Flow Graph (DFG) for the identified
shared variables and labeling sensitive operations (e.g., calls
to free()) on that DFG, (iii) find pairs of concurrent sensi-
tive operations by merging data-flows that share a preceding
node and verifying that the operation pairs are concurrent by
checking the Control-Flow Graph (CFG), and (iv) categorize
each sensitive operation pair into a potential vulnerability
type (e.g., two calls to free() to a double-free).

To trigger potential vulnerabilities, the thread-aware fuzzer
inserts an assembly code snippet around the identified oper-
ations from a sensitive operation pair. This code adjusts the
priority of the thread so that the two threads would likely be
executed in the order that would trigger the vulnerability.

MUZZ
General-purpose grey-box fuzzers are usually tied to
single-threaded testing, and thus they are not aware of
multithreading-specific contexts. To overcome these limita-
tions on fuzzing multithreaded programs, MUZZ [12] pro-
poses three new thread-aware instrumentation algorithms on
top of AFL that provide useful runtime feedback to optimize
seed generation and execution strategies to explore execution
states originated from different thread interleavings.

Prior to instrumentation, MUZZ builds a thread-aware inter-
procedural CFG (ICFG) that encodes threading operations
information such as thread creation and exit, lock acquires
and releases, and shared variables. Given that ICFG, it identi-
fies code sequences relevant to multithreading that may inter-
leave during execution (i.e., suspicious interleaving scope)
to later focus instrumentation on them. The objective is to
emphasize multithreading-relevant paths during fuzzing and
to reduce the amount of instrumentation required.

• Coverage-oriented instrumentation aims at tracking
thread-interleaving induced coverage. It does so by
extending a common coverage approach [62] to instru-
ment basic blocks that include suspicious interleaving
scope as well as specific instructions inside with certain
probability, and to instrument fewer blocks that do not.

• Threading context instrumentation collects the thread
context (i.e., a deputy instruction and thread ID tuple)

at calls to lock, unlock and join. When execution ends,
MUZZ computes a context signature via hashing that
defines the overall thread context.

• Schedule-intervention instrumentation seeks to diver-
sify thread interleavings by assigning a random priority
value to threads on thread creation. It also stores a thread
ID for the calling thread to maintain a structure.

During the fuzzing process, MUZZ prioritizes seeds that
exercise new coverage as done in AFL, but giving precedence
to seeds that cover new thread contexts by checking the
context signatures. In addition, it also adjusts the num-
ber of repeated executions for seeds that produce differ-
ent context signatures in order to discover new thread
interleavings.

AUTOINTER-FUZZING
Similar to other approaches, AutoInter-fuzzing [63]
combines static analysis and fuzz testing. It leverages static
points-to analysis on top of LLVM to extract operation pairs
that access the same memory region and are executed in
different threads, in a similar way to Razzer. These opera-
tions include load and store operations, external function calls
using local pointers, and memory allocation and deallocation
functions. To filter out pairs that can never execute concur-
rently, it builds the control-flow graph to check reachability
for the identified pairs afterwards. To control the scheduling,
it instruments the detected operations with synchronization
barriers to check and enforce an execution order for the given
operation pair.

During fuzzing, AutoInter-fuzzing uses the num-
ber of created threads, the number of operations executed
per thread, and the number of covered operation pairs
as a metric to determine the number of test cases to be
created from a given seed. Whenever it encounters any
operation pairs during regular fuzzing, it executes the pro-
gram again and forces the execution of the opposite inter-
leaving if it has not been tested yet. In this way and by
leveraging AddressSanitizer [64], it is able to detect
use-after-free, NULL-pointer dereference, and double-free
vulnerabilities.

44734 VOLUME 11, 2023



O. Llorente-Vazquez et al.: When Memory Corruption Met Concurrency: Vulnerabilities in Concurrent Programs

PERIOD
PERIOD [65] is one of the most recent controlled concur-
rency testing (CCT) approaches and is built around three
components: (i) a schedule generator, (ii) a periodical execu-
tor, and (iii) a feedback analyzer.

The schedule generator systematically models program
execution as a series of execution periods, forming a sched-
ule. An execution period represents the number of key points
(i.e., relevant instructions) executed by a given thread in
that period. Concatenating periods results in a schedule and
depicts how different threads are interleaved. Given a slice
of key points and a maximum number of execution periods
(starting from 2), it generates schedule patterns that order
periods in lexicographical order of thread identifiers. Then,
it systematically generates all schedules in order by assigning
key points to the corresponding periods for each pattern.

The periodical executor takes the generated schedules and
controls thread interleavings. To do so, it leverages Deadline
Task Scheduling [66], a scheduling policy that assigns dead-
lines to tasks and picks the task with the earliest scheduling
deadline to be executed next. PERIOD sets all threads to
the same period length and start time, and instruments key
points to halt execution of threads until the next period when
necessary. In addition, it gathers information about any errors
that may be triggered during execution with the help of
AddressSanitizer, and the activated slice of key points,
so that it is passed to the feedback analyzer.

During execution, the executed slice may be different to
the one that generated the schedule (i.e., new key points are
executed) because different interleavings may result in the
program taking different paths. If a slice obtained that way
is previously uncovered, the feedback analyzer creates a new
schedule job for it. To this end, it creates a schedule prefix,
a partial schedule that contains everything from the previous
schedule up to the first different key point. Finally, it adds a
pattern period after it for the corresponding thread.
PERIOD explores all possible schedules for the given

number of periods. Then, it increments the period number
to explore new schedules. This process is repeated until it
reaches a preset bound.

GENMC
Verification of concurrent programs is challenging because of
the huge number of interleavings of the threads comprising
a concurrent program, that leads to a massive number of
program states. GenMC [67] is a state-of-the-art stateless
model checker for C and C++ concurrent programs built
upon the LLVM toolchain. It is able to verify concurrent
programs according to different memory models.

Its execution exploration algorithm leverages execution
graphs where nodes represent memory access events, and
edges relations among them, such as the order of the events
in a thread, and write-to-read relations. From an empty graph,
an interpreter executes the program and adds the next event
found to the graph, while checking whether the graph is
consistent with respect to the memory model. In the process

of generating a full graph (i.e., a complete execution), it also
finds and stores alternative exploration options such as, given
a read event, the different writes to the same location from
which it can read. When the found event is a write, it also
considers other read events in the graph that could read from
it. In this way, GenMC generates and explores every possible
program execution.

Moreover, whenever a new event is added to the current
graph, it also checks whether the event entails an assertion
violation or an error (i.e., from the error classes that GenMC
is able to detect). Thus, it detects concurrent use-after-free,
double-free, and accesses to uninitialized memory.

C. STATIC ANALYSIS
Pure static analysis of concurrent programs such as stan-
dard data-flow analysis poses additional challenges due to
the numerous possible thread interleavings, intensifying the
usual trade-off between precision and performance. However,
researchers actively devise new methods to effectively find
vulnerabilities through static analysis.

CANARY
Canary [68] is a value-flow analysis framework built upon
LLVM that tracks how values are stored and loaded via data
and interference dependence relationships, making it possible
to check diverse multi-threaded software safety properties.

In the first place, it constructs a value-flow graph (VFG) for
the given program. This process is driven by an intra-thread
data dependence analysis and an inter-thread interference
dependence analysis. The data dependence analysis seeks to
resolve the data dependence relations to represent variables
and the statements that define or use them as nodes, along
with the execution constraints as edges to represent value-
flow relations. Then, the interference dependence analysis
adds new dependence edges to the graph on pairs of load and
store nodes from different threads to shared memory objects.
These edges are also annotated with the constraints for the
corresponding value flow.

Then, Canary checks for errors by verifying the reacha-
bility of source-sink paths in the VFG, where the source is
a free statement and the sink any use statement. Specifically,
it checks for value-flows that connect source to sink across
different threads. To validate whether a given value-flow path
conforms a feasible interleaving execution, the formula that
encodes the aggregated constraints is passed on to the Z3
SMT solver. In this way, Canary is able to detect concur-
rency use-after-free vulnerabilities.

DCUAF
DCUAF [7] aims to detect use-after-free errors in Linux device
drivers. To identify driver function pairs that may be concur-
rently executed, it analyzes the lock usage of each driver indi-
vidually as local information, and combines the information
from all drivers to perform a global statistical analysis.

During the first phase, it gathers lock-related calls in each
driver source file and performs an alias analysis to check

VOLUME 11, 2023 44735



O. Llorente-Vazquez et al.: When Memory Corruption Met Concurrency: Vulnerabilities in Concurrent Programs

whether two different calls have an aliased lock variable.
In these cases, the callers are considered as possible concur-
rent functions. Then, it checks the ancestors of each candidate
function pair in the call graph and filters out those that have a
common ancestor to avoid potential false positives. Finally,
it gets the set of driver interfaces that call each function,
and computes the Cartesian product of the sets of driver
interfaces, discarding pairs where both driver interfaces are
the same.

In the second phase, DCUAF takes each concurrent inter-
face pair from the previous phase and calculates the percent-
age of source files that contain these driver interfaces that
have the selected concurrent interface pair. If that percentage
is greater than or equal to a given threshold, the given inter-
face pair is considered global concurrent. Then, given a pair
of global concurrent interfaces in a driver, the functions linked
to these interfaces are annotated as a concurrent function pair
for that driver.

To find use-after-free bugs, DCUAF uses a summary-based
lock-set analysis for efficiency. For each concurrent function
pair, it collects the lock set of each variable access for both
functions and leverages function summaries to handle called
driver functions (i.e., function name, source file, accessed
variables, their lock sets, code path to each access, and loca-
tion). Then, it analyzes pairs of variable accesses of function
pairs to verify whether the variable is the same, the lock set
intersection is empty, and one of the accesses is a call to a
memory freeing function. In these cases, a concurrency use-
after-free is reported.

D. OTHER APPROACHES
There are other approaches also found in the literature
that are related to the problem of concurrency memory
corruption detection. The main reasons for not including
them in the above systematization are because their core
objective is different, they target non C/C++ programs,
they are too specific, or reimplement and integrate existing
approaches.

For instance, EBF [69] combines standard BoundedModel
Checking (BMC) and fuzzing techniques. It implements an
open-source fuzzer that implements standard techniques: ran-
dom delay injection at instruction-level to explore thread
interleavings and branch coverage to guide the mutation
process. To find potential bugs and vulnerabilities, it uses
common sanitizers such as AddressSanitizer and
ThreadSanitizer. EBF separately performs BMC and
fuzzing and aggregates the results. Also, whenever the BMC
reports a failed verification outcome, it initializes the fuzzer
seeds with the produced counterexample.

Another example is COMRace [57], which explores the
Windows registry to find registered Component Object
Model (COM) objects, and uses common reverse engineering
methods to decompile and reconstruct virtual function tables
from binary files. Then, it statically analyzes each interface
method implementation to detect unsafe methods that access
member fields without synchronization.

FIGURE 4. Concurrency memory corruption vulnerabilities as a
percentage of total reported concurrency vulnerabilities.

VI. DISCUSSION
Concurrency not only introduces new potential security vul-
nerabilities but also enables traditional ones to be triggered
in different ways. In previous sections, we have explored
concurrency issues from bugs to vulnerabilities, with a
strong focus on concurrency memory corruption vulnerabil-
ities. Having analyzed their characteristics, their presence in
real-world programs and main detection approaches, in this
section we discuss the most relevant points and observations.

A. REPORTED CONCURRENCY VULNERABILITIES
Evidence from the CVE database shows that there is a low
number of reported concurrency memory corruption vulnera-
bilities and concurrency vulnerabilities in general when com-
pared to othermore established categories (e.g., web,memory
corruption). Comparing to these categories is not necessarily
fair since they cover a much larger variety of vulnerabilities,
are not specific to concurrent programs, and have been the
focus of research and bug hunting for many years. However,
the reduced amount of reported concurrency vulnerabilities
can be attributed to: (i) they have received little attention in
both industry and academia, (ii) concurrency vulnerabilities
are harder to find and exploit since they require not only spe-
cific inputs to the program, but specific thread interleavings
to be triggered, and (iii) unlike sequential detection tools,
there are substantially fewer and less mature detection sys-
tems designed towards concurrency vulnerabilities. However,
there has been a significant growth in reported concurrency
vulnerabilities in the last few years, in line with the devel-
opment of increasingly complex concurrent programs, the
recent security research, and the newly proposed detection
approaches.

Most of the concurrency memory corruption vulnerabili-
ties have been reported in recent years. Specifically, 74% of
them are found from 2017 onwards and approximately half
off the total from 2019 to 2021, which indicates that they are
an emerging threat that is also gaining attention, reflecting
the number of proposed approaches in this period. Figure 4

44736 VOLUME 11, 2023



O. Llorente-Vazquez et al.: When Memory Corruption Met Concurrency: Vulnerabilities in Concurrent Programs

outlines the relative number of concurrency memory corrup-
tion vulnerabilities in relation to the total number of reported
concurrency vulnerabilities. As of 2021, approximately one
third of the aggregated concurrency vulnerabilities actually
lead to memory corruption. To illustrate, there are 85 out of
216 in 2021. Not surprisingly, we can observe that memory
errors are prevalent and still a major source of vulnerabilities
even in multithreaded programs.

It is worth to note that the number of reported vulnera-
bilities could vary to some extent due to the conservative
approach we used to identify them.

With regard to CVSS scores, concurrency memory cor-
ruption vulnerabilities show rather similar values to those of
traditional memory corruption, entailing a high severity threat
in most cases. However, it is noteworthy that they are slightly
lower in overall. This can be caused by the fact that they are
harder to exploit, increasing the attack complexity and often
requiring additional conditions to bemet, making it necessary
to repeatedly execute the exploit until it succeeds [9], [49], for
example.

B. VULNERABILITY DETECTION
With regards to concurrency memory corruption detection,
it is remarkable that virtually all approaches have been pro-
posed in recent years. Given that this topic has been gaining
attention lately, there are not many research works yet.

Proposed solutions use static, predictive, or testing algo-
rithms, and aremostly focused on detecting temporalmemory
errors (e.g., use-after-free, double free) because they are con-
sidered to be directly caused by event orders. Therefore, their
characteristics are inherently compatible with concurrency
and are likely to be triggered in concurrent executions. On the
contrary, spatial memory errors (e.g., buffer overflow) pose a
greater challenge since there is a wider variety of operations
involved and their triggering conditions are usually complex.
In fact, MUZZ is the only approach capable of detecting new
concurrency spatial memory errors, although it has difficul-
ties to find temporal memory corruption.

In the field of concurrency issues, bug and vulnerability
reproduction is also an important and challenging task due
to non-determinism. Being able to consistently reproduce
a vulnerability to some extent reduces false positives and
greatly helps developers to understand and fix it properly.
Approaches built upon fuzzing techniques already provide
the program input that crashed the application in the gen-
erated report. However, verifying vulnerabilities reported by
tools based on predictive algorithms poses a major challenge.
In that context, ConVul is the only predictive approach that
tries to actually trigger vulnerabilities by manipulating thread
scheduling to execute the harmful execution order.

There is no single approach that performs absolutely better
than the rest, but each one comes with its own strengths
and limitations. For instance, ConAFL is limited by its
thread-aware static analysis because it does not scale to large
programs (i.e., with more than 10K lines of code). Similarly,
its fuzzer component does not explore new paths or thread

interleavings, it tries to enforce the vulnerable order for a
given pair of sensitive operations, limiting the findings to the
results of the static analysis.
UFO relies on a constraint solver to determine the fea-

sibility of different schedulings. Since it usually generates
long traces with a high number of constraints, it has to
trade detection capability for efficiency in order to solve the
constraints in reasonable time. Similar to other predictive
approaches, it may miss vulnerabilities that would material-
ize in a different execution trace given a different program
input.
ConVul leverages the happens-before relation to identify

exchangeable events. It performs practical prediction and
practical validation methods, which may result in missing
potential vulnerabilities. Further, it uses a heuristic approach
to predict exchangeable events that limits the synchronization
distance to 3, missing potential exchangeable events with
longer distances, and thus missing potential vulnerabilities.
ConVulPOE constructs feasible traces that expose vul-

nerabilities from partial order graphs. However, it cannot
construct a trace when there are unordered conflicting event
pairs that cannot be resolved, missing potential vulnerabil-
ities. Moreover, if it is not able to identify pairs of events
in the trace according to its definitions of vulnerability-
potential event pairs, it does not detect vulnerabilities in
that execution. Further, if the target program crashes, it does
not detect any vulnerabilities even if it was caused by a
vulnerability.

Prior to fuzzing, MUZZ performs static analysis to
extract a suspicious interleaving scope to later focus
coverage-oriented instrumentation on it. However, it does not
include lock-protected operations, which have been proven
to lead to concurrency vulnerabilities [10], [61]. Therefore,
it may intensely exclude statements that involve interest-
ing interleavings. Moreover, controlled concurrency testing
approaches such as PERIOD do not deal with program inputs,
i.e., do not generate or try to discover new inputs but rely on
a predefined set. Hence, they potentially benefit from other
methods that seek to find new test cases, such as fuzzing.

In general, many approaches rely on points-to static analy-
sis, which is associated to high false positive rates as precise
and concrete control-flow and data-flow information can only
be known at runtime. In addition, it also requires precise
concurrency information, increasing the complexity of the
analyses.

To sum up, temporal memory errors have been the focus
of most existing concurrency vulnerability detectors due
to their close alignment with concurrency, whereas spatial
errors seem to remain as a greater challenge. Among the
proposed tools, those based on predictive analysis showed
a better performance in detecting temporal errors, whereas
fuzzing performed better for spatial memory corruption.
There is room for further exploration in both cases to develop
new approaches to effectively detect the already addressed
error classes, or to target those that have received less
attention.

VOLUME 11, 2023 44737



O. Llorente-Vazquez et al.: When Memory Corruption Met Concurrency: Vulnerabilities in Concurrent Programs

VII. RELATED WORK
There are no existing works that explicitly focus on measur-
ing and analyzing concurrency vulnerabilities and how they
are detected. However, other measurement papers are closely
related to individual parts of this paper.

Concurrency bugs have been a topic of research for sev-
eral years [2], [17], [28]. Researchers have previously stud-
ied concurrency bug patterns, their manifestation conditions,
and fix strategies [1]. From the analyzed errors, they found
that around one third were caused by different execution
orders from those intended by the developers, and that most
concurrency bugs can be reliably triggered, among other
findings.

Given that memory corruption is still one of the major
concerns in the security community, researchers have thor-
oughly analyzed how it is used to launch several attacks as
well as the main mitigation and protection strategies [6], also
from a binary-only perspective [70]. Part of these approaches
are also applicable or could be adapted to the concurrent
domain.

Fuzzing has been shown to be very effective in finding vul-
nerabilities even in multithreaded programs, and thus several
different algorithms that improve or specialize this process
have been proposed in recent years [12], [46], [62]. In con-
sequence, researchers have analyzed the different techniques
and designs implemented by fuzzers to build a taxonomy
[71], and examined experimental methodologies in the liter-
ature to define a proper evaluation methodology to be carried
out by fuzzers [72]. Concurrency vulnerability detection will
also benefit from advances in fuzzing.

VIII. CONCLUSION
To take advantage of the increased processing capacity
of modern processors, concurrent programs have become
increasingly pervasive. Unfortunately, concurrency intro-
duces new problems in the form of bugs and secu-
rity vulnerabilities. Furthermore, it also enables traditional
vulnerabilities such as memory corruption to be triggered in
alternative ways specific to concurrent executions.

In this paper we have reviewed the particular properties
of concurrency bugs, how they are commonly classified
according to their characteristics, and the main detection
algorithms and tools proposed in the literature. In addition,
we have pointed out how concurrency bugs and vulnera-
bilities are related but not required for each other to take
place. We have also analyzed the presence and trends of
reported concurrency and concurrency memory corruption
vulnerabilities in the CVE database, and showed that they
are an emerging threat. Lastly, we have systematically sur-
veyed, classified, and discussed the most relevant detec-
tion approaches that target concurrency memory corruption
vulnerabilities.

We hope that this paper will draw attention towards concur-
rency vulnerabilities and serve as a basis for future research
to explore new detection methods and perspectives, as well
as further security issues.

REFERENCES

[1] S. Lu, S. Park, E. Seo, and Y. Zhou, ‘‘Learning from mistakes: A compre-
hensive study on real world concurrency bug characteristics,’’ in Proc. 13th
Int. Conf. Archit. Support Program. Lang. Oper. Syst. (ASPLOS), 2008,
pp. 329–339.

[2] C. Flanagan and S. N. Freund, ‘‘FastTrack: Efficient and precise dynamic
race detection,’’ in Proc. 30th ACM SIGPLAN Conf. Program. Lang.
Design Implement., Jun. 2009, pp. 121–133.

[3] G. Li, S. Lu, M. Musuvathi, S. Nath, and R. Padhye, ‘‘Efficient scalable
thread-safety-violation detection: Finding thousands of concurrency bugs
during testing,’’ in Proc. 27th ACM Symp. Oper. Syst. Princ. (SOSP),
Oct. 2019, pp. 162–180.

[4] X. Cai, Y. Gui, and R. Johnson, ‘‘Exploiting unix file-system races via
algorithmic complexity attacks,’’ in Proc. 30th IEEE Symp. Secur. Privacy
(SP), May 2009, pp. 27–41.

[5] NVD—CVE-2010-5298. Accessed: Feb. 27, 2022. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2010-5298

[6] L. Szekeres, M. Payer, T. Wei, and D. Song, ‘‘SoK: Eternal war in mem-
ory,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2013, pp. 48–62.

[7] J.-J. Bai, J. Lawall, Q.-L. Chen, and S.-M. Hu, ‘‘Effective static analysis of
concurrency use-after-free bugs in Linux device drivers,’’ in Proc. USENIX
Annu. Tech. Conf. (ATC), 2019, pp. 255–268.

[8] W. Zhang, C. Sun, and S. Lu, ‘‘ConMem: Detecting severe concurrency
bugs through an effect-oriented approach,’’ in Proc. 15th Int. Conf. Archit.
Support Program. Lang. Oper. Syst. (ASPLOS), 2010, pp. 179–192.

[9] S. Zhao, R. Gu, H. Qiu, T. O. Li, Y. Wang, H. Cui, and J. Yang,
‘‘OWL: Understanding and detecting concurrency attacks,’’ in Proc. 48th
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2018,
pp. 219–230.

[10] Y. Cai, B. Zhu, R. Meng, H. Yun, L. He, P. Su, and B. Liang, ‘‘Detecting
concurrency memory corruption vulnerabilities,’’ in Proc. 27th ACM Joint
Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng. (ESEC/FSE),
Aug. 2019, pp. 706–717.

[11] C. Liu, D. Zou, P. Luo, B. B. Zhu, and H. Jin, ‘‘A heuristic framework to
detect concurrency vulnerabilities,’’ in Proc. 34th Annu. Comput. Secur.
Appl. Conf. (ACSAC), Dec. 2018, pp. 529–541.

[12] H. Chen, S. Guo, Y. Xue, Y. Sui, C. Zhang, Y. Li, H. Wang, and Y. Liu,
‘‘MUZZ: Thread-aware grey-box fuzzing for effective bug hunting in
multithreaded programs,’’ inProc. USENIX Secur. Symp. (USENIX Secur.),
2020, pp. 2325–2342.

[13] J. Huang, ‘‘UFO: Predictive concurrency use-after-free detection,’’ in
Proc. IEEE/ACM 40th Int. Conf. Softw. Eng. (ICSE), Mar./Jun. 2018,
pp. 609–619.

[14] S. Park, R. W. Vuduc, and M. J. Harrold, ‘‘Falcon: Fault localization in
concurrent programs,’’ in Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng.
(ICSE), May 2010, pp. 245–254.

[15] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
‘‘Eraser: A dynamic data race detector for multithreaded programs,’’ ACM
Trans. Comput. Syst., vol. 15, no. 4, pp. 391–411, Nov. 1997.

[16] S. Lu, J. Tucek, F. Qin, andY. Zhou, ‘‘AVIO:Detecting atomicity violations
via access interleaving invariants,’’ in Proc. 12th Int. Conf. Archit. Support
Program. Lang. Oper. Syst. (ASPLOS), 2006, pp. 37–48.

[17] S. Park, S. Lu, and Y. Zhou, ‘‘CTrigger: Exposing atomicity violation bugs
from their hiding places,’’ inProc. 14th Int. Conf. Archit. Support Program.
Lang. Oper. Syst. (ASPLOS), 2009, pp. 25–36.

[18] H. Jula, D. M. Tralamazza, C. Zamfir, and G. Candea, ‘‘Deadlock immu-
nity: Enabling systems to defend against deadlocks,’’ in Proc. 8th USENIX
Conf. Oper. Syst. Design Implement. (OSDI), 2008, pp. 295–308.

[19] Y. Cai and W. K. Chan, ‘‘MagicFuzzer: Scalable deadlock detection for
large-scale applications,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE),
Jun. 2012, pp. 606–616.

[20] Y. Cai, H. Yun, J. Wang, L. Qiao, and J. Palsberg, ‘‘Sound and effi-
cient concurrency bug prediction,’’ in Proc. 29th ACM Joint Meeting Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng. (ESEC/FSE), Aug. 2021,
pp. 255–267.

[21] P. Pratikakis, J. S. Foster, andM.Hicks, ‘‘LOCKSMITH: Context-sensitive
correlation analysis for race detection,’’ inProc. 27th ACMSIGPLANConf.
Program. Lang. Design Implement. (PLDI), 2006, pp. 320–331.

[22] K. Serebryany and T. Iskhodzhanov, ‘‘ThreadSanitizer: Data race detection
in practice,’’ in Proc. Workshop Binary Instrum. Appl. (WBIA), 2009,
pp. 62–71.

[23] J. Huang, P. O. Meredith, and G. Rosu, ‘‘Maximal sound predictive race
detection with control flow abstraction,’’ in Proc. 35th ACM SIGPLAN
Conf. Program. Lang. Design Implement. (PLDI), Jun. 2014, pp. 337–348.

44738 VOLUME 11, 2023



O. Llorente-Vazquez et al.: When Memory Corruption Met Concurrency: Vulnerabilities in Concurrent Programs

[24] D. Engler and K. Ashcraft, ‘‘RacerX: Effective, static detection of race
conditions and deadlocks,’’ in Proc. 19th ACM Symp. Oper. Syst. Princ.
(SOSP), 2003, pp. 237–252.

[25] M. Said, C. Wang, Z. Yang, and K. Sakallah, ‘‘Generating data race
witnesses by an SMT-based analysis,’’ in Proc. NASA Formal Methods
Symp. (NFM), 2011, pp. 313–327.

[26] T. Elmas, S. Qadeer, and S. Tasiran, ‘‘Goldilocks: A race and transaction-
aware Java runtime,’’ in Proc. 28th ACM SIGPLAN Conf. Program. Lang.
Design Implement. (PLDI), Jun. 2007, pp. 245–255.

[27] M. D. Bond, K. E. Coons, and K. S. McKinley, ‘‘PACER: Proportional
detection of data races,’’ in Proc. 31st ACM SIGPLAN Conf. Program.
Lang. Design Implement. (PLDI), 2010, pp. 255–268.

[28] U. Mathur, D. Kini, and M. Viswanathan, ‘‘What happens-after the first
race? Enhancing the predictive power of happens-before based dynamic
race detection,’’ in Proc. ACM SIGPLAN Conf. Object-Oriented Program.,
Syst., Lang., Appl. (OOPSLA), 2018, pp. 1–29.

[29] D. Kini, U. Mathur, and M. Viswanathan, ‘‘Dynamic race prediction in
linear time,’’ in Proc. 38th ACM SIGPLAN Conf. Program. Lang. Design
Implement. (PLDI), Jun. 2017, pp. 157–170.

[30] J. Roemer, K. Genç, and M. D. Bond, ‘‘High-coverage, unbounded sound
predictive race detection,’’ in Proc. 39th ACM SIGPLAN Conf. Program.
Lang. Design Implement. (PLDI), Jun. 2018, pp. 374–389.

[31] Helgrind: A Thread Error Detector. Accessed: Mar. 1, 2022. [Online].
Available: https://valgrind.org/docs/manual/hg-manual.html

[32] S. Nagarakatte, S. Burckhardt, M. M. K. Martin, and M. Musuvathi,
‘‘Multicore acceleration of priority-based schedulers for concurrency bug
detection,’’ in Proc. 33rd ACM SIGPLAN Conf. Program. Lang. Design
Implement. (PLDI), Jun. 2012, pp. 543–554.

[33] Z.-M. Jiang, J.-J. Bai, K. Lu, and S.-M. Hu, ‘‘Context-sensitive and direc-
tional concurrency fuzzing for data-race detection,’’ in Proc. Netw. Distrib.
Syst. Secur. Symp. (NDSS), 2022.

[34] U. Agarwal, P. Deligiannis, C. Huang, K. Jung, A. Lal, I. Naseer,
M. Parkinson, A. Thangamani, J. Vedurada, and Y. Xiao, ‘‘Nekara: Gener-
alized concurrency testing,’’ in Proc. 36th IEEE/ACM Int. Conf. Automated
Softw. Eng. (ASE), Nov. 2021, pp. 679–691.

[35] J. Bornholt, R. Joshi, V. Astrauskas, B. Cully, B. Kragl, S. Markle,
K. Sauri, D. Schleit, G. Slatton, S. Tasiran, J. Van Geffen, and A. Warfield,
‘‘Using lightweight formal methods to validate a key-value storage node
in Amazon S3,’’ in Proc. ACM SIGOPS 28th Symp. Operating Syst. Princ.
CD-ROM, Oct. 2021, pp. 836–850.

[36] C. Flanagan and S. Qadeer, ‘‘A type and effect system for atomicity,’’ in
Proc. ACM SIGPLAN Conf. Program. Lang. Design Implement. (PLDI),
May 2003, pp. 338–349.

[37] C. Flanagan and S. N. Freund, ‘‘Atomizer: A dynamic atomicity checker
for multithreaded programs,’’ inProc. 31st ACMSIGPLAN-SIGACT Symp.
Princ. Program. Lang. (POPL), 2004, pp. 256–267.

[38] C. Flanagan, S. N. Freund, and J. Yi, ‘‘Velodrome: A sound and complete
dynamic atomicity checker for multithreaded programs,’’ in Proc. 29th
ACM SIGPLAN Conf. Program. Lang. Design Implement. (PLDI), 2008,
pp. 293–303.

[39] U. Mathur and M. Viswanathan, ‘‘Atomicity checking in linear time using
vector clocks,’’ in Proc. 25th Int. Conf. Archit. Support Program. Lang.
Oper. Syst. (ASPLOS), Mar. 2020, pp. 183–199.

[40] Z. Lai, S.-C. Cheung, and W. K. Chan, ‘‘Detecting atomic-set serializabil-
ity violations in multithreaded programs through active randomized test-
ing,’’ in Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng. (ICSE), May 2010,
pp. 235–244.

[41] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu, and T. Reps,
‘‘ConSeq: Detecting concurrency bugs through sequential errors,’’ in Proc.
16th Int. Conf. Archit. Support Program. Lang. Oper. Syst. (ASPLOS),
2011, pp. 251–264.

[42] X. Fu, D. Lee, and C. Jung, ‘‘NAdroid: Statically detecting ordering vio-
lations in Android applications,’’ in Proc. Int. Symp. Code Gener. Optim.
(CGO), Feb. 2018, pp. 62–74.

[43] D. Wu, J. Liu, Y. Sui, S. Chen, and J. Xue, ‘‘Precise static happens-before
analysis for detecting UAF order violations in android,’’ inProc. 12th IEEE
Conf. Softw. Test., Validation Verification (ICST), Apr. 2019, pp. 276–287.

[44] T. Kim, V. Kumar, J. Rhee, J. Chen, K. Kim, C. H. Kim, D. Xu,
and D. J. Tian, ‘‘PASAN: Detecting peripheral access concurrency bugs
within bare-metal embedded applications,’’ in Proc. USENIX Secur. Symp.
(USENIX Secur.), 2021, pp. 249–266.

[45] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, ‘‘Razzer: Finding
kernel race bugs through fuzzing,’’ in Proc. IEEE Symp. Secur. Privacy
(SP), May 2019, pp. 754–768.

[46] M. Xu, S. Kashyap, H. Zhao, and T. Kim, ‘‘Krace: Data race fuzzing for
kernel file systems,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2020,
pp. 1643–1660.

[47] S. Gong, D. Altinbüken, P. Fonseca, and P.Maniatis, ‘‘Snowboard: Finding
kernel concurrency bugs through systematic inter-thread communication
analysis,’’ in Proc. 28th ACM Symp. Operating Syst. Princ. (SOSP), 2021,
pp. 66–83.

[48] Google. Syzkaller—Kernel Fuzzer. Accessed: Mar. 1, 2022. [Online].
Available: https://github.com/google/syzkaller

[49] J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan, ‘‘Concurrency attacks,’’
in Proc. s4th USENIX Workshop Hot Topics Parallelism (HotPar), 2012,
p. 15.

[50] P.Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-Lazaro, ‘‘How double-fetch
situations turn into double-fetch vulnerabilities: A study of double-fetches
in the Linux kernel,’’ in Proc. USENIX Secur. Symp. (USENIX Secur.),
2017, pp. 1–16.

[51] M. Wu and C. Wang, ‘‘Abstract interpretation under speculative execu-
tion,’’ in Proc. 40th ACM SIGPLAN Conf. Program. Lang. Design Imple-
ment. (PLDI), Jun. 2019, pp. 802–815.

[52] NVD—CVE-2021-3348. Accessed: Mar. 3, 2022. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2021-3348

[53] NVD—CVE-2019-11366. Accessed: Mar. 3, 2022. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2019-11366

[54] Lefebvre, Jean-Pierre. Atftp. Accessed: Mar. 3, 2022. [Online]. Available:
https://sourceforge.net/projects/atftp/

[55] NVD—Data Feeds. Accessed: Mar. 3, 2022. [Online]. Available:
https://nvd.nist.gov/vuln/data-feeds

[56] Y. Lee, C. Min, and B. Lee, ‘‘ExpRace: Exploiting kernel races through
raising interrupts,’’ in Proc. USENIX Secur. Symp. (USENIX Secur.), 2021,
pp. 2363–2380.

[57] F. Gu, Q. Guo, L. Li, Z. Peng, W. Lin, X. Yang, and X. Gong, ‘‘COMRace:
Detecting data race vulnerabilities in COM objects,’’ in Proc. USENIX
Secur. Symp. (USENIX Secur.), 2022, pp. 3019–3036.

[58] A. Farzan, P. Madhusudan, N. Razavi, and F. Sorrentino, ‘‘Predicting null-
pointer dereferences in concurrent programs,’’ in Proc. ACM SIGSOFT
20th Int. Symp. Found. Softw. Eng. (FSE), Nov. 2012, pp. 1–11.

[59] L. D. Moura and N. Bjørner, ‘‘z3: An efficient SMT solver,’’ in Proc. Int.
Conf. Tools Algorithms Construct. Anal. Syst., 2008, pp. 337–340.

[60] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, ‘‘Pin: Building customized program anal-
ysis tools with dynamic instrumentation,’’ in Proc. ACM SIGPLAN Conf.
Program. Lang. Design Implement. (PLDI), Jun. 2005, pp. 190–200.

[61] K. Yu, C. Wang, Y. Cai, X. Luo, and Z. Yang, ‘‘Detecting concurrency
vulnerabilities based on partial orders of memory and thread events,’’ in
Proc. 29th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw.
Eng. (ESEC/FSE), Aug. 2021, pp. 280–291.

[62] M. Zalewski. American Fuzzy Lop. Accessed: Mar. 1, 2022. [Online].
Available: https://lcamtuf.coredump.cx/afl/

[63] Y. Ko, B. Zhu, and J. Kim, ‘‘Fuzzing with automatically controlled inter-
leavings to detect concurrency bugs,’’ J. Syst. Softw., vol. 191, Sep. 2022,
Art. no. 111379.

[64] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, ‘‘AddressSan-
itizer: A fast address sanity checker,’’ in Proc. USENIX Annu. Tech. Conf.
(ATC), 2012, pp. 309–319.

[65] C.Wen, M. He, B. Wu, Z. Xu, and S. Qin, ‘‘Controlled concurrency testing
via periodical scheduling,’’ in Proc. 44th Int. Conf. Softw. Eng. (ICSE),
May 2022, pp. 474–486.

[66] The Linux Kernel User’s and Administrator’s Guide. Deadline
Task Scheduling. Accessed: Feb. 14, 2023. [Online]. Available:
https://www.kernel.org/doc/html/latest/scheduler/sched-deadline.html

[67] M. Kokologiannakis and V. Vafeiadis, ‘‘GenMC: A model checker for
weak memory models,’’ in Proc. 33rd Int. Conf. Comput.-Aided Verifica-
tion (CAV), 2021, pp. 427–440.

[68] Y. Cai, P. Yao, and C. Zhang, ‘‘Canary: Practical static detection of inter-
thread value-flow bugs,’’ inProc. 42nd ACMSIGPLAN Int. Conf. Program.
Lang. Design Implement. (PLDI), Jun. 2021, pp. 1126–1140.

[69] F. K. Aljaafari, R. Menezes, E. Manino, F. Shmarov, M. A. Mustafa, and
L. C. Cordeiro, ‘‘Combining BMC and fuzzing techniques for finding
software vulnerabilities in concurrent programs,’’ IEEE Access, vol. 10,
pp. 121365–121384, 2022.

[70] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna, ‘‘SOK: (State
of) the art of war: Offensive techniques in binary analysis,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2016, pp. 138–157.

VOLUME 11, 2023 44739



O. Llorente-Vazquez et al.: When Memory Corruption Met Concurrency: Vulnerabilities in Concurrent Programs

[71] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo, ‘‘The art, science, and engineering of fuzzing: A survey,’’ IEEE
Trans. Softw. Eng., vol. 47, no. 11, pp. 2312–2331, Nov. 2021.

[72] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, ‘‘Evaluating fuzz
testing,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS),
Oct. 2018, pp. 2123–2138.

OSCAR LLORENTE-VAZQUEZ received the
B.Sc. degree in computer engineering from the
University of Deusto, Bilbao, Spain, in 2016, and
the M.Sc. degree in information and communica-
tions security from Alfonso X El Sabio University,
Madrid, Spain, in 2017. He is currently pursuing
the Ph.D. degree in computer science in the field
of system security with the University of Deusto.
From 2015 to 2017, he was a Research Intern with
the University of Deusto, where he has been a

Research Assistant, since 2017. His research interests include software and
system security, vulnerability analysis, and the development of detection and
mitigation methods for software vulnerabilities.

IGOR SANTOS-GRUEIRO received the Ph.D.
degree in computer science from the Uni-
versity of Deusto, Bilbao, Spain, in 2011.
From 2011 to 2020, he was an Assistant Professor
and an Associate Research Professor with the
University of Deusto, leading the Information and
Systems Security Research Group. Since 2020,
he has been a Lecturer and a Researcher with
the Cybersecurity Research Group, Mondragon
University. He is currently a Security Research

Scientist with HP Labs, conducting industrial cybersecurity research. His
research interests include the area of systems security and, in particular,
the areas of program analysis, including malware analysis and operating
systems security; web security, including online malicious content detection
and online privacy; and network analysis.

PABLO GARCIA BRINGAS received the Ph.D.
degree in computer science, specializing in the
application of artificial intelligence to the field of
security, from the University of Deusto, Bilbao,
Spain, in 2007. He has been the Founder and the
Director of the Digital Industry Chair, University
of Deusto. He has worked decisively in the con-
stitution of the DeustoTech Technology Center,
in which he has held various positions of responsi-
bility, including general management. He has also

directed the Deusto Master’s Degree in information security for 11 years.
He is also directing the new Executive Program in Industry 4.0. He is cur-
rently a Full Professor of engineering with the University of Deusto, where
he leads the nationally recognized Deusto for Knowledge—D4K Research
Group. He is also the Vice-Dean of external relations, continuous education,
and research with the Faculty of Engineering, University of Deusto.

44740 VOLUME 11, 2023


